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Abstract

This paper studies an otherwise standard principal-agent problem with hidden
information, but whether there are positive production externalities between agents:
the output of any agent depends positively on the ecort expended by other agents.
It is shown that the optimal contract for the principal exhibits two-way distortion:
the ecort of any agent is oversupplied (relative to the ..rst-best) when his marginal
cost of emort is low, and undersupplied his marginal cost of ecort is high. This pat-
tern of distortion cannot otherwise arise in optimal single- or multi-agent incentive
contracts, unless there are countervailing incentives. However, unlike the counter-
vailing incentives case, the pattern of distortion is robust to the precise form of the

externality.

?1 would like to thank an anonymous referee for very valuable comments.



1. Introduction

There is now a considerable literature on the principal-agent problem with multiple agents,
both with hidden action and hidden information. Multiple-agent problems only dicer from
single-agent problems if there is some interaction between the agents. The two main forms
of interaction that are of interest are ..rst, production externalities between agents (the
output of a particular agent depends on the ecort of other agents), and second, statistical
correlation in the environments of the agents.

Most of the literature so far has focussed on the second kind of interaction. For example,
in the hidden information case, a literature, starting with Demski and Sappington[4], has
focussed on the implications of (positive) correlation of the cost of exort of two agents. It
turns out that, even in the case where agents are identical ex ante, before their private
information is revealed, the optimal contract for the principal treats the agents asymmet-
rically, recruiting one of the agents as a “policeman”, who can report on the type of the
other agent (Demski and Sappington[4], Glover[6], Ma, Moore and Turnbull[13]). Again,
in principal-agent problems with hidden actions, attention has focused on the case where
the production functions that map ecorts of the agents into outputs are subject to corre-
lated random disturbances. In this setting, comparative compensation contracts, such as
contests, may be optimal (Mookherjee[16], Nalebu= and Stiglitz[17]).

By contrast, the implications of production externalities for the contract design have
little studied! in the hidden action case, and not at all (to my knowledge) in the hidden
information case. This paper presents an analysis of a principal-multi-agent model with
hidden information where there are (positive) production externalities between agents. The
main ..nding is that, in the optimal contract for the principal, the distortions that arise
relative to the ..rst-best are quite novel: they cannot arise in principal-multi-agent models
without production externalities, even with correlated costs, unless the reservation utilities

of the agents vary with their cost-type in such a way that agents face countervailing incen-

LExceptions are Che and Yoo[2], Itoh[9], Kandal and Lazear [10], and Mookherjee[16], all of whom
consider hidden action models. However, none of these papers is very close to this one, for reasons explained

in detail in the conclusions.



tives in revealing cost information to the principal®. Here, we abstract from countervailing
incentives (by assuming that all agents have a reservation utility of zero) and show that
nevertheless, there is two-way distortion in output: an agent will choose an ine€ciently low
value of output for some values of his private information, and an ine¢ciently high value
for other values.

The basic principal-agent model studied here is one where a number of agents choose
ecort to produce outputs: the output of agent i depends not only on his own egort, but
also positively on the average ecort made by all other agents (the externalities are those
studied by Cooper and John[5] under the heading of “input games”). The basic model is
extended in Section 5 to allow for a richer structure of production externalities.

The marginal cost of ecort to agent i is parameterized by a variable y;, which is i's
private information, and the i; are independently distributed®. There are no countervailing
incentives; reservation utility is zero for all agents. A contract ocered by the principal
to each agent is a choice of output and a monetary transfer, conditional on the vector of
reported ps from all agents.

We study incentive-compatible contracts for the principal in this setting, i.e. contracts
where it is either a dominant or Nash equilibrium strategy for each agent to tell the truth.
We assume that the number of agents is “large”; under this condition, we show that the
principal is no worse o ogering a dominant-strategy incentive-compatible contract than a
Nash incentive-compatible one (see Proposition 1), and so we can without loss of generality

consider just the former class of contracts®. We show that, under quite weak conditions®,

2See Lewis and Sappington[12], Maggi and Rodriguez-Clare[15]. We discuss this literature in more detail

in Section 7.
31n fact, we assume a measure space of agents, where the distribution of marginal costs across agents is

common knowledge. However, this can be interpreted as the limiting case of a model with a ..nite number

of agents, where the marginal costs of agents are independently and identically distributed.
4This is in contrast to the literature on two-agent models with private (correlated) information, where

the dominant-strategy incentive constraints are more restictive than the Bayes-Nash incentive constraints.
5See Theorem 1 below for a full statement of su¢cient conditions; these comprise standard conditions

on cost and revenue functions, plus some weak conditions on the spillovers between agents, and ..nally the
requirement that the cost function must be separable in the agent’s eaort and cost parameter, and convex

in the latter.



for the principal’s optimal contract in this class, the output of agent i is oversupplied for
low values of y;, and undersupplied for high values of ;.

The intuition is simple. First, as in the standard principal-agent model, for any value
of y;, the informational rent captured by any agent i is increasing in the ecort put in
by that agent. It follows from this that informational rent captured by any agent i is
decreasing in average output of agents J & i, as an increase in the average output of
agents J & i decreases the amount of ecort agent i needs to put in to produce a given
output. So, there is an interaction between the production externality and informational
rent. This interaction means that the principal has an additional incentive (over and above
the production externality) to raise the output of any agent i. This incentive co-exists
with the standard incentive -absent the externality - for the principal to restrict agent i’s
output in order to reduce agent i’s own informational rent, and so two-way distortion is the
outcome.

So, one way of expressing this intuition is to observe that in the setting of this paper, the
principal, rather than the agents, faces countervailing incentives; that is, he faces incentives
both to lower and raise the output of any particular agent relative to the ..rst-best. This
intuition also relates to the general point, made e.g. by Sappington[18], that a principal
may introduce distortions in other instruments to better limit agents’ rents. In this case, the
extra instrument that the principal has, when facing any particular agent, is the (average)
output of other agents. Seen in this way, the main contribution of this paper is to establish
the precise pattern of the distortion in the other instrument.

A second notable feature® of the optimal contract is that the transfer from principal
to agent has a yardstick property i.e. the transfer to some agent i is (at some point)
decreasing in the output of the other agent(s). This is the case even though the types of

the agents are uncorrelated, so the principal cannot exploit the correlation between agents’

61t is of course, well-known that in principal-multi-agent schemes with statistical correlation of costs
across agents, comparative compensation of the agents is often optimal. As shown by Nalebuz and
Stiglitz[17], and Mookherjee[16], contests (where agents are compensated only on the basis of the ordinal
ranking of their outputs) are sometimes optimal, and contests certainly have the yardstick property. More-

over, necessary and su¢cient conditions for contracts to be independent are very strong (Mookherjee[16]).



types to extract additional informational rents, as in Cremer and McLean[3], Demski and
Sappington([4].

The arrangement of the rest of the paper is as follows. The model is presented in Section
2, and dominant-strategy incentive-compatible contracts are characterized in Section 3. The
main results on two-way distortion are presented in Section 4. Section 5 extends these results
to a richer class of production externalities. Section 6 discusses the yardstick property of
the optimal contract, and Section 7 discusses the related literature, especially the work on

countervailing incentives an principal-multi-agent problems, and concludes.

2. The Model

The model is an otherwise standard principal-multi-agent model with production exter-
nalities between agents. It is analytically convenient (for reasons explained in the next
section) to work with a “large” number of agents. Let the space of agents be (I;S; 1),
where | = [0;1]; S is the Borel %-algebra on I, and % is the Lebesque measure. Every agent

provides ecort level g; 2 <. at cost
Ci = c(&i; i)

where 1i; 2 [u; 4] = £ parameterizes i’s cost of ecort. We assume the following properties
of c(:;:);
AL Ce;Cy;iCue; > 0, Cee; Cuee; Cupe o O

These inequalities include the standard assumptions of positive and increasing marginal cost
of eaort, and the single-crossing condition c,.. A special case that satis..es Al is c(e; ) =
ue: The parameter ; is private information of agent i.
The agent also receives a transfer t; 2 < of a numeraire good from the principal, so his
utility from the pair (e;; t;) is
Ui =t i c(ei; i) 1)
Every agent has a reservation utility of zero, so there are no countervailing incentives for

agents.



Spillovers are speci..ed as follows. We suppose that the agents are all engaged in produc-
tion processes, where the marginal product of any agent’s ecort is acected by the average
ecort of the others, e = R, eid™. In other words, the set of agents I is a team, and the team
production technology is such that the spillover for agent i from the ecort of agent j & i is
the same as from the exort of any other agent k & i. This is a natural simplifying assump-
tion often made when studying games with production externalities and large numbers of
players (e.g. Cooper and John’s [5] “input games™). It is relaxed in Section 5.

Following Cooper and John[5], we suppose the externality takes the following form:

g = eig(e) @3]

where g; is output of i: We assume that g is twice continuously dicerentiable, and that it

satis...es:
A2. g(e); g'(e) >0; e 2 <,:

These assumptions are reasonable: g° > 0 says that the spillover is positive, and g > 0
requires in particular that any agent i can produce even if all others do not i.e. g(0) > 0.
We choose units so that g(0) = 1: An example satisfying A2isg=1+¢€® 0<® - 1:

The production function (2) implies that the cost to agent i in exort units of producing

g; also depends on aggregate output ¢: First, integrating over all the agents, (2) implies

q = eg(e) ©)

R
where g = | qid™. Then, as g'(e) > 0, e 2 <,; the relationship (3) can be inverted on <.

to give e = °(q): But then from (2), we can write

ei = 0is(q); s(q) = 4)

1
9(°(@)
So, gis(q) is the amount of ecort required for agent i to produce output gi: Note that
s'(q) = is?9’" < 0 as both ¢%;°" > 0. That is, the higher aggregate output, the lower the
ecort required for i to produce some ..xed output g;. Note also that as we have assumed
g(0) =1, s(0) =1 also.

The output of agent i generates revenue for the principal of r(g;), where r(:) is strictly

increasing and strictly concave: The idea here is that agent’s outputs are dicerentiated and
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sold in separate markets’. The principal keeps the aggregate revenue net of payments, and

S0 gets pro..t 7
o= [r(gi) i ti]d* ®)
|
Following Demski and Sappington[4], we de..ne a contract® as a compensatjon_-output
pair (t;; i) for each agent i 2 | as a function of all the cost announcements {i = {1 . As
|

all agents are ex ante identical, we can focus on anonymous contracts where (t;j; gi) depends
only on {i; and the distribution of announced characteristics. These contracts are de..ned
formally in the next section.

The order of events is now as follows. First, the principal chooses an anonymous contract.
Then, every agent i 2 | simultaneously announces a type {I; 2 £. Finally, production takes

place and transfers are made.

3. Incentive-Compatible Contracts

We begin by de..ning anonymous contracts. We assume that y;:1 ¥ £ is a measurable
function. Consequently, we can de..ne the measure © on £ by °(A)=2(fi 2 | ju; 2 Ag), for
all A in the Borel %-algebra on £; so;© is the distribution of (true) co%t% on £t Also, ée,t
@ 2 P (£) be the distribution of announced costs on £ ; thatis, 2(A) =1  i21 i 2 A

for all Borel sets A % £ : Obviously, if all agents tell the truth, then ® = ©: Note that®

"An alternative assumption would be that the agents’ outputs are identical, and so sold in the same
R
market, in which case revenue would be r = r( ", g;d*): In this case, the analysis is exactly the same, except

we must strengthen Al slightly by imposing cee > 0 to ensure an unigue solution to problem P below.
81t would of course be possible in principle to have contract where the principal chooses a compensation-

input pair (ti;ej). However, following much of the principal-agent literature, we suppose that ezort is
non-contractible (Hart[7]). n - o

9For this to be the case, we require the sets fi 2 1ju; 2 Ag; i21 J\Ui 2 A to be measurable with
respect to * for all Borel sets A %2 £: The ..rst sets are all measurable as the map f(i) = y; is assumed
measurable with respect to L. The second sets are all measurable if, in turn, the “announcement function”
h (i.e. h(i) ~ i) mapping I into £ is assumed measurable with respect to 1. In the announcement game,
agents are restricted to play anonymous strategies i.e. agent i announces ﬁi = %(Yi), where % : £ ¥ £ is
measurable with respect to ©:(see below): So, the “announcement function” is the composition h = % £ f;

where (i) = lj: As, both %; f are measurable by assumption, so is h (Hildenbrand [8], p42).



0.2 2 P(£); where P(£) is the set of (Borel) probability measures on £: We now have:

De..nition 1. An anonymous contract is a pair of functionst : £EE£P(£) ¥ <; q:
££P(£) ¥ <, where agent i is ozered (ti; qi) = (t(li; ®); q(lli; @) ie he announces a type

{l; and distribution of announced costs is 2.

So, with an anonymous contract, (t;;g;) depends only on i’s announced cost and the
distribution of announced costs ®: Consequently, the payo= to any agent i 2 | with y; =

who makes a cost announcement {i depends only on y; {I; ®;

u( 5?7t ®) i el o)s@);p); ¢ = £q(z;")d“’ (6)

z2

Note that ¢ is the average output across all agents, given a distribution ® of announced
characteristics.

So, given a ..xed anonymous contract, the agents play an “announcement” game. As
any agent’s utility depends only on his own action u and the aggregate distribution of
actions, this is an anonymous game (Mas-Colell[14]). It is therefore natural to restrict
i's announcement to depend only on his cost characteristic. So, following Mas-Colell[14],
we assume that a strategy pro..le in the announcement game is a measurable function
%: £ ¥ £, where i’s strategy is %(;) = fl ie pj = p.

We can now de..ne dominant-strategy and Nash incentive-compatible contracts.
De...nition 2. An anonymous contract is dominant-strategy incentive-compatible i
G ®) . u@ike), all A2 £, all 16 all ® 2 P(£) (7)
That is, truth-telling (%(u) = W) is a dominant-strategy for any agent in the announcement
game. Nash incentive-compatible contracts are de..ned similarly;.

De...nition 3. An anonymous contract is Nash incentive-compatible ia

u(; ;°) . u@e), all k2 £ allfiep (8)
That is, truth-telling is a Nash equilibrium in the announcement game; it is best for any

agent to tell the truth, given the distribution of announced costs is the true one.
Our ..rst result gives conditions under which a contract is dominant-strategy or Nash

incentive-compatible. This, and all subsequent results, are proved in the Appendix.

8



Proposition 1. A contract (tp; gp) is dominant-strategy incentive- compatible io it

satis...es
Z g
to(il; @) = c(ap (I1; ®)s(@); i) + ' (o (z;?)s(4);2)dz + Ap; Ap 2 < )

for all ({I;®) 2 £ £P (£), where ¢ is de..ned as above, and

N, a
090 (5®) 0 almost everywhere on £ (10)

N

ou
Moreover, there is a dominant-strategy incentive-compatible contract that yields the prin-

cipal the same payo= as her highest payoa from the Nash incentive-compatible contract.

Proposition 1 indicates that the principal can restrict attention to dominant-strategy
incentive-compatible contracts. So, we drop the “D” subscript on gp;tp without loss of
generality. The dependence of this pair on the measure of announced characteristics, @,
is suppressed below for brevity except where appropriate, so we may write an anonymous
contract simply as (t(1); q(1))u2e-

It is also a result of independent interest for the following reason. It is well-known that
when the number of agents is ..nite (e.g. with two agents) in problems of this types, the prin-
cipal can generally do better with Nash incentive-compatible contracts than with dominant-
strategy contracts, under the assumption that the truth-telling equilibrium prevails, as the
constraints placed on contract design are less demanding (Demski and Sappington [4]).

The key assumption that generates this equivalence for the principal is that the number
of agents is “large”, not any of the other assumptions of the model. For then, from the
point of view of any particular agent i 2 I, the behavior of other players in the “announce-
ment” game is non-stochastic in the aggregate i.e. every player faces a ..xed distribution
of announcements ¢. To see this, suppose that we have a general production technology
where the spillover s depends on the entire distribution of output, A, not just the average q.
Then, inspection of the proof of Proposition 1 reveals that the result goes though as before,

where s(A) replaces s (q).



4. Contract Design and Two-Way Distortion

The problem faced by the principal is to choose a (dominant-strategy) incentive-compatible
contract to maximise his pro..t, de..ned in (5), from among the class of such contracts. The
problem can be formulated as follows. First, let F : £ ¥ [0; 1] be the distribution function
of costs de..ned as F(x) = °([u; x]), and suppose that F(:) is absolutely continuous, with

density f(:) > 0: Also, let w(i) ~ u(y; ; ©): Then the principal’s payo= is;

Zy
Yo = [r@() i t)If (u)du (11)
7" Z #
= ra@) i cams@y;w +  cu(@@)s(a);z)dz ) du i w(l)
v u
Z

I
= [r(a®) i A@s(@); WIF @ du i w(
I8

In the second line we have used (9), and the fact that Ap = w(f), as shown in the Appendix,
where w(i) ~ u(y; i;©). In the third line, we have integrated by parts, and ..nally

" 1
A(e ) =c(e; ) + mcu(e; W) (12)

where h(n) = f(u)=F (u) is the hazard rate'® for the distribution of p: So, A(e; ) has an
obvious interpretation as the perceived cost, from the principal’s point of view, of extracting
output q(u) from a type-y when aggregate output is g. The second term in (12) is the
informational rent accruing to the agent and is positive by Al, so the perceived cost always
strictly exceeds the true cost (A(e; ) _ c(e;p)), and does so strictly unless p = .

The principal therefore solves!! the following problem:
ya
u ~
max. [r@(w) i AQGs@:wIT (W dus.t
J= U
¢ - 0
2y

q = q(f(wdu

I8

0h(x) can be interpreted as the approximate conditional probability (for small &) that cost parameter

it does not fall below x i ¢ given that it has already fallen from fi to x (Lacont and Tirole[11], p66).
1. Note that the choice of g;t must also ensure that the agent participation constraints w(u) _ 0 are

satis..ed. First, as w' < 0 by standard arguments, the only potentially binding participation constraint is

w(l) _ 0. As p is decreasing in w(l); it is immediately obvious that the principal sets w(j) = 0:

10



Call this problem P. Even in the absence of the monotonicity constraint g°(x) - 0, this is
not a concave problem, due to the presence of externalities in the perceived cost function.
Denote by (9°(1))u2e a solution to P. We will say that a solution to P is interior if 0 <
(W <d,alp2£.

We can characterize the solution to P under the following assumption which ensures an

interior solution;
A3. r'(0) > A,(0;); limgu 1 r’(q) = 0; limey 1 Ce(e; 1) = A

Assumption A3 imposes quite standard Inada-type conditions on revenue and cost functions.

Proposition 2. If A1-A3 hold, and the monotone hazard rate condition h’(y) - y; p2 £

holds, then there exists an interior solution to problem P, and at this solution, q(u) solves

rW) = A.@s@); ws(@) + E [A.(qWs(@); ma]s'() (13)

where the expectation is taken with respect to :

Note that (13) equates the marginal revenue generated by an increase in q(t) to the
perceived marginal cost to the principal - taking into account informational rent and the
production externality - of an increase in q(i). The ..rst term on the right-hand side of (13)
is the internal marginal cost of raising q(u) incrementally, and the second term (which is
negative, as s' < 0) is the external marginal bene...t of raising q(u) in terms of reduced costs
for all agents.

We can now turn to analyze the distortions induced by the presence of both informational
rent and externalities at the solution to problem P, and which are implicit in the ..rst-order
condition (13). The benchmark is the full-information case, where the principal can observe
the cost parameter of each agent. In this case, the principal sets marginal bene..t of an
increment in q(u) equal to true marginal cost, ignoring informational rent i.e. we replace

the perceived marginal cost function in (13) by the true one to get

r'@() = ce(@)s(a); Ws(@) + E [ce(@(u)s(@); wa)]ls'(a) (14)

Again, the ..rst term on the right-hand side of (14) is the internal marginal cost of raising

q(u) incrementally, and the second is the external marginal bene..t of raising q(i).

11



Compare (13) to (14) ..rst for the familiar case without externalities. In this case, we can
take s(q) ~ 1; s'(q) ~ 0. Then, the full-information and incentive-compatible ..rst-order

conditions are

ra@) = ce(a);m) (15)

1

raw) = Ce(q(U);U)'FWCue(q(U);U) (16)

respectively. So, inspection of (15),(16), plus the fact that c,. > 0 from Al, indicates that
without externalities, when y is private information, marginal cost is “too high”, due to the
presence of informational rents, and ecort is undersupplied for all values of u except the
lowest: This is a standard result (Lacont and Tirole [11]).

In the general case, by reference to (14), we have the following de..nition.

De...nition 4. Output is oversupplied by an agent of type p if

r'(a)) < ce(a@)s(a); ws(a) + E [ce(q(u)s(@); waw)]s'(a)

and undersupplied by an agent of type  if

r'@() > ce(@()s(a); Ws(@) + E [ce(@)s(@); wa)]ls'(a)

So, with oversupply, marginal revenue of an increment in output is below the marginal

cost of an increment in output (taking into account spillover excects), and conversely, with

undersupply, it is above. We now have the main result of the paper.

Theorem 1. Assume Al-A3 hold, the monotone hazard rate condition holds, and that
c(u; e) = - (we(e); with - _ 0: Then, there is two-way distortion in the solution to problem
P. That is, there exists g < i’ < i such that for p 2 [u; "), esort is oversupplied, and for
w2 (], ecort is undersupplied.

This result can be interpreted as follows. At the solution to P, the principal always
equates marginal revenue to perceived marginal cost A.s(q) + E[A.q(1)]s’(q): So, Theorem
1 says that when p is high, perceived marginal cost is greater than true marginal cost,

and when p is low, perceived marginal cost is less than true marginal cost. This is to

12



be compared to the standard case without externalities, where perceived marginal cost is
greater than true marginal cost for all yu. So, the new insight here is that with production
externalities, when  is low, perceived marginal cost is less than true marginal cost, even
though perceived total cost is always greater then true total cost; it is this that generates
the two-way distortion.

The intuition for this new result is as follows. From (13), (14), the dicerence between

the perceived and true marginal cost of output is

5

Ce (A()S(Q); 1) e (@(Ws(@); 1) ,
hy @ E hy 10 S© (17)

The ..rst term in (17) is due to informational rent, and is always positive. The second term

is negative as s’ < 0. It captures the eoect that an increase in q(i) has on the information
rent accruing to other agents via the spillover. Speci..cally, a small increase ¢ in q(u)
leads to a reduction ¢s’(q) in the ecort required by all agents, and this in turn leads to a

reduction of

5

a1 ¢s'()

£ Ge(@s@):w
h(y)

in the informational rent captured by these agents. Whether the perceived marginal cost
of output is above or below the true marginal cost depends on the relative magnitude of
these two terms. When p = y, 1=h(y) * 0, and so the second term in (17) dominates the
..rst term, implying that the perceived marginal cost of output is below the true marginal
cost, and leading in turn to oversupply by our de..nition.

We now comment on the su€cient conditions for two-way distortion. First, assumptions
Al1-A3 are not at all restrictive. Assumption Al is quite standard in the principal-agent
literature. Assumption A2 imposes weak and reasonable conditions on the spillover function
g, and A3 imposes quite standard Inada-type conditions on r and c. Finally, the condition

that c be separable in e;  and convex in p is quite weak.

5. Multiple Teams

Probably the main restriction of the model of this paper is that only the aggregate ecort

of agents axects the marginal cost of ecort of any particular agent. One simple way of

13



relaxing this assumption somewhat is to suppose that there are two groups of agents, or
teams, Ij; | = a;b, with I, [ Iy = 1; I\ I, = ;: Then, it is natural to suppose that the
aggregate ecort of team a; e,;, has some impact on the productivity of a member of team
b, but less than the ewect it has on the productivity of a member of team a. This can be

captured formally by writing
a _— pa a_y yaby. ab — Qb b 4, 3,2
gi = ejg(e” + %e’); i = ejg(e’ + %e”))
where superscripts denote team membership, and 0 < % < 1 measures the between-team
spillover, which is less than the within-team spillover as % < 1. Also, we assume that
R
g(:) satis..es A2. Using the identity ' = |, e{d®; we have
@ = edg(e?+ %e) (18)
® = e’g(e” + %e?) (19)
Now, it is easily checked that the Jacobian of the system (18),(19) is non-singular on <2

(see e.g. (21 below), so we can invert (18),(19) to get
e = (%)
e = (%)
By the symmetry of technology, °2(x;y) ~ °°(y;x). Let Il q°) denote the derivative of

°a with respect to its jth argument; j = a;b; and the same for °®. For future reference,

note that
i 1 j oi -3/ei [I)
oI:B[gj+ngJQ]>O; ,-="‘ g <0 (20)
where g; = g(e' + %el); and
D = (ga +€02)(0s + €°9y) i %’e’gae’y, >0 (21)

So, from (20), an increase in output by team a requires an increase in ecort by team a,
but an increase in output by team b allows members of team a to reduce their ecort, while
producing a constant output, due to the inter-team spillover.
Now, for a member i of team a, we can de..ne
¢ = & = 43s°(a% ) (22)
9(°2(@%; q°) + %°°(92; 0°))
14




and s°(g?; g°) can be de..ned similarly. By the symmetry of technology, s2(x;y) = s"(y; x).
Let s§(q%; q°) denote the derivative of s with respect to its jth argument; j = a;b. So,
s#(9%; q°) measures the change in the ecort required by i 2 1, to produce one unit of output,
when ¢ increases. When g = g, this change is negative®? for j = a;b.

The preferences of both principal and agents are as before; any agent i 2 I, has a cost
of emort function c(l;; e;) which satis..es Al and A3, and the agents maximise their transfer
from the principal net of the cost of ecort. As before, the output of any agent i 2 I,
generates revenue r(q;) for the principal, where r satis..es A3, and the principal wishes to
maximize the sum across teams of revenue minus transfers.

In the multi-team case, an anonymous contract for team | is de..ned as above i.e. as a
pair of functions t, : EEP(E)EP(E) ! <, q: £EE£P(E)EP(£) ¥ <, where agent
i 2 1, is omered (ti; gi) = (ti(0i;®); qi({li;®)) iv he announces a type [l and the distribution
of announced costs for both teams is @ = (®4; ®y):

Then it is easy to check that Proposition 1 goes though, modi..ed in the obvious way
i.e. the principal can do no better with a Nash incentive-compatible contract than with a

dominant-strategy one, and the transfer to a member of team | = a;b who reports {1 is
Z
f
ti([;2) = c(@ (@ ®)s' (G d): 1) + . cu(@i(l; 2)s' (@ ) 2)dz
R
where 6 = I gid*. Now assume that the two teams are identical in size (3(1,) = (l,)), and
in the distribution of costs across group members (°, = ©y). So, the distribution function
of costs in either team is F; with density f: As before, suppress the dependence of q;(:) on
©, The principal therefore solves the following problem P’
> Z WE . | o
max r@a@) i A@)s (Ga; )i 1) () du s.t.

G0 u

gw) - 0; I=ahb
Zy

q = G @dy; I=ajb

B
Due to the symmetry of the problem, we focus on the class of symmetric solutions to P’

where g,(:) = qp(:) =q(}). Under assumption A3, there will be an interior symmetric solu-

tion to this problem i.e. Proposition 2 extends, and the ..rst-order condition characterizing

125ee (A.23) in the Appendix.
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q() is
r'@m) = A.(q)s(a; 9); ws*(; ) + E [a@)A.@()s*(a; 4); D1 (s3(a; q) + s2(q; a))  (23)

Also, note that De..nitions 3 and 4 of undersupply and oversupply carry over directly to

this case. We then have the following extension of the main result to the multi-team case;

Theorem 2. Assume that the assumptions of Theorem 1 on r;c, and F hold. Then, there
is two-way distortion in the solution to problem P’. That is, there exists u < y’ < i such

that if p 2 [u; 1°), ecort is oversupplied, and for p 2 (U; u], eort is undersupplied.

It seems likely that a version of this result could be proved for the case of n teams,
although the statement and proof would be cumbersome. So, our two-way distortion result

does not depend crucially on the precise form of the externality between agents.

6. Yardstick Transfers

So far, we have restricted attention to contracts where agents directly report their types
(direct mechanisms, in the parlance of the implementation literature). In practice, prin-
cipals generally use contracts where the transfer from principal to agent(s) depends on
output, rather than a reported type (indirect mechanisms). However, the class of incentive-
compatible contracts described in Proposition 1 can easily be written in this form.

Let g1t be the inverse of g; = &(l;); this inverse always exists as the monotonicity con-
dition is satis..ed by assumption of a monotone hazard rate (Proposition 2). Now consider

the transfer schedule
Zy
(i) ~ (e (ai); a) = c(@is(a); &'t (ai) + c.(qis(q); z)dz (24)

&1L (i)

Note also that the transfer schedule (24) satis..es the yardstick property, as de..ned in
the introduction; namely, that the transfer to some agent i is decreasing in the output of
other agent(s). To see this, dicerentiate to get

Z g

B89 — 9 (ayaslcears(); 671 (@)) +  Cue(@is(q);2)dz] <0 (25)
@q &11(a1)
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7. Conclusions and Related Literature

This paper has shown that in an otherwise standard principal-agent problem with hidden
information, the presence of positive production externalities between agents leads, un-
der quite general conditions, to two-way distortion, with the output of any agent i being
oversupplied when his marginal cost of ezort is low, and undersupplied when his marginal
cost of emort is high. As remarked in the Introduction, two-way distortion cannot arise in
principal-multi-agent models with hidden information of the type studied in the literature'®,
and a fortiori, it cannot arise in the standard single-agent case.

The literature related to the analysis of this paper is small. There is to my knowledge,
no work that studies production externalities in principal-multi-agent models with hidden
information. There are a small number of papers which allow for production externalities in
principal-multi-agent models with hidden actions [Che and Yoo[2], I1toh[9], Mookherjee[16],
Kandal and Lazear[10]]. However, Che and Yoo[2] and Mookherjee[16], are concerned en-
tirely with the study of the cost-minimization problem for the principal (characterizing the
minimum cost of inducing a given pair of actions by the two agents), and do not discuss
the issue of whether actions that are then chosen by the principal are above or below their
.rst-best levels.

Itoh [9] studies choice of eaort level as well as the cost-minimization problem given ecort
levels, but his focus is rather dicerent. Speci..cally, each of two agents can choose not only
an eoort level that enhances the success probability of his own project, but also the level of
another exort variable (“helping” eaort) that enhances the success probability of the other
agent’s project. The main objective of his paper is to establish conditions under which the
principal will choose a positive level of “helping” ecort in the incentive-compatible contract.
By contrast, in the model of this paper, ecort is one-dimensional, but has a joint product;
it enhances the output not only of the agent who exerts it, but other agents.

Finally, Kandal and Lazear[10] allow for general production spillovers, but they do not

characterize the principal’s optimal incentive-compatible contract. Rather they study a

13 As shown by Demski and Sappington[4], and Ma, Moore, and Turnbull [13], output is always under-

supplied, whether the announcement game equilibrium is in dominant or Bayes-Nash strategies.
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particular “equal shares” contract where each of N agents gets 1/N of the revenue (or
output), and study Nash equilibria in ecort levels in this setting. Their focus is on the
role of “peer pressure” i.e. social norms or informal monitoring and punishment within the
group of agents in enhancing Nash equilibrium ecort levels.

However, as mentioned in the introduction, it is well-known that two-way distortion
can arise in the single-agent case when the standard set-up is modi..ed so that the agent
faces countervailing incentives (Lewis and Sappington[12], Maggi and Rodriguez-Clare[15]).
This case arises when the reservation utility of the agent, as well as his cost of acting for
the principal, depends on his private information. It was ..rst observed by Lewis and
Sappington[12] that two-way distortion could arise in this case. For example, consider the
problem of regulation of a monopolist with unknown cost (Baron and Myerson,[1]) where
the regulator chooses the output of the ..rm ,and a transfer payment to the .rm i.e. a
non-linear price. Such a model can be interpreted as a special case (i.e. without spillovers)
of the one considered in this paper. Suppose, plausibly, that the ..rm’s reservation pro..t
(the pro..t it could make by exiting the regulated market and producing elsewhere) depends
negatively upon its marginal cost parameter4, |. In this case, the ..rm has an incentive to
understate its marginal cost (to increase its reported reservation pro..t, in order to induce
the regulator to set a higher price), as well as to overstate its marginal cost (again, to induce
the regulator to set a higher price).

A complete analysis of a principal-agent problem with countervailing incentives is pre-
sented in Maggi and Rodriguez-Clare[15], where it is shown that the pattern of the two-way
distortion (and whether or not there is pooling) depends crucially on whether the reserva-
tion utility of the agent is convex or concave in his private information. If it is a concave
or mildly convex function, then the agent’s output is ine€¢ciently low when his cost of pro-
duction is low, and ine€ciently high when his cost of production is high. If the reservation

utility is strongly convex, then the opposite is the case®.

1 As in the model of this paper without spillovers, we assume that the cost of the ..rm is c(q; 1) where q

is output and the analogue of Al above is satis..ed.
15 Also, in the concave/mildly convex case, production is ecient at the highest and lowest costs, and

also at an interior cost. In the strongly convex case, production is e€cient only at an interior cost value.
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One intuition for their result, in the context of the Baron-Myerson model, is as follows.
Suppose that |1 can only take on two values, “high” or “low”. If the ..rm has, on balance, an
incentive to overstate its cost, the optimal action for the principal is to allow the low-cost
..rm to produce at a point where marginal revenue is greater than marginal cost. This is
because high-cost ..rms will wish to imitate low cost ..rms at the full-information optimum,
and these constraints can be slackened by reducing output and price of low-cost ..rms, thus
making their price-output pair less attractive to high-cost ..rms. An identical logic applies
in the other case: if the ..rm has, on balance, an incentive to understate his cost, the optimal
action for the principal is to allow the high-cost ..rm to produce at a point where marginal
revenue is less than marginal cost.

Now return to the case where i is a continuous variable. The derivative of reservation
pro..t with respect to U measures the strength of the incentive that the ..rm has to understate
its marginal cost slightly in order to increase its reported reservation pro..t. If the derivative
of reservation pro..t with respect to y is decreasing in 1 (i.e. the reservation pro..t is concave
in ), then the marginal incentive to understate | in order to increase its reservation pro...t
is stronger when  is high, and so high (low) u types have on balance an incentive to
understate (overstate). But then by the argument in the previous paragraph, the ..rm’s
output is ine¢ciently low when its cost of production is low, and ine€ciently high when its
cost of production is high. The argument is similar in the case where the reservation pro...t
IS convex in p:

The above discussion makes it clear that the intuition for two-way distortion in the
countervailing incentives case is somewhat involved. By contrast, in our setting, there is
a clear and simple intuition for the two-way distortion, as explained in Section 4 above.
Moreover, the pattern of two-way distortion identi..ed here is robust: it does not depend
on the precise nature of the production externality, as long as it is positive and satis..es
the very weak assumptions in A2 above. Finally, Maggi and Rodriguez-Clare[15]assume a

much more special class of cost functions than those considered in this paper?®.

161n the notation of this paper, they assume c(q; 1) = ug:
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Appendix

A. Appendix

Proof of Proposition 1. (i) First, as every agent is of measure zero, each agent takes
as .xed when deciding on her announcement {I. So, from De..nition 2, for truth-telling to

be a dominant strategy, I = p must maximize (6), holding ® ..xed. De..ne

(T RV (TR TR (A1)

to be the utility from truth-telling, conditional on ®. Standard arguments (see e.g. La=ont

and Tirole[11]) imply that the necessary and su@cient conditions for this are as follows;

_@Vgﬁ % - i ¢, (q(f}; ®)s(@); ) almost everywhere on £ (A2)
@Q(@Uu; *) 0 almost everywhere on £ (A.3)

where (A.2), (A.3) are the envelope and monotonicity conditions respectively. Integrating

(A.2), we can write 7

i
w(®) =w( o)+ cu@l; Ms(@); z)dz (A4)
H

Also by de..nition from (A.1), w(i;®) ~ t(1; ) i c(q(l; ®)s(@); p), implying

(% 2) 7 el 0)s@); ) + w(il; ) (A5)

Combining (A.4) and (A.5) gives (9), with the constant Ap equal to v([I; ®).
(i) From De..nition 3, for truth-telling to be a Nash strategy, all we need is that (I =
must maximize (6), holding ® .xed at ©: But then a similar argument implies that the

contract will be Nash incentive-compatible as long as

Z .
H
tn( ) = cHan (5 ©)s(a); 1) + ' c(an (1 °)s(@); B)dz + An; An 2 < (A6)
% 0 almost everywhere on £ (A7)
H

R
where = q(u; ©)d® is aggregate output given truth-telling. We know by de..nition that

given a Nash-incentive compatible contract (qn;tn), there-is a truth-telling equilibrium
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in the announcement game. At this equilibrium, ® = ©: So, if we choose Ap = Ay,
ao() = gn() all p 2 £, then to(;°) = tn(W;°), all p 2 £, so there is a dominant -
strategy incentive-compatible contract that yields the principal the same payo= as a Nash
incentive-compatible contract when, in the induced announcement game, agents tell the
truth.

(iii) Now consider the Nash incentive-compatible contract (¢ ({i; ©); f (iI; ©)) that max-
imizes the principal’s expected payoz, under the assumption that agents tell the truth?’.
Given this contract, there may be other Nash equilibria in the announcement game, where
a positive measure of agents do not tell the truth. It is clear that in any other such equi-
librium, the principal can be no better o= than in the truth-telling equilibrium. Thus,
the maximum payo=a that the principal can get from any Nash incentive-compatible con-
tract is no higher than the payoz that the principal can achieve from a dominant-strategy
incentive-compatible contract. ©
Proof of Proposition 2. (i) We proceed to solve problem P by initially ignoring the
monotonicity constraint q’(u) - 0: In general, the ecect on pro..t of a small increase in with

respect to q(u), taking into account the dependence of q on q(u), is;

% = PQM)TW) T A@@Ws@):Ws@FW) i E [MAaws@);mIs@FwW (A8)

First, suppose that there is a non-interior solution where q(u) = 0, for some u 2 £.

Evaluating 25 at this point, we get

1 0%

L m = A (0 - X : 0
0 80 r(0) i Ae(0;)s(a) 1 E [a()A:(a()s(a); 1)]s'(a)

> r'(0) i A,(0;1)s(0) = r'(0) i A,(0;p) >0

where the last inequality follows by A3. So it pays the principal to increase q(i); a contra-
diction.
Again, suppose that there is a no solution because
@Y
@a(w)

71t is clear that such a contract exists, from the proof of Proposition 2 below.

> 0; all () (A.9)
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for some 1 2 £: Fix some &(:); and take a sequence g, (1)gL, with g, (1) = &(f) + A,, with
limae1 A, = A, and qn(’) = a(1); 1 & [. Note that as qn(:) is equal to &(:) a.e., then
& = E[qn(1)] is ..xed, as is E [qn(u)A.(qn(1)s(6); 1)] : Taking the limit in (A.8), we get

1w s .
lim R - lim r°(qn(~u)) i lim A (gn (1)s(@); 1)s(®)
+E [0n (WA (an(1)s(@); 1] S'(&) (A.10)
= lim r@ i lim Ao s(@) i ElaWA(aWs@: s
< 0

where in the last line we have used limgs 1 r'(q) = 0;lime 1 A.(e; 1) = 1 where the second
limit follows directly from limey 4 Ce(e;p) = A in A3 and A, _ ce.. So, we conclude an
interior solution always exists. This interior solution is characterized by ..rst-order condition
for a maximum of (11), which we obtain from (A.8) by equating the RHS to zero, dividing
through by f(u); and then writing out A, in full. This gives (13) in the text.

(i) Let the solution to (13) be q(). For q(u) to be feasible in P, it must be the case that
it satis..es the monotonicity condition &(11) - 0: Note that from (13), using the second-order

condition, we have;

sign ¢’(p) = sign 0% (A.11)
@q(uw)eu
But again from (13), we have
@2 X
ST i A, (s (@) Ws@F W) i g (@s(@); Ws' (@) F ] (A.12)

s0 it succes to show that A,, > 0. Now, from (12), we have

0
A QS@iH) = Cu0S@i) + s Can@WS@IN) | pa WS (ALY

Also, from Al, cey . 0, and from monotone hazard rate condition, h® - 0. So, from
(A.13), Ay, >0, as required. =

Proof of Theorem 1. (i) We show that if the distribution of u, F, has an everywhere
decreasing hazard rate, then the induced distribution - = - (); has an everywhere decreas-
ing hazard rate. This fact means that we can, without loss of generality, set - (1) = . In

particular, we will use the fact c,,c = 0 in what follows. First, from Al, ¢, = -"(u)c(e) >0,
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so - is invertible on K = [-(u); - (W)]. So the induced distribution of -;G(X) := F (- 1(x));
x 2 K is well-de..ned, as is the density g(x) = f(- 11(x))=-'(x). Recalling the de..nition of

the hazard rate of G, it is su€cient to prove that G(x)=g(x) is increasing in x: Then

diG(x¥)=g(x)] _ G(X) d[F (- )=F (- 1))
ix Ty WX dx

The ..rst term is non-negative as -® _ 0, and the second term is strictly positive by the
fact that F has a decreasing hazard rate and d- i=dx > 0. So, we conclude that g(x)=G(X)
is strictly decreasing on K, as required.

(i1) Note that 1=h(y) = F(w)=f () = 0, and so from (13), we have at p = y that

r'(aW) = ca@Ws@);WS@ + E [100c@Ws@); WIs'@) + E ﬂﬁ“gcue(q(u)s(q) 0 @

(A.14)
As s'(q) <0, and ¢ > 0, it follows from (A.14) that

rgw) < ce(@(ws(@); Ws(@) + E [a)ce(a()s(@); wis'(a)

i.e. oversupply at i = y. Also, from (13), and De..nition 4, to have undersupply at p = i,

we must have

Ce (Q(W)S(); 1) e ((Ws(a); 1)
@ SWTE TR

Rearranging, and recalling s’(q) < 0, we get

Q(U) s'(g) >0

. S(0) Ce(@S@: 1) _ ()
0 h(®) h(u)

Now note the following facts: (i) as the monotone hazard rate condition holds

= Cue(A(1)s(a); u) (A.15)

= IS in-
! h(u)
creasing in y1; (ii) from Proposition 1, q() is decreasing in ; (iii) c,e(q(1)s(a); 1) is increasing

inyas

eSO = @S + e (AW

= Cuee(A(W)s(@); W)s(@)q’ (W) <O

where we have used cy,e = 0 in the last line. So, from (i)-(iii), it follows that

ERCIOROANION
h(u)

" Gue(AS(@); 1) *

T

Elaw]>E

(A.16)
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So, from (A.16), a su€cient condition for (A.15) to hold is that

- S(@) Ce@DS@E) _ & Cue(@Ws(@in)*
's@)  h@ h(w)

Rearranging (A.17), using q = E [q(W)], gives

Ce(@®s@: =@ _ . s'a)g
Elce(@()s(@); =] ~ " s(g)

But, the LHS of (A.18) is greater than 1 by the properties of c,e=h derived above. So, it is

E[a@w] (A.17)

(A.18)

certainly succient for undersupply at p = i that

s'(9)g
i A.19
As s = igizg°°°, it follows that
isoq _ 1 0ol
SRt (A.20)

But dizerentiation of (3), which implicitly de..nes °; gives

1
g +egi(e)

So, combining(A.20) and (A.21), and using q = eg; we get

ol

(A.21)

is’g _  eg'(e)
s g+eg'(e)

so (A.19) clearly holds, as required.

(iii) The ..nal step is to show that there is a single critical value i’ below which there
is oversupply, and above which there is undersupply, it su€ces to show that the dicerence
between the perceived marginal cost (the right-hand side of (13)) and the true marginal
cost (the right-hand side of (14)) is monotonically increasing in p for a ..xed q;q(n): This
dizerence is given in (17), and is clearly increasing in p for ..xed g; q(i) from the monotone
hazard rate condition and the properties of ¢. &

Proof of Theorem 2. Itis easy to check, using (23) and following the proof of Theorem
1, that there will be two-way distortion if

1539 +sp@a)a
SHCH)

(A.22)
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First, it follows directly from dicerentiation of (22) that

0
s2(q% ) = a%{°2+%°2] (A.23)

0
SICRLPIE N PR

Now, using (A.23),(20),(21), and the fact that g, = q, = q we get

= fcdfn- afn- 0
1 (Sa(ql q) + Sb (ql q))q — %[og + %og + 0? + 3/4°E] (A24)
s2(g; ) N
@J°e'IT g
= 5 51 +%g +eg'(L1 i %)
Mg ™™ g+ g +eg'cd i %)
g g2+2geg’ +e2(g")2(1 § %?)

where g = g(e+%e): So, we require that the term on the RHS of (A.24) be weakly less than
1, which simpli..es to “goeﬂ “goeﬂ
— % -1+ =
9 9

which certainly holds. &
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B. Junkyard

This assumption could be relaxed in the following way without changing the statement and
proof of results. Let d(i;j) be a measure of the “distance” between agents i and j in the
production process, with d(i;j) = d(j;1), all i;j 2 I; d(i;i1) = 0. and normalise so that
Rj2, d(i;j)d* = 1. De..ne the aggregate spillover for i as %; = Rj2| d(i;j)g;jdx. then (2)
could be generalised to q; = €;g(%;). Also, suppose that g is linear, so g; = &;[® + ¥%;].

Then, multiplying through by d(i; J) and integrating this over j 2 1 we get
Z Z
Qi = d(i; j)ojdt = %@+ d(i; j)%;d1] = %[® +  §;]

j21 j21
. Preforming the same operation again, we get
Z Z Z Z
Q=8[®+ §]; Q= ddi; j) d(i; j)g;d*; 8 = ddi; j) d(i; j)e;d*
i2l j21 i2l j21
We can then invert to get 8 = °(Q)
Example 1.

Let g(e) =1+ %e. Note that g(0) = 1, as required. So,

q = eg(e) = e + %e?

So,

p1+43/4q il

e=c(q)=— -1

2%
So,
s(q) = 1 . 1 - 2
VZ9CQ) T 1+nmmd  PTramg el

So,

108’ _ (13 49q) 1%%4%q
s  TTI+&g+1

So, 1% . 1 im
i05 P
(1+4%q)'"~4%q - 1+4%q+1
which certainly holds, as can be checked after some rearrangement. &

Here ¢ = pe, and p is uniformly distributed on an interval of unit length, so F (i) =

il f(u) =1. Also, g(e) = €°, then it is easily checked that s(q) = q‘%3 =qi , so
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0< <1 Finally, r(q) = qu. Then it is easily checked that A(e; i) = (24 i we; so the
perceived cost function is
A=(uiwa@ae’

Then, the condition (??) reduces to

— 2q(2u i W)
LY B wom) B1)

But as E[(2u § wa(w)] . E[g(w)]e = g, then (B.1) certainly holds if

Also, the ..rst-order condition reduces to

@)% = A (q()s(a); Ws(@) + E [a(wA.(au)s@); 1)1s'(q)

Returning to the Theorem, we note the following corollary:

Corollary 3. If the external ecect of aggregate ecort is iso-elastic i.e. g(e) = e®, ® > 0,

then there is always two-way distortion.

Proof. If g(e) = e®, then it is easily checked that s(q) = q# 3, so iisq = 2= <1. Butas
remarked above, the upper bound on j %q in the Theorem is greater than unity, so in this

case, the condition on the elasticity in the theorem always holds. H

e wil also assume directly the following properties of s :
A2. s(0) < 14, limgs 1 gs’(q) = O

The ..rst of these conditions says that any agent is able to produce even if all other
agents do not, and the second ensures that in the aggregate, the size of the externality
goes to zero as output goes to in..nity. An example which satis..es these conditions is the
iso-elasric case g(e) = €®: Then it is easily checked that s(q) = q‘%3 =qi ,0< <1
sos(0) =1, and gs’(q) = i qi . [CUT Following Demski and Sappington[4], we focus on

two possible equilibrium concepts for this game, dominant strategy and Nash equilibrium.
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This gives rise two concepts of an incentive-compatible contract.]Lacont(1995) has shown
that in an otherwise standard principal-agent model where the agent may take some unob-
servable eaort to reduce the probability of environmental catastrophe, and where the agent
is risk-averse, and has limited liability, then

Consequently, de..ne a transfer schedule as a map t: <2 ¥ < where is the transfer to
agent 1 if he produces output i and aggregate output is ¢. Given a transfer schedule, the
agents then play a game where the strategies are (gi)izi , and payoas u; = t(d;, q) i 9iS(q)ui-
Call this the output game.

This game is non-trivial due to the spillovers, and the fact that t(g;, q) may depend
non-trivially on g: This is simply the inventive-compatible payment schedule (9) written as
a function of (g;;q) rather than (Ui;°). As (i) < 0, g; maximizes (24) if and only if y;
maximizes (9): So, we can conclude that faced with payo= u; = t(qi; q) i 9is(q)ui where
t(qgi; q) is de..ned in (24) gi = (i) maximizes u; whatever g i.e. ¢; = &(;) is a dominant
strategy for i in the output game!®. So, the output game replicates the outcome of the

direct mechanism described above.

8This is quite a striking result, because (as Cooper and John[5] have shown), output games of this type
without principal-agent relationships (i.e. where agents capure the full value of their output) typically have

multiple equilbria, due to strategic complementarities between agents.
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