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Abstract
This paper analyses the extent to which existing econometric models of low-pay transition
probabilities in Italy are biased by the presence of endogenous panel attrition. Non-random exits
from the sample of wage earners may result from both demand and supply side factors and this
could lead to under- or overestimation (respectively) of the extent of low-wage persistence. The
analysis is carried out by extending the bivariate probit model used in Cappellari [1999] (where
starting state and transition probabilities are jointly modelled thus tackling the endogeneity of the
conditioning starting wage state) with a third equation which controls for the non-randomness of
panel attrition. The resulting trivariate probit model with endogenous switching, whose evaluation
is not feasible within the routines customarily available in microeconometric packages, is
implemented by applying simulation estimation techniques. Results show the ignorability of
attrition in SHIW data, thus pointing towards the robustness of the results previously obtained
without controlling for attrition.
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1. Introduction

Existing evidence on individual transitions at the bottom of the Italian wage

distribution indicates that while factors traditionally thought of as “wage determinants”,

such as education and labour market experience, have, if any, a limited impact in

generating mobility across pre-defined low-wage thresholds, the experience of low-pay

has, per se, a clear role in determining the future occurrence of low-pay episodes, i.e.

a low-pay stigma effect appears to be in place (see Cappellari [1999]). Such evidence

has been produced using panel data from the Survey on Household Income and

Wealth (SHIW)1 for the period 1993-1995 and estimating a bivariate probit model with

endogenous switching which allows assessment of the so called initial conditions

problem (Heckman [1981]), i.e. the potential endogeneity of the conditioning starting

wage state: workers assignment above or below the low-pay threshold at the

beginning of the transition could, in general, be correlated with unobserved

determinants of transition probabilities and the joint estimation of state and transition

probabilities accounts for this source of endogeneity.2 Results show how, similarly to

other studies (see Stewart and Swaffield [1999]), the endogeneity of initial conditions

should not be ignored, the correlation between state and transition probabilities being

statistically significant.

Results above are based on a sample for which a valid wage is observed at both

ends of the transition investigated, while observations available only at the beginning or

at the end of the transition are discarded from the analysis. Such a sample selection

rule may lead to biased parameters’ estimates if the propensity to be observed in both

of the SHIW waves considered is not randomly distributed across individuals, but is

correlated with unobservables in the transition equation. In other words, the presence

of panel attrition is a second potential source of endogeneity inherent to the modelling

of wage transition probabilities: the aim of this paper is to investigate the extent to

which the existing evidence on Italy is plagued by endogenous attrition. Such a task is

pursued by augmenting the bivariate probit model with a third equation which accounts

for the probability of belonging to the balanced sample. The resulting set-up is a

                                                                
1 The SHIW is produced by the Bank of Italy and is based on questionnaires which, apart from
information on various aspects of the households’ economic behaviour, report detailed information on
labour market variables for their members. See Cappellari [1999] for a description of the sample.
2 A bivariate probit with endogenous switching and partial observability of the arrival wage distribution
has been originally proposed by Stewart and Swaffield [1999] to model low-pay transitions on BHPS
data. Cappellari [1999] extends this framework along two directions: first, the partial observability
hypothesis is removed and, secondly, the binary probit specification is replaced by an ordered probit
which accounts for the width of transitions.
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trivariate probit with double endogenous switching. The use of trivariate normal

integrals, which are not commonly packaged in statistical softwares, poses a

computational difficulty for the implementation of maximum likelihood estimation. Such

a problem is tackled here by means of simulation techniques, in particular by

implementing the GHK simulator within STATA’s maximum likelihood routines.

The sign of the correlation between attrition and low-wage transition probabilities

is not clear a priori. On the one hand, attrition could be determined by demand side

factors, with workers abandoning the sample of wage earners as a consequence of

events such as layoffs. In such a case, individuals dropping out from the sample over

time are likely to be characterised by a low degree of attachment to the labour market

and their characteristics (both observed and unobserved by the researcher) would

probably positively influence the propensity to persist in low-pay. The exclusion of

these observations from the analysis would then lead to underestimation of both

aggregate low-pay persistence and the effect of observable characteristics on

transition probabilities. At the other extreme, exits from the data set may be the result

of supply side decisions which, had the sample unit been observed in subsequent time

periods, would have generated mobility out of low-pay, which is instead not observed

due to the inability to track the missing observation. In this occurrence attrition would

negatively covary with low-pay persistence, so that inferences based on the

“balanced” sample would overestimate both aggregate persistence and the effect of

observable characteristics on transition probabilities. The actual situation will probably

result from the interplay of these two effects and in the analysis which follows attention

will be focused on the net result.

The case of endogenous panel attrition is an example of what Verbeek and

Nijman [1992] define as a non-ignorable sample selection rule: conducting inference

on the selected sample is legitimate only if conditioning on the availability of

observations does not alter the joint density of the variables under examination, and

only in this case the selection rule may be deemed ignorable. As pointed out in this

study, given a set of incomplete data, there are three strategies which could be

pursued. Data may first of all be imputed, i.e. missing bits of information are replaced

by their prediction based on the available sample. Alternatively, available observations

could be weighted in some way, in order to reconstruct their relative importance to

what it should have been in a random (i.e. non attrited) sample. Finally, a model based

strategy can be pursued. In this case, the treatment of the missing data process is
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deferred to the analysis stage, where the probability of belonging to the available data

set is modelled jointly with the economic relation of interest. In the case of non-

ignorability of the sample selection rule, this last strategy is superior in that both

imputation and weighting would need to be model based in order to be properly carried

out.

Such a modelling approach to attrition characterises the few studies which

address the problem in the context of panel data on earnings. Hausman and Wise

[1979] are concerned with endogenous selection in wage equations estimated on a

sample of participants in the Gary Income Maintenance Experiment, in particular with

attrition of subsequent responses once the observational unit has already been part of

the sample. They apply Heckman’ s correction techniques to wage equations and find

that the extent of bias is limited in statistical significance, while its sign implies that

high wage workers tend to drop out from the experiment: this is consistent with the

fact that high wage individuals benefit less from the experiment and are thus more

likely to abandon it. They also find that attrition is more severe in simple analyses of

variance rather than in structural models and suggest that this occurrence arises from

the fact that in the latter case the conditioning set already includes the factors

determining attrition (this point is also noted by Verbeek and Nijiman [1992]). Keane et

al. [1988] are interested in analysing self-selection over the business cycle and thus to

investigate the issue of wage cyclicality when macroeconomic shocks do not hit

workers at random. The framework is again that of selectivity correction. They find that

attrition significantly biases wages in a procyclical direction, suggesting that high wage

workers exit the employed pool during downturns. The issue of attrition in the context

of wage mobility modelling3 is addressed in Bingley et al. [1995], who use a trivariate

probit model to tackle selectivity of both initial conditions and attrition. Their results

point towards a statistically significative impact of attrition on mobility, with attrition

probabilities positively correlated with upward mobility.

The paper is organised as follows. Section 2 describes the features of the

attrition process in the SHIW data, while in section 3 the trivariate switching probit is

set out. Section 4 presents the results from the simulated maximum likelihood

                                                                
3 In the study of Stewart and Swaffield [1999], the impact of attrition on the bivariate probit estimates of
low-pay persistence is investigated by amalgamating exits from the sample together with persistence
in low-pay, not moving up the wage distribution being the common factor between these two
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estimation of the model, while in section 4 some conclusions are drawn. Details on the

implementation of the maximum likelihood estimator are given in the Appendix.

2. Attrition in the SHIW data

Before moving on to the modelling stage, this section describes the features of

the attrition process in the Bank of Italy’s data set. In this context, an important aspect

of the sampling design is the distinction between panel and non-panel households, the

first group corresponding to those households sampled in (at least) two consecutive

waves. Assignment to this group is carried out in two steps. In the first step, which

takes place at the date of the first wave’s interview (1993 in our case), each household

is asked whether or not it is willing to be re-interviewed in the subsequent wave. At the

second step, which takes place previous to interviews for the subsequent wave,

roughly 50% of those households available for re-interview are sampled to take part in

the new wave. In 1993, 87% of interviewed households (7040 out of 8089 households)

gave their availability for a new contact in 1995; of these, 47% where actually re-

interviewed. A limited number of households (299) were also re-sampled among those

answering NO or DON’T KNOW at the question on availability for future interviews. On

the whole, of the 8089 households forming the 1993 wave of the SHIW, 3645 belong to

the panel sub-group.

Moving from the household to the individual level and focusing on the group of

full-time wage earners with valid wage observations aged between 18 and 65 in 1993,

which is the sample implicitly deemed to be randomly selected in Cappellari [1999]

when cross-sectional probit regressions for the probability of being low-paid were

carried out, such a sampling design implies that of the 5708 valid observations, only

2734 belong to panel households, of which 2160 (see again Table 4.1) have a valid

wage in both 1993 and 1995.

The sampling process just described suggests that some caution should be

exerted when defining the control group for the attrition analysis: a considerable

number of cases exit the sample at random, i.e. from a decision of the survey builders,

and not for economic or demographic reasons. It would clearly make no sense to

include these observations in an analysis of the probability of staying in the sample.

                                                                                                                                                                                           
outcomes. They find that results are not dramatically different when compared to those obtained on the
balanced sample.
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Table 1: Transition probabilities into 1995 status for the sample of 1993 wage earners
aged from 18 to 65 belonging to panel households (low pay defined as bottom quintile
of hourly wage distribution)

1993 wage status Low-pay High-pay
1995 status

low-pay 0.388 0.051
high-pay 0.304 0.761

missing wage; part-time 0.049 0.037
self employed 0.027 0.01
entrepreneur 0.012 0.01
unemployed 0.092 0.019

retired 0.022 0.068
other 0.004 0

housewife 0.027 0.002
not observed 0.076 0.043

Total obs 490 2244

The analysis of this paper thus enlarges the estimation sample to include those

observations which belong to a panel household in 1993 but don’t have an observable

wage in 1995: these are observations which could have potentially stayed in the

sample of wage earners, but are not observed in the arrival wage distribution, either

because they left the employed labour force or the household of origin. Potentially,

also those belonging to households refusing to cooperate (and not actually re-

sampled) could have been used to form the control group; however, the reasons

behind the willingness to cooperate in the subsequent wave are not clear and it has

been preferred not to include these cases (a total of 367 individuals) in the analysis.4

In order to get an illustration of the kind of movements out from the wage

distribution which determine the attrition process, Table 1 gives the destinations in

1995 for the sample of wage earners belonging to a panel household and aged

between 18 and 65 in 1993, i.e. the estimation sample for the present paper.

Focusing on the comparison between low- and high-paid in 1993, it can be seen how

the low-paid are characterised by higher transition rates especially in the group of the

unemployed, and, to a minor extent, in the housewives and the “not observed”

classes. On the other hand, the high paid have higher transition rates into retirement.

                                                                
4 Similarly, individuals belonging to panel households and with a valid wage only in 1995 (34 cases)
are not included in the control group of the attrition equation.
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An alternative illustration of the attrition process is given in Table 2, which

reports results from probit regressions for the probability of having a valid wage in

both 1993 and 1995 on a set of personal characteristics: the event under investigation

is persistence in the sample of valid wage earners, while explanatory variables are

measured at the beginning of the transition. The estimation sample differs from the

one considered in Table 1 due to the presence of missing values in some of the

explanatory variables; the same remark applies to the sample used in estimating the

model of the next section.

Column 1 considers the effect of the wage determinants used in the reduced

form low-pay probits of Cappellari [1999] (i.e. the selection equations of the bivariate

switching probit), but without controlling for parental backgrounds. We can observe

that the probability of persisting in sample displays an inverted u-shaped profile in

labour market experience, indicating a higher sample attachment towards the central

part of the working career, with maximum probability approximately 18 years after the

beginning of the first job. Education has a positive impact on such a probability, while

being female reduces it by 4 percentage points.

Table 2: Probit estimates (marginal effects) for the probability of having a valid wage
in 1993 and 1995 (asymptotic t-ratios in parentheses).

1 2
experience/10 0.219 (9.73) 0.146 (5.74)

(experience/10)^2 -0.059 -(11.30) -0.044 -(7.77)
education>=high school 0.038 (1.73) 0.048 (2.20)

female -0.043 -(2.46) 0.017 (0.64)
living in the north -0.005 -(0.30) 0.008 (0.49)

non-manual 0.006 (0.29) 0.010 (0.46)
firm size>=100 0.049 (2.36) 0.047 (2.23)
public sector 0.104 (4.63) 0.097 (4.35)
agricolture -0.038 -(0.74) -0.046 -(0.89)

service sector -0.010 -(0.46) -0.009 -(0.41)
dependent children 0.076 (2.96)

dependent
children*female

-0.096 -(2.16)

married 0.099 (3.22)
married*female -0.048 -(1.22)

per capita equivalized
household wealth
(millions of lire)

-0.153 -(2.99)

n. obs 2716 2716
pseudo r2 0.0792 0.0971
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Among the other variables considered, while geographical location, occupation

and sectoral affiliations (within the private sector) have no significant impact, affiliation

to the public sector or employment in large firms positively influence retention

probabilities on a scale between 5 and 10 percentage points. Column 2 augments the

same specification with some reservation wage indicators; these are  dummies for

the presence of dependent children (i.e. aged less than 14) in the household and for

being married, interacted with the gender dummy, and the per capita equivalised

household wealth.5 The first two variables are assumed to potentially influence

workers’ motivation to participate in the labour market in different directions depending

upon gender: while for males the presence of family responsibilities is supposed to

raise incentives to participate, for females negative signs could arise from the social

structuring of child and household care. On the other hand, wealth is assumed to

raise the reservation wage irrespective of gender. We can first of all observe that, with

the exception of the gender dummy, all the other effects are robust to the inclusion of

reservation wage indicators. The reasons for the loss in size and significance of the

gender dummy become clear as we move to consider the new variables included in

the regression. In particular, considering the indicator for the presence of dependent

children and its interaction with the gender dummy, we can see how these effects

come with the expected sign: a male with a dependent children within the household

has a higher probability (7.6%) of staying in sample than an otherwise identical

worker, while for females this probability is 2% lower than for otherwise identical

males without dependent children within the household.6 Taking the effect of marriage

into account, it is rather strong (10%) and positive for males, while for females it is

less intense and statistically significant. Finally, the household wealth indicator

displays the expected negative sign.7

The probit analysis above has shed some light on the factors influencing exits

from the sample of wage earners in 1995; in the next paragraph I will build on this in

trying to model attrition bias within the model of low-pay transitions.

                                                                
5 Compulsory education usually lasted until 13 in the years examined. The equivalising factor for the
wealth indicator is the square root of the number of household members.
6 Recall that the sample is not selected with respect the position in the household, i.e. this evidence is
based also on 357 sons and 226 daughters, plus 55 other relatives. Thus, the sample departs a bit
from a stylised model of labour supply allocation between husband and wife. Here I am implicitly
assuming that the factors determining the allocation of family responsibilities in the case of
husbands and wives also influence the decisions of working sons and daughters.
7 In a separate non reported analysis, the effect of wealth have been differentiated by sex, finding that
for females such effect is still negative, but greater that the male one, although at the 17% level of
significance.
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3. A sequentially nested trivariate probit model for the analysis of attrition

bias

This section describes the modelling approach adopted in order to assess to

what extent the Italian evidence on low-pay transition probabilities is plagued by the

presence of attrition bias. Is it correct to focus the analysis of wage transitions only on

those individuals for whom a valid wage is available in each panel wave? Or, on the

contrary, are these individuals systematically different from the ones dropping out

from the survey, so that their selection for estimation is endogenous, thus biasing

estimation results?

To provide an answer to these questions, the (structure of the) model used in

Cappellari [1999] has been extended to allow for a third dichotomic event which

interacts with the ones previously considered (i.e. low-pay/high-pay at both ends of

the transition investigated) in determining the likelihood of the data. The resulting set-

up is a trivariate conditional probit model which allows for sequential nesting of the

equation of interest. The sequential nesting structure resembles the one used by

Bingley et al. [1995], with two relevant differences: first, in this chapter attrition is

considered only with respect to the arrival wage distribution (as in Hausman and

Wise), while in Bingley et al. attrition in the starting wage distribution is also taken into

account; secondly Bingley et al. consider discrete indicators of wage changes

conditional on starting wage levels, while here wage levels are conditioned on starting

wage levels. However, in the case of mobility from the tails of the distribution, the two

specifications are observationally equivalent.

The modelling of attrition is carried out expanding the model for low-pay

persistence proposed by Stewart and Swaffield [1999], i.e., differently from the model

of Cappellari [1999], the 1995 wage outcome is assumed to be observable only for

the 1993 low-paid. The model is expanded by acknowledging that it can be actually

estimated only using observations for which a wage is observable in 1993 and 1995.

Let Ri be a dummy partitioning the sample of 1993 wage earners8 depending upon

their wage observability in 1995; let us also define di t as dummy variables for low-pay

                                                                
8 Recall from section 2 that these are wage earners belonging to panel households, this last state
being assumed exogenous to low-pay transitions.
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occurrence in year t. The sequential nesting structure of the model is represented in

Figure 1.

Fig. 1: The structure of the trivariate nested probit

Prob(Ri=1)
0 ⇔ 1

Prob(di93=1|Ri=1)

1 ⇔ 0
Prob(di95=1|di93=1,Ri=1)

1 ⇔ 0

At the first nesting level, a probit is estimated for the probability of having a valid

wage in both periods. At the second nesting level, only those observations for which

Ri=1 are utilised to estimate a probit for the probability of low-pay in 1993. Finally, the

sample of the 1993 low-paid observed in both waves is used to estimate a probit

equation for low-pay in 1995; of course, the nesting sequence just described is

simultaneously estimated. It is worth stressing that the multivariate normal density

assumed allows for unrestricted correlation between the errors, thus allowing a

proper assessment of potential endogeneity issues among the three events

investigated.

More formally, let’s assume that the propensity to stay in sample (retention

propensity) is a latent variable R*; when R* overcomes an unobservable (possibly

individual specific) threshold τ*, observations remain in the sample of wage earners in

both waves. R* is assumed to be a function of observable characteristics, and we

only observe a dummy indicator R signalling whether or not R*>τ*:

R x v

R I R
v N

i Ri R i

i i i

i

∗

∗ ∗

= +

= >

'

( )
~ ( , )

δ

τ
01

(1)

where x’Ri contains the whole set of explanatory variables used in the model and I(A)

is a dummy equal to 1 when A is true and to 0 otherwise.

The second stage can be formalised according to the discussion in Cappellari

[1999] and assuming partial observability of the 1993 low-pay outcome:
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where g( ) is a monotonic transformation such that u is normally distributed, w is the

relevant wage rate, variables in x are a subset of those in xR and λ93 is the low-pay

threshold in the 1993 wage distribution.

The headline equation of interest is a probit equation for the occurrence of low-

pay in 1995 for which two sources of partial observability are assumed:
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where variables in z are a subset of those in x. Assuming that error terms in the three

equations are jointly distributed as a tri-variate normal
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and that observations are iid, the log-likelihood function of the model may be written

as9:
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δ β ρ
δ

(5)

                                                                
9 The way δ commutes into β can be derived by (3):

prob d prob w prob g w g g x xi i i i i( ) ( ) ( ( ) ( )) ( ( ) ' ) ( ' )93 93 93 93 93 931= = ≤ = ≤ = − =λ λ λ δ βΦ Φ

where the new constant term in β subsumes the difference between g(λ) and the old constant in δ and
the coefficients associated with the individual characteristics in β are the same as in δ, but with
opposite sign. Similar remarks apply to η1 and γ1.
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The nested structure of the selection processes of the model implies a nested

structure of identifying restrictions, i.e. z ⊂ x⊂ xR . 10 For what concerns the first

nesting level, here I assume that variables entering only xR are some of the

reservation wage indicators included in Table 1, namely the dummy for the presence

of dependent children in the household interacted with the gender dummy. Such

variables have been chosen on the basis of a reduced form bivariate probit model in

which Ri and di93 have been conditioned on a general specification of xRi
11; results

from the reduced form show how these two variables do not enter the low-pay

equation significantly12; it is then assumed that their effect on wages in both time

periods only works through participation in 1995. The choice of such variables is also

in line with previous studies of attrition bias in panel wage analysis, namely with

Keane et al. [1988], who use the number of kids as an instrument in their employment

equation. As mentioned in the introduction, attrition may well result from demand side

factors, and it could also be argued that such factors are more relevant at the lower

end of the wage distribution, where monopsonistic behaviour is likely to characterise

the labour market. However, it is difficult to imagine demand side factors, among the

available information, which do not enter the wage equation directly. For what

concerns identification of the transition equation with respect to the starting state

equation, i.e. the second selection process where variables are needed which enter

only x (and xR) but not z, here I follow the identification strategy adopted in Cappellari

[1999] and firstly proposed by Stewart and Swaffield [1999] and use a set of parental

background indicators, the assumption being that they affect wage levels but, given

this, they have no direct effect on wage changes. Moreover, given its nature of wage

change equation, the transition equation doesn’t include the square of labour market

experience.13

As mentioned in the introduction, we can see from (5) that the log-likelihood

function involves the c.d.f. of the trivariate normal distribution, whose evaluation has

                                                                
10 Due to the presence of non-linearities, the model would be statistically identified also without such
restrictions.
11 The specification includes the whole set of variables used in column 2 of Table 1 plus a set of
parental background indicators.
12 The p-value for these variables in the 1993 low-pay equation is .77 for the male dummy and .9 for
the female one.
13 Abstracting for a moment from the selectivity for attrition, this last restriction, which comes from the
very structure of the model, gives exact identification in a bivariate probit for state and transition
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been implemented via simulation estimation: the Appendix illustrates the practical

implementation of such an estimator.

4. Results

Results from the simulated maximum likelihood analysis are given in Table 3,

which reports SML estimated coefficients and asymptotic t-ratios for the two nesting

equations and the low-pay transition equation; the analysis is restricted to the low-pay

threshold defined in terms of the bottom quintile of the hourly wage distribution, while,

as a benchmark, the first column of the Table reports results obtained with a nested

bivariate model which only controls for the endogeneity of initial conditions.14 The

simulated likelihood function is computed using 75 random draws from the truncated

normal distributions of interest.15

                                                                                                                                                                                         
probabilities, enabling tests of the validity of parental backgrounds as overidentifying instruments.
Such tests have been carried out in Cappellari [1999], and results support the validity of instruments.
14 Results in column 1 are taken from Table 7 in Cappellari [1999], where bivariate and ordered probit
specifications of the low-pay persistence equation were compared.
15 In the appendix the performance of the SML estimator at different choices of the number of draws is
checked, showing how estimates are robust to such a choice.
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Table 3: Simulated maximum likelihood estimates (asymptotic t-ratios) of the sequentially nested trivariate probit. GHK simulator with 75 draws.
(1):bivariate probit (2): unrestricted (3): ρ(Ri,di93)= (4): restricted (5): (3)&(4)
without attrition trivariate probit ρ(Ri,di95)*ρ(di93,di95) conditioning set

Low-pay 1995
experience/10 -0.072 (0.680) -0.079 (0.531) -0.057 (0.408) 0.120 (1.456) 0.122 (1.546)

edu>=high sch. -0.646 (2.723) -0.657 (2.464) -0.627 (2.381)
female 0.247 (1.253) 0.259 (1.055) 0.225 (0.955) 0.034 (0.262) 0.030 (0.234)

non-manual -0.139 (0.567) -0.133 (0.474) -0.110 (0.395)
size>=100 -0.405 (1.383) -0.432 (1.318) -0.399 (1.233)

public sector 0.068 (0.205) 0.033 (0.088) 0.066 (0.183)
agriculture 0.082 (0.262) 0.112 (0.350) 0.095 (0.303)

service sector 0.258 (1.515) 0.264 (1.536) 0.260 (1.518)
living in the north -0.382 (2.300) -0.392 (2.101) -0.370 (1.980)

constant 0.956 (5.115) 0.968 (2.488) 1.041 (3.319) 0.713 (2.269) 0.747 (2.764)
Low-pay 1993
experience/10 -1.109 (7.988) -1.057 (5.865) -1.084 (6.071) -0.963 (4.946) -1.000 -(6.387)

edu>=high sch. -0.357 (3.063) -0.342 (2.855) -0.351 (2.956)
female 0.636 (6.914) 0.618 (6.258) 0.629 (6.543) 0.236 (3.042) 0.242 (3.192)

non-manual -0.540 (4.494) -0.533 (4.416) -0.538 (4.472)
size>=100 -0.668 (5.787) -0.648 (5.307) -0.658 (5.499)

public sector -1.010 (8.056) -0.977 (6.908) -0.995 (7.204)
agriculture 0.546 (2.582) 0.530 (2.486) 0.539 (2.532)

service sector 0.103 (0.974) 0.098 (0.927) 0.101 (0.956)
living in the north -0.159 (1.848) -0.158 (1.835) -0.157 (1.820)

(exp./10)^2 0.202 (6.338) 0.186 (4.136) 0.194 (4.334) 0.175 (3.518) 0.185 (4.729)
father blue coll. -0.089 (0.908) -0.082 (0.827) -0.086 (0.861) 0.160 (1.965) 0.160 (1.956)
father not empl. 0.264 (0.876) 0.277 (0.900) 0.276 (0.893) 0.717 (2.751) 0.716 (2.731)
father missing 0.277 (1.725) 0.263 (1.580) 0.266 (1.584) 0.506 (3.107) 0.520 (3.314)

mother blue coll. 0.152 (0.823) 0.154 (0.824) 0.148 (0.790) 0.187 (1.187) 0.187 (1.183)
mother not empl. 0.239 (1.587) 0.233 (1.542) 0.237 (1.567) 0.124 (0.981) 0.127 (1.001)
mother missing 0.521 (3.056) 0.472 (2.465) 0.503 (2.778) 0.565 (2.922) 0.599 (3.661)
father edu.>=hs -0.386 (2.082) -0.382 (2.058) -0.388 (2.099) -0.631 (3.801) -0.643 -(3.975)
mother edu>=hs -0.284 (1.191) -0.281 (1.182) -0.284 (1.194) -0.383 (1.889) -0.388 -(1.904)

constant 0.488 (2.325) 0.393 (1.428) 0.441 (1.625) -0.543 (2.502) -0.505 -(2.660)
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Table 3: continued
Retention

experience/10 0.461 (4.755) 0.464 (4.781) 0.509 (5.370) 0.511 (5.400)
edu>=high sch. 0.160 (1.944) 0.160 (1.936)

female -0.038 (0.510) -0.037 (0.498) 0.028 (0.394) 0.028 (0.387)
non-manual 0.031 (0.366) 0.033 (0.385)
size>=100 0.177 (2.152) 0.176 (2.148)

public sector 0.365 (4.240) 0.364 (4.232)
agriculture -0.139 (0.772) -0.144 (0.802)

service sector -0.030 (0.381) -0.030 (0.377)
living in the north 0.003 (0.044) 0.002 (0.040)

(exp./10)^2 -0.151 (7.047) -0.151 (7.092) -0.161 (7.640) -0.161 -(7.734)
dep. children 0.354 (3.884) 0.353 (3.863) 0.343 (3.834) 0.340 (3.819)

dep.chil.*female -0.433 (3.240) -0.438 (3.276) -0.425 (3.285) -0.428 -(3.308)
father blue coll. 0.114 (1.643) 0.113 (1.636) 0.036 (0.540) 0.035 (0.529)
father not empl. 0.306 (1.146) 0.307 (1.151) 0.242 (0.912) 0.244 (0.922)
father missing -0.107 (0.852) -0.116 (0.933) -0.210 (1.677) -0.218 -(1.778)

mother blue coll. -0.057 (0.446) -0.061 (0.480) -0.081 (0.648) -0.084 -(0.677)
mother not empl. -0.108 (1.145) -0.108 (1.153) -0.089 (0.973) -0.090 -(0.980)
mother missing -0.513 (4.233) -0.512 (4.221) -0.561 (4.688) -0.563 -(4.708)
father edu.>=hs -0.002 (0.015) -0.008 (0.070) 0.070 (0.630) 0.065 (0.594)
mother edu>=hs -0.072 (0.540) -0.071 (0.532) -0.005 (0.040) -0.005 -(0.037)

constant 0.531 (3.454) 0.533 (3.463) 0.764 (5.524) 0.768 (5.582)

r(Ri,di93) 0.193 (0.591) 0.325 (0.777)
r(Ri,di95) -0.062 (0.110) -0.187 (0.377) -0.357 (0.796) -0.412 -(1.088)

r(di93,di95) -0.451 (1.769) -0.420 (1.008) -0.485 (1.337) -0.516 (2.271) -0.523 -(2.449)
n.obs 2148 2716 2716 2716 2716
logLik -800.65 -2053.78 -2053.87 -2263.69 -2263.7
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None of the correlation coefficients is significant at conventional levels and the

more precisely estimated is the correlation between low-pay level and low-pay

persistence, which also preserves the sign and size it had in the analysis of Cappellari

[1999]. The correlation between retention and low-pay in the starting year is positive, a

result which also arises in Bingley et al. [1995]. The correlation between retention and

low-pay persistence is instead negative, meaning that those staying in sample have a

lower propensity to remain in low-pay. However, neither is significantly different from

zero.

Recalling the discussion from the introduction, such a result seems to indicate

that observations abandoning the sample correspond to “weaker” labour market

participants, and thus that their exclusion from the analysis could lead us to

overestimate the whole phenomenon of persistence. As stressed above, however, the

extent of the bias is irrelevant from the viewpoint of statistical significance.

As a next step in the analysis, restrictions are tested on the general model: after

all, the previous finding of statistical insignificance of attrition bias could arise from the

fact the structure imposed on the data is too complex to be precisely estimated, so

that before concluding in favour of the irrelevance of attrition it is worth checking

whether or not the finding is also supported by restricted specifications of the model in

column 2.

A first restricted version of the model is proposed in column 3, where the null

hypothesis that the correlation between retention and initial low-pay is the product of

the other two correlation coefficients is tested: ρ(Ri,di93)=ρ(Ri,di95)*ρ(di93,di95). The

hypothesis means that the correlation between initial low-pay and retention only works

through the combination of the correlation between retention and final low-pay

(ρ(Ri,di95)) and the correlation between initial and final low-pay, i.e. the individual effect

in earnings (ρ(di93,di95)); apart from this combined effect, there’s no direct correlation

between Ri and di93. This hypothesis is adopted from the outset of the analysis by

Hausman and Wise [1979]. The structure of the attrition process in their data is pretty

similar to ours in that observations availability in the starting year is assumed to be

exogenous, and only non-random attrition in the second year is tested (i.e. no

observations available only in the second year are utilised in estimation), which makes

the hypothesis worth testing. Also, the signs (but not the sizes) of the correlation

coefficients in column 2 are in accordance with this hypothesis. Results are given in

column 3. By first considering the maximised simulated likelihood and comparing it to
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the one of the unrestricted model in column 2 via a Likelihood Ratio test, we obtain a

χ2 statistic of 0.18, which strongly supports the non-rejection of the null. The impact

on the estimated parameters is negligible as far as the effect of explanatory variables

is concerned. Taking the two remaining correlation coefficients into account, we can

see that they both gain in size and precision, with the correlation between initial low-

pay and low-pay persistence approaching conventional levels of statistical

significance. This remark does not apply to the correlation coefficient between low-pay

persistence and sample retention (the main object of the analysis in this paper),

whose sign still indicates that retention is negatively correlated with low-pay

persistence.

Results up to this point indicate that the extent of attrition bias is pretty weak, a

finding which also arises in Hausman and Wise [1979]. As shown by those authors,

this finding emerges in a “structural” model of earnings, i.e. where the conditioning set

contains a set of explanatory variables deemed to “cause” earnings, and which are

likely also to determine the attrition process. This is actually true in their study: in a

simple variance decomposition analysis of earnings they obtain a significant effect of

attrition on earnings. A natural question which arises is then whether or not the finding

of non significant attrition bias in our model of low-pay persistence is also due to the

features of the conditioning set. To provide an answer to such a question, column 4 of

Table 3 further simplifies the model of low-pay persistence, excluding both demand

and supply side factors appearing in the transition equation from the model;

consistently, such variables are also excluded from the selection equations.16 By

comparing the maximised simulated likelihood function with the one from column 2

with a Likelihood Ratio test, we obtain a χ2 statistic of 419.82, which is well above the

critical values of the χ2 distribution with 21 degrees of freedom (7 variables are

excluded from each equation) at usual confidence levels, thus clearly rejecting the

restriction imposed. We can notice how the exclusion of the set of explanatory

variables brings labour market experience to the verge of statistical significance in the

low-pay transition equation, although with a reverse sign which arises from the fact

that we are not controlling for other factors, for example education. On the other hand,

the coefficient on the gender dummy looses both size and significance. Focusing on

                                                                
16 The two explanatory variables left in the transition equation are the gender dummy and the linear
term in labour market experience. The reason for leaving these variables in the model is to maintain a
quadratic profile in experience for the low-pay selection equation, and a comparison category for the
“instruments” of the retention selection equation.
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the estimated error covariance matrix, we can observe a general rise in size and

precision for each correlation coefficient, in particular for ρ(di93,di95), which is now

significantly different from zero at conventional levels. Gains in precision also

characterise the estimate of ρ(Ri,di95), but not enough to conclude in favour of the

relevance of attrition bias. Thus, some effect of attrition seems to be present in this

less-strucured specification, but both the fact that the restricted model is not

supported by the data and the unsatisfactory precision characterising the attrition bias

parameter even in this case clearly suggest that attrition can be deemed ignorable in

this case.

A final test for the relevance of attrition bias is reported in column 5, which

combines the restrictions of columns 3 and 4, i.e. ρ(Ri,di93)=ρ(Ri,di95)*ρ(di93,di95) with

the exclusion of structural explanatory variables from the conditioning set. Again, these

restrictions are clearly rejected at conventional levels (the unrestricted model is the

one in column 2). Taking the attrition bias parameter into account, we can observe a

further gain in size and precision, which is, however, not enough to conclude in favour

of the relevance of attrition bias.17 Thus even if the combination of a restricted

covariance matrix and a restricted conditioning set was supported by the data, its

effect on the attrition parameter would not lead us to reject the analysis of Chapter 4

for suffering from attrition bias.

5. Summary and conclusions

This paper has investigated the extent to which the existing econometric models

of low-pay transitions in Italy are affected by the presence of attrition bias, i.e. by the

non-randomness of the propensity with which workers with a valid wage at the

beginning of the transition observed leave the sample of wage earners during such a

transition.

Focusing on this problem of sample selection involved some computational

difficulties: controlling for attrition bias required expanding the bivariate probit

framework of Cappellari [1999] to include a third limited dependent variable equation

and hence the resulting likelihood function included trivariate normal integrals which

are not packaged within statistical software. The problem has been tackled by

implementing a simulated maximum likelihood estimator, in particular adopting the so-
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called GHK simulator, using STATA’s maximum likelihood routine; details on the

construction of the simulated estimator are given in the Appendix.

Results obtained point towards the ignorability of attrition bias: various versions

of a sequentially nested trivariate probit model in which the first stage controls for non-

random attrition have been estimated on the SHIW data and in no case does the

parameter measuring the extent of attrition reach statistical significance at

conventional levels. The maximum level of precision for this parameter has been

reached by restricting both the error covariance matrix and the conditioning set, with

this last restriction not supported by the data. The sign of the parameter indicates that

persisting in sample and persisting in low-pay negatively covary; had this parameter

been significantly different from zero, this would have meant that the exclusion of

attrited observations lead us to underestimate the true extent of low-pay persistence.

The finding of irrelevant attrition mirrors previous results from Hausman and

Wise [1979] in the context of structural models of earnings. Opposite conclusions

have been obtained in models of wage mobility by Bingley et al. [1995].

A final word of caution has to be issued in order to correctly interpret the results

of this Chapter. The sampling design of the SHIW panel is peculiar in that about half of

workers observed in the 1993 wave leave the sample at random due to a decision of

the survey builders, and such observations have not been used in the estimation of the

trivariate probit described above. As a consequence, the control group, i.e. attrited

observations, in the analysis is relatively small (the balanced sample is enlarged by

26%), so that it may be that it doesn’t provide enough variability to capture the effect of

attrition. Results presented have thus to be viewed as contingent on the peculiar

sample structure, and confirmation of such findings should be pursued in the future on

panel data sets with more conventional sample design.

                                                                                                                                                                                           
17 The parameter is now significant at the 28% confidence level.
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Appendix. Simulated maximum likelihood estimation of the trivariate

probit model

The sequentially nested trivariate probit model utilised in this paper requires

evaluation of trivariate normal integrals, thus posing computational problems due to the

fact that the function evaluating such integrals is not available among those usually

packaged within commonly used econometric software. Moreover, multiple integrals

are hardly tractable by usual linear numerical approximations such as those based on

the Newton Raphson method, and produce unreliable results in terms of the goodness

of approximation (Hajivassiliou and Ruud [1994]).

As an alternative to numerical approximations, simulation based inference has

been developed in recent years (see Stern [1997] for a survey and Gourieroux and

Monfort [1996] for an extensive presentation of simulation estimation techniques and

its applications in various context; see also Börsch-Supan et al. [1992], Börsch-Supan

and Hajivassiliou [1993] and Hajivassiliou and Ruud [1994] for applications of the GHK

(Geweke-Hajivassiliou-Keane)-smooth recursive conditioning simulators in the context

of ML estimation of limited dependent variable models). The basic idea of simulated

maximum likelihood estimation (SML) is to replace the intractable bit of the likelihood

function by its simulated counterpart. This appendix illustrates how this is practically

done in the case of the trivariate probit model, and shows the implementation of the

SML-GHK estimator using STATA’s maximum likelihood routine. The illustration of the

method is carried out in terms of a (complete) trivariate probit, i.e., when full

observability of the three variables is assumed.

The model of interest is a (seemingly unrelated) trivariate probit:
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where I(A) is a dummy indicating whether or not A is true. Assuming observations are

i.i.d., the log-likelihood function of the model is:

log ( , ; , ) log{ [ , , ;

, , ]}

, , ,

L X Y K X K X K X

K K K K K K

j l
K Y

j jl j j i ii i i i i

i i i i i i

ij ij

β ρ β β β

ρ ρ ρ

=

=
= −

∑ Φ3 1 1 1 2 2 2 3 3 3

1 2 12 1 3 13 2 3 23

12 3
2 1

(A.2)

which involves the trivariate standard normal c.d.f. Φ3 and is hardly tractable with

traditional numerical approximation.

The main intuition behind the GHK smooth recursive conditioning simulator is to

exploit the definition of conditional distribution functions18:

Pr( , , )

Pr( | , ) * Pr( | ) *
Pr( )

u X u X u X

u X u X u X u X u X
u X

1 1 1 2 2 2 3 3 3

3 3 3 2 2 2 1 1 1 2 2 2 1 1 1

1 1 1

≤ ≤ ≤ =

≤ ≤ ≤ ≤ ≤
≤

β β β

β β β β β
β

(A.3)

and to replace the joint multivariate normal with the product of sequentially conditioned

univariate normal distribution functions. The expression in (A.3) involves conditioning

upon unobservables: if some approximation for these conditional distributions can be

found, then the likelihood function only requires evaluation of univariate integrals which

is feasible within ordinary statistical packages.

Consider the Cholesky decomposition of the errors’ covariance matrix:

E(uu’)=Σ=Cee’C’ (A.4)

where C is the lower triangular Cholesky factor of Σ and e~N3(0,I3), from which it

follows that:

                                                                
18 I drop i indices for notational convenience.
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where c j i is the C element in position ji.

Thus, we can re-write (A.3) as:
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where e*1 and e*2 come from standard normal distributions with upper truncation

points at X1β1/c11 and (X2β2-c21e*1)/c22 respectively, i.e. they satisfy the conditioning

events in (A.3). It is worth stressing that we are now working with uncorrelated errors

(the vector e) and that correlation between the elements of the original vector of errors

u has been transferred to the truncation points of the sequential conditioning via the

Cholesky decomposition of Σ.

Evaluation of the probability in (A.6) involves unobservable terms e*2 and e*1.

Let’s introduce R random draws of e*1 and e*2, i.e. random draws of e1 and e2 from

upper truncated standard normals, with truncation points given above. The GHK

simulator of (A.6) is the arithmetic mean of the R probabilities we obtain for each of

these draws:

~
{Pr( ( ~ ~ ) / )

Pr( ( ~ ) / )Pr( / )}

{ ( ~ ~ ) / )

(( ~ ) / ) ( / )}

P
R

e X c e c e c

e X c e c e X c

R
X c e c e c

X c e c X c

GHK r
R r r

r

r
R r r

r

= ≤ − −

≤ − ≤ =

− −

−

=

=

∑

∑

1

1

1 3 3 3 32 2 31 1 33

2 2 2 21 1 22 1 1 1 11

1 3 3 32 2 31 1 33

2 2 21 1 22 1 1 11

β

β β

β

β β

Φ

Φ Φ

(A.7)

where ~e q
j  is the q-th draw for e* j. The SML estimator is then obtained by replacing

the cumulative trivariate normal distributions in (A.2) by their simulated counterparts

from (A.7). Note that the resulting maximand will be conditional on the set of draws: for
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computational stability it is then important that such draws do not change with the

parameter values during optimization steps (Hajivassiliou [1997]).

The last thing which is to be explained is how to generate random variables from

upper truncated normal distributions. Such variables can be obtained by exploiting

random number generators on the unit interval available in statistical packages and the

inversion formula given, among others, in Stern [1997]. First of all, let’s consider the

relationship between draws from the uniform distribution on the unit interval (say v) and

the corresponding random draws (say z) from the standard normal distribution; such a

relationship is given by:

z v= −Φ 1( ) . (A.8)

Draws for (say) upper truncated standard normals can be similarly obtained by

recalling that in this case F(z)=Φ (z)/Φ (b) where F(.) indicates the cumulative density

function of the truncated variable and b is the upper truncation point; replacing F(z) by

the uniform on the unit interval and solving the expression for z we get:

z=Φ -1(vΦ (b)). (A5.9)

Börsch-Supan and Hajivassiliou [1993] highlight the key features of the GHK

simulator in the context of multivariate normal LDV models:

- simulated probabilities are unbiased;

- such probabilities are bounded in the (0,1) interval;

- the simulator is a continuous and differentiable function of the model’s parameters.

They also show that GHK is more efficient, in terms of variance of probabilities’

estimates, than other simulators such as the acceptance-rejection or the Stern

simulator. Note that unbiasedness of simulated probabilities doesn’t translate into

unbiasedness of the logs of such probabilities, which is what is needed to compute the

log-likelihood function. However, such bias becomes negligible as the number of

draws is raised with the sample size (Hajivassiliou [1997]).
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Table A.1: Comparison of bivariate probit ML and SML (R=75) estimates (asymptotic
standard errors)

ML SML
Y1
x11 -1.2057 (0.3394) -1.1987 (0.3395)
x12 0.2212 (0.0900) 0.2200 (0.0901)
x13 0.1244 (0.2338) 0.1360 (0.2340)
x14 0.1025 (0.2869) 0.0898 (0.2866)
Y2
x21 -0.3997 (0.3480) -0.3945 (0.3479)
x22 0.0455 (0.0932) 0.0438 (0.0932)
x23 0.3155 (0.2191) 0.3231 (0.2192)
x24 -0.5707 (0.3047) -0.5718 (0.3049)
rho 0.7450 (0.0901) 0.7530 (0.0870)

n.obs 200 200
logLik -146.97 -146.603

Table A.2: Comparison of SML (R=100) trivariate probit estimates (asymptotic
standard errors) between LIMDEP and STATA

LIMDEP STATA
Y1
x11 -0.9230 (0.2954) -0.9227 (0.2616)
x12 0.7476 (0.1245) 0.7474 (0.1224)
x13 -1.6734 (0.2555) -1.6537 (0.2392)
Y2
x21 0.1721 (0.2627) 0.1661 (0.2607)
x22 -1.2202 (0.3306) -1.1926 (0.3172)
x23 0.2218 (0.0861) 0.2150 (0.0835)
Y3
x31 0.7563 (0.2536) 0.7607 (0.2307)
x32 -0.3801 (0.1051) -0.3834 (0.0966)
x33 0.5648 (0.2048) 0.5554 (0.1915)
rho12 -0.1127 (0.1810) -0.0950 (0.1758)
rho13 0.0742 (0.1453) 0.0878 (0.1438)
rho23 -0.5409 (0.1081) -0.5445 (0.1181)
n.obs 200 200
logLik -272.069 -272.145
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Table A.3: Behaviour of the STATA’s SML estimator by different choices of R
(asymptotic standard errors)

R=75 R=100 R=150
Y1
x11 -0.9207 (0.2610) -0.9227 (0.2616) -0.9241 (0.2620)
x12 0.7461 (0.1221) 0.7474 (0.1224) 0.7477 (0.1226)
x13 -1.6178 (0.2304) -1.6537 (0.2392) -1.6610 (0.2415)
Y2
x21 0.1647 (0.2618) 0.1661 (0.2607) 0.1505 (0.2595)
x22 -1.1752 (0.3179) -1.1926 (0.3172) -1.1647 (0.3129)
x23 0.2095 (0.0837) 0.2150 (0.0835) 0.2088 (0.0826)
Y3
x31 0.7642 (0.2311) 0.7607 (0.2307) 0.7571 (0.2305)
x32 -0.3864 (0.0966) -0.3834 (0.0966) -0.3825 (0.0965)
x33 0.5436 (0.1919) 0.5554 (0.1915) 0.5593 (0.1915)
rho12 -0.0920 (0.1710) -0.0950 (0.1758) -0.1243 (0.1717)
rho13 0.0765 (0.1306) 0.0878 (0.1438) 0.0676 (0.1435)
rho23 -0.5155 (0.1206) -0.5445 (0.1181) -0.5504 (0.1185)
n.obs 200 200 200
logLik -272.8304 -272.145 -272.2269
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The remaining part of this appendix reports some robustness checks

performed on the SML estimator built in STATA.

The robustness checks of SML estimator built using STATA’s maximum

likelihood routines are quite interesting. Table A.1 compares a simulated bivariate

probit estimate against its exact (or, more correctly, numerically approximated)

counterpart, which is packaged within STATA. The sample utilised consists of 200

observations randomly extracted from the SHIW data set. Either size and significance

of estimated parameters are very close between the two estimators; this is also true

for the maximum of the log-likelihood function.

Table A.2 compares estimates between the SML trivariate probit built in STATA

and the one available in LIMDEP 7.0, which also uses the GHK simulator. It is worth

stressing that this packaged estimator wouldn’t have been sufficient for the analyses

of this chapter, given that the model utilised here allows for sequential nesting via

partial observability of two of the variables in the model, while the LIMDEP estimator is

a pure multivariate probit, i.e. with full observability of each variable. Again size of

coefficients, their standard errors and the value of the maximised likelihood functions

are very similar across models. Finally Table A.3 checks the sensitivity of the SML

estimator with respect to the number of random draws used to approximate the

trivariate integral: as can be seen, there are only minor differences when moving from

one choice to another, suggesting that R=75 is sufficient. On the whole, evidence

from the three Tables is supportive of the estimator built in STATA.
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