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Abstract

We propose testing for business cycle asymmetries in Markov-switching autoregressive (MS-AR)
models. We derive the parametric restrictions on MS-AR models that rule out types of asymmetries
such as deepness, steepness, and sharpness, and set out a testing procedure based on Wald statistics
which have standard asymptotics. For a two-regime model, such as that popularised by Hamilton
(1989), we show that deepness implies sharpness (and vice versa) while the process is always non-
steep. We illustrate with two and three-state MS models of US GNP growth, and with models of
US output and employment. Our findings are compared with those obtained from standard non-
parametric tests.
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1 Introduction

‘the most violent declines exceed the most considerable advances [: : :] Business con-
tractions appear to be a briefer and more violent process than business expansions’

Mitchell (1927, p. 290)

There has been much interest in whether macroeconomic variables behave differently over the phases
of the business cycle. Sichel (1993, p. 224) defines an asymmetric cycle as ‘one in which some phase
of the cycle is different from the mirror image of the opposite phase’. A number of types of asymmetry,
such as steepness, deepness, and sharpness (or turning point asymmetry) have been proposed, and tested
for empirically using separate non-parametric tests. Other types of asymmetries, such as asymmetric per-
sistence to shocks, have been explored in parametric models (see Beaudry and Koop, 1993 and Hess and
Iwata, 1997a). Moreover, while business cycles were originally viewed as consisting of co-movements
in many economic variables (see, e.g., Burns and Mitchell, 1946), the research to date on business cycle
asymmetries has largely been univariate, based on testing individual series such as GNP, industrial pro-
duction and unemployment, while ignoring possible co-dependencies or co-movements in the variables
over the cycle.

�Financial support from the UK Economic and Social Research Council under grant L116251015 is gratefully acknow-
ledged by both authors. All the computations reported in this paper were carried out in Ox: see Doornik (1996).
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Since Hamilton (1989) the Markov-switching autoregressive model (MS-AR) has become popular
in empirical business cycle research as a way of characterising the business-cycle phases of expansion
and contraction. In this paper we analyse the conditions under which this class of model is capable of
generating various types of business cycle asymmetry. The conditions are expressed as restrictions on the
parameters of the MS-AR model which, if they hold, would rule out a particular type of asymmetry. We
are then able to derive tests of these restrictions based on estimated MS-AR models, providing parametric
tests as alternatives of the non-parametric tests typically used in the literature.

The rest of this introduction provides a motivation for focusing on MS-AR models as a way of test-
ing business-cycle asymmetries. Firstly, a number of other papers test for certain types of asymmetries
in parametric models. For example, Sichel (1991) looks for business cycle duration dependence using
a parametric hazard model, while, e.g., Diebold, Rudebusch and Sichel (1993), Filardo (1994) and Fil-
ardo and Gordon (1998) explore the same issue in extensions of the Hamilton (1989) model that allow
for time-varying transition probabilities. Generally there appears to be positive duration dependence in
contractions in the US post-War period, so that the probability of moving out of recession increases with
the duration of recession. However, there appears to have been little attempt to formally test for other
types of asymmetries using MS-AR models, and it is that lacuna that this paper seeks to fill.

Our parametric approach would only be expected to yield more powerful tests of asymmetry if the
model is a good representation of the process generating the data. This is the usual trade-off between
parametric and non-parametric approaches — the latter are robust to model mis-specification, which may
lead to misleading inferences in the former, but are likely to have lower power. To that end, we check
that the model is reasonably well specified. We choose the MS models to test for asymmetries because
they appear to offer a good fit to the data and to characterise typical business cycle features. An added at-
traction is that the MS-AR framework can be readily extended to multivariate settings (see Krolzig, 1997
for an overview), and a number of papers have sought to do so, e.g., Ravn and Sola (1995), Diebold and
Rudebusch (1996), Hamilton and Lin (1996), Krolzig and Sensier (1998), and Krolzig and Toro (1998),
but again, without directly addressing the issue of testing for asymmetries, or of analysing what possible
types of asymmetry the models are capable of generating. For example, Ravn and Sola (1995) look at
whether prices move counter-cyclically (i.e., whether the covariance between output growth and infla-
tion is negative), and use MS models to control for changes in the (unconditional) means of the vari-
ables, which might otherwise lead to misleading inferences concerning the co-movements between the
series. Hamilton and Lin (1996) consider a bivariate model for stock returns and output growth, where
the dynamic linkage between the two variables centres on possible dependence between the latent pro-
cesses. Diebold and Rudebusch (1996) consider dynamic-factor models with regime switching — the
factor structure captures the idea that variables move together over the business cycle, and the regime
switching allows for asymmetric behaviour over the cycle.

The empirical relevance of our results rests on the MS model being a good representation of the data.
However, given the widespread popularity of the MS model in applied research, it is of interest to estab-
lish precisely which types of asymmetries these models are in principle capable of generating, particu-
larly since some of the literature appears confused on this point 1. As we shall show, the number of states
turns out to be crucial. Deducing which types of asymmetry the MS models are capable of generating
differs from Hess and Iwata (1997b), who investigate by simulation whether empirically-estimated mod-
els (ARIMA and popular scalar non-linear models) are able to replicate the ‘fundamental business cycle
features’ of observed durations and amplitudes of contractions and expansions. Their features of interest
differ from ours, and empirical durations and magnitudes are calculated for a two-state representation of

1For example, Sichel (1993, p. 232, footnote 19) states that the Hamilton (1989) two-state model implies steepness in US
GNP. In fact, steepness (as defined formally below) can not arise in such a model.
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the business cycle – contractions and expansions. This is somewhat crude, ignoring as it does the fast
recovery phase that has characterised all US recessions except the last (the 1990 recession). They find
their three-state MS model fails to generate contractions of sufficient duration or depth (given their defin-
ition of a contraction), but we note below that their model is estimated with a restricted transition matrix
and assumes a homogeneous variance of shocks across regimes. Our preferred model is not restricted in
this way. We are also interested in whether it is feasible for the MS class of models to generate certain
asymmetric features, as well as whether empirically estimated models possess such features, which is
the focus of the simulations in Hess and Iwata (1997b).

Further, because MS-AR models can be readily applied to multivariate settings, they can be used to
model co-movements of variables over the business cycle, and thus more closely reflect what the ori-
ginators of business cycle research had in mind. We show empirically that utilising the co-movements
between series may provide useful tests for asymmetries in highly restricted models, but that for two re-
lated series x and y, we might in general expect asymmetries in x to help to explain those in y (and vice
versa), so that multivariate models exhibit fewer asymmetries. This is obvious if one takes the view that
asymmetries (and non-linearities more generally) in univariate time-series representations arise because
of omitted variables. The exception is when the dependence between the series is only allowed via the
Markov process (as in, e.g., Ravn and Sola, 1995 and Hamilton and Lin, 1996).

As a final motivation for our work, we note that McQueen and Thorley (1993, pp. 342 – 343) and
Sichel (1993, pp. 225 – 226 ) discuss the importance, from both theoretical and empirical viewpoints, of
establishing whether there are asymmetries in the business cycle.

The types of asymmetry of interest are generally taken to relate to the de-trended log of output. For
example, Speight and McMillan (1998) consider the de-trended component (xt) of the variable yt, where
xt = yt � �t. �t is a non-stationary trend component, and xt is stationary, possibly consisting of cycle
and noise components. We assume the non-stationarity can be removed by differencing, i.e., xt = �yt.
Trend elimination by differencing is natural in our setup, because the MS model is typically estimated
on the first difference of the log of output. However, none of the propositions on asymmetries in MS-
AR models that follow, nor the testing procedures, require this method of de-trending, and remain valid
whichever method is used. All we require is that a MS-AR model can be estimated for the de-trended
series, howsoever obtained. The sensitivity of the findings of asymmetries to the method of trend elim-
ination requires further research, and Gordon (1997) shows that in general the model of the short-run
fluctuations in output may depend on the treatment of the trend component.

The plan of the paper is as follows. In section 2 we briefly review the literature on business cycle
asymmetries. Section 3 formally defines the concepts of deepness, steepness and sharpness gleaned from
the literature, and derives the corresponding parameter restrictions on the MS model, paying particular
attention to the empirically relevant two and three regime models. Then, section 4 sketches out our pro-
posed testing procedures based on Wald tests, which obviates the necessity of estimating the restricted
(null) MS model. Section 5 notes the straightforward extension to multiple time series, and section 6 sets
out the empirical illustrations. Section 7 concludes.
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2 A brief review of the literature on business cycle asymmetries

2.1 Steepness and deepness

Sichel (1993) distinguishes two types of business cycle asymmetry: ‘steepness’ and ‘deepness’. The
former relates to whether contractions are steeper (or less steep) than expansions, the latter to whether
the amplitude of troughs exceeds that of peaks. Neftci (1984) found evidence of steepness in post-War
US unemployment during contractions using a non-parametric test of whether there are longer runs of
increases than decreases in the series. However, Falk (1986) failed to find evidence of steepness in other
US quarterly macroeconomic series using Neftci’s procedure, and Sichel (1989) suggested an error in
Neftci’s work and indicated that the procedure might fail to find steepness when in fact it is present.
Neftci defines an indicator variable It = 1 if �yt > 0 and It = �1 if �yt � 0. Suppose It can
be represented by a second-order Markov process, then steepness would imply that p11 > p00, where
p11 = prob[It = 1 j It�1 = 1; It�2 = 1] and p00 = prob[It = �1 j It�1 = �1; It�2 = �1]. The
problem with this procedure is its sensitivity to noise. If increases (decreases) are inadvertently meas-
ured as decreases (increases), then the counts of transitions from which the estimates of the transition
probabilities are derived will be affected. Sichel (1989) finds strong evidence of asymmetry in annual
unemployment, for which measurement error is presumably less important.

Sichel (1993) suggests a test of deepness based on the coefficient of skewness calculated for the de-
trended series. Deepness of contractions will show up as negative skewness, since it implies that the av-
erage deviation of observations below the mean will exceed that of observations above the mean. Steep-
ness implies negative skewness in the first difference of the detrended series: decreases should be lar-
ger, though less frequent, than increases. On the basis of these tests, deepness is found to characterise
quarterly post-War US unemployment and industrial production, with weaker evidence for GNP, while
only unemployment (of the three) appears to exhibit steepness.

2.2 Sharpness

Sharpness or turning point asymmetry, as introduced by McQueen and Thorley (1993), would result if,
e.g., troughs were sharp and peaks more rounded. They present two tests. The first is based on the mag-
nitude of growth rate changes around NBER-dated peaks and troughs. The mean absolute changes are
calculated for peaks and troughs separately, and the test for asymmetry is based on rejecting the null of the
population mean changes in the variable at peaks and troughs being equal. McQueen and Thorley (1993)
find the null of equal turning point sharpness can be rejected for both the unemployment rate and indus-
trial production. Their second testing procedure is based on a second-order three state Markov chain.
They distinguish between contraction (1), moderate (2) and high (3)(recovery) states. The hypothesis in
Hicks (1950), that troughs are sharper than peaks, translates into p113 > p331, where p113 is the probabil-
ity of jumping from the contraction to high growth state (p113 = prob[It = 3 j It�1 = 1; It�2 = 1]) and
p331 is the probability of jumping directly from high growth to contraction. ‘Complete’ TP symmetry
requires p113 = p331 as well as p112 = p332 and p223 = p221. They again find evidence of sharp-
ness asymmetry for post-War unemployment and industrial production, but the susceptibility of the test
to noise is evident when they consider pre-War industrial production and post-War agricultural unem-
ployment: in both cases quarterly volatility in the series interrupts runs of ones and threes, reducing the
number of sharp TPs and the power of the test.
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3 Concepts of asymmetry and MS models

The (vector) time series is assumed to have been generated by a (V)AR(p) with M Markov-switching
regimes in the mean of the process, which we label an MSM(M )-AR(p) process:

xt � �(st) =

pX
k=1

�k (xt�k � �(st�k)) + ut; utjst � NID
�
0; �2

�
: (1)

We can order the regimes by the magnitude of � such that �1 < : : : < �M . The Markov chain is ergodic,
irreducible, and there does not exist an absorbing state, i.e., ��m 2 (0; 1) for all m = 1; : : : ;M , where
��m is the ergodic or unconditional probability of regime m. The discussion below is for a univariate
time series, but we also note the generalization to a vector process. The transition probabilities are time-
invariant:

pij = prob(st+1 = jjst = i);

MX
j=1

pij = 1 8i; j 2 f1; : : : ;Mg: (2)

3.1 Types of asymmetry

For clarity, we formally define the concepts of deepness, steepness and sharpness discussed and motiv-
ated in section 2. Then we derive the corresponding parameter restrictions on the MS-VAR and apply
them to the case of two and three regimes processes.

Definition 1. Deepness. Sichel (1993). The process fxtg is said to be non-deep (non-tall) iff xt is not
skewed:

E

h
(xt � ��)3

i
= 0:

Analogously we can define steepness as skewness of the differences:

Definition 2. Steepness. Sichel (1993). The process fxtg is said to be non-steep iff �xt is not skewed:

E
�
�x3t

�
= 0:

The business cycle literature indicates the possibility of negative skewness of xt and �xt — thus
steep and deep contractions. The opposite case is of tall (E[(xt � �)3] > 0) and steep (�xt positively
skewed) expansions.

Definition 3. Sharpness. McQueen and Thorley (1993). The process fxtg is said to be non-sharp iff
the transition probabilities to and from the two outer regimes are identical:

pm1 = pmM and p1m = pMm; for all m 6= 1;M ; and p1M = pM1.

In a two-regime model, for example, non-sharpness implies that p12 = p21: In a three-regime model,
it requires p13 = p31 and in addition p12 = p32 and p21 = p23. When M = 4 the following restrictions
on the matrix of transition probabilities are required to hold for non-sharpness:

P =

26664
1� a� b� c a b c

d � � d

e � � e

c a b 1� a� b� c

37775 (3)
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3.2 Asymmetries in MS-AR processes

We now present the restrictions on the parameter space of the MSM-AR model that correspond to the
concepts of asymmetry. Proofs of these propositions are confined to an appendix.

While the restrictions implied by sharpness follow immediately, testing for deepness and steepness
is less obvious.

Proposition 1. An MSM(M )-AR(p) process is non-deep iff

MX
m=1

��m�
�3
m =

M�1X
m=1

��m�
�3
m +

 
1�

M�1X
m=1

��m

!
��3M = 0 (4)

with ��m = �m��y =
P

i6=m (�m � �i) ��i and where ��m is the unconditional probability of regime m.

Unfortunately the expression (4) is a highly complicated third-order polynomial in the regime-
dependent parameters of the process �1; : : : ; �M and the unconditional regime probabilities
��1; : : : ; ��M�1, which are non-linear functions of the transition parameters pij:

E

h
�kt

i
=

MX
m=1

��m

 
�m �

MX
i=1

��i�i

!k

=

MX
m=1

��m

"
�m � �M �

M�1X
i=1

(�i � �M) ��i

#k

=
M�1X
m=1

��m

"
(�m � �M )�

M�1X
i=1

(�i � �M ) ��i

#k
+

 
1�

M�1X
m=1

��m

!"
�

M�1X
i=1

(�i � �M) ��i

#k

However, for M = 2 the problem becomes analytically tractable.

Example 1. Consider the case of two regimes. The MSM(2)-AR(p) process can be written as the sum
of two independent processes: yt � �y = �t + zt, where �y is the unconditional mean of yt, such that
E[�t] = E[zt] = 0. While the process zt =

Pp
j=1 �jzt�j+ut is gaussian, �t represents the contribution

of the Markov chain, �t = (�1 � �2)�t, with �t = �1t � ��1, which equals 1 � ��1 if the regime is 1 and
���1 otherwise. Invoking proposition 1, the skewness of the Markov chain is given by:

E
�
�3t
�
=

2X
m=1

��m�
�3
m = ��1�

�3
1 + (1� ��1)�

�3
2

where ��1 = p21=(p12 + p21) is the unconditional probability of regime one, ��1 = �1 � �y = (1 �
��1)(�1 � �2) and ��2 = �2 � �y = (���1)(�1 � �2). Thus:

E
�
�3t
�

= ��1(1 � ��1)
3 (�1 � �2)

3 + (1� ��1)(���1)
3 (�1 � �2)

3

=
�
��1(1� ��1)

3 � (1� ��1)(��1)
3
�
(�1 � �2)

3

= ��1(1 � ��1)
�
(1� ��1)

2 � ��1
2
�
(�1 � �2)

3

= ��1(1 � ��1)
�
1� 2��1

�
(�1 � �2)

3 :

As the Markov-switching model implies that �1 6= �2 and ��1 2 (0; 1); non-deepness, E[�3t ] = 0, requires
that ��1 = 0:5. Hence the matrix of transition probabilities must be symmetric, p12 = p21. This also
implies that the regime-conditional means �1 and �2 are equidistant to the unconditional mean �y:

Hence, in the case of two regimes we can test for non-deepness by testing the hypothesis p12 = p21.
This is equivalent to the test of non-sharpness. For processes with M > 2 we propose to test for non-
deepness based on the ��m conditional on �y and the ��m.
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Example 2. Consider now an MSM(3)-AR(p) process. Again, by invoking proposition 1, the skewness
of the Markov chain �t is given by:

E
�
�3t
�
=

3X
m=1

��m�
�3
m = ��1�

�3
1 + ��2�

�3
2 + (1� ��1 � ��2)�

�3
3

where ��m = �m � �y = �m � ��1�1 � ��2�2 � (1� ��1 � ��2)�3 =
P

i6=m
��i(�m � �i). Thus:

E
�
�3t
�
=

3X
m=1

��m

24X
i6=m

��i(�m � �i)

353 :
Non-deepness, E

�
�3t
�
= 0, requires that:

��33 =
��1

(1� ��1 � ��2)
��31 +

��2
(1� ��1 � ��2)

��32 :

We now derive conditions for the presence of steepness which is based on the skewness of the dif-
ferenced series.

Proposition 2. An MSM(M )-AR(p) process is non-steep if the size of the jumps, �j ��i, satisfies the
following condition:

M�1X
i=1

MX
j=i+1

�
��ipij � ��jpji

�
[�j � �i]

3 = 0: (5)

Symmetry of the matrix of transition parameters (which is stronger than the definition of sharpness) is
sufficient but not necessary for non-steepness. A proof of this proposition appears in the appendix.

In contrast to deepness, the condition for steepness depends not only on the ergodic probabilities, ��j ,
but also directly on the transition parameters.

Example 3. In an MSM(2)-AR(p) process, condition (5) gives:

E
�
��3t

�
=
�
��1p12 � ��2p21

�
[�2 � �1]

3 :

Example 4. For an MSM(3)-AR(p) process we get:

E
�
��3t

�
=

2X
i=1

3X
j=i+1

�
��ipij � ��jpji

�
[�j � �i]

3

=
�
��1p12 � ��2p21

�
[�2 � �1]

3 +
�
��1p13 � ��3p31

�
[�3 � �1]

3 +
�
��2p23 � ��3p32

�
[�3 � �2]

3

While this is a complicated expression, the concept of steepness can be made operational by using
the sufficient condition, that is, the symmetry of the matrix of transition parameters, which implies non-
steepness. This is stronger than the property of non-sharpness (see, for example, expression (3)).

The concepts of sharpness/steepness and deepness are illustrated in figures 1 and 2. Figure 1 gives
representative time-paths for �t and ��t for an MS(3) process, drawn so that the duration of each regime
equals its expectation, and also shows the densities of �t and ��t, with gaussian curves super-imposed.
The top row corresponds to the non-deep, non-steep and non-sharp (strictly, symmetric transition prob-
abilities) case. There is no skewness in either the �t or ��t. Deepness (row 2) shows up in negative
skewness in �t, and steepness of expansions (row 3) in positive skewness of ��t. Row 4 shows the two
together. Figure 2 depicts deepness in the MS(2) model of Hamilton (1989), and deepness and steepness
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(of expansions) in the MS(3) model of Clements and Krolzig (1998) (both models are discussed further
in section 6).

We close this section with a corollary characterizing the two-regime MS-AR model, which shows
the impossibility of the MS(2) exhibiting steepness, and the equivalence of the concepts of deepness and
sharpness.

Corollary 1. A two-regime Markov-switching model is always non-steep. Non-sharpness implies non-
deepness and vice versa.

Non-steepness is evident from Example 3. Since ��1=��2 = p21=p12, we have that ��1p12 � ��2p21 = 0

and hence E[��3t ] = 0. Further, non-sharpness (symmetric transition probabilities, p12 = p21) implies
non-deepness, E[(yt � �y)

3] = 0, and vice versa. In particular, both concepts imply that the regime-
conditional means �1 and �2 are equidistant to the unconditional mean �y:

4 Testing

As the number of regimes remains unchanged under all three hypotheses, standard asymptotics can be
invoked. Wald tests of the hypotheses are computationally attractive, since the model does not have to
be estimated under the null. In general terms, we consider Wald (W ) tests of the hypothesis:

H0 : �(�) = 0 vs. H1 : �(�) 6= 0;

where � : Rn ! R
r is a continuously differentiable function with rank r, r = rk

�
@�(�)
@�0

�
� dim �. As

the pij are restricted to the [0; 1] interval, the tests are formulated on the logits �ij = log
�

pij
1�pij

�
which

avoids problems if one or more of the pij is close to the border. It is worth noting that if 1
T
(~�ij � �ij)

d!
N(0; �2�ij ); then 1

T
(~pij � pij)

d! N(0; p2ij(1 � pij)
2�2�ij ) as pij =

e�ij

1 + e�ij
: If one of the transition

parameters is estimated to lie on the border, pij 2 f0; 1g; then the parameter is taken as being fixed and
eliminated from the parameter vector �.

Let ~� denote the unconstrained MLE of � = (�1; : : : ; �M ;�1; : : : ; �p; �
2;�), and �̂ the restricted

MLE under the null. Then the Wald test statistic W is based on the unconstrained estimator ~�, which is
asymptotically normal: p

T
�
~�� �

�
d! N

�
0;�~�

�
;

where, for the MLE, �~� = =�1a is the inverse of the asymptotic information matrix. This can be calcu-
lated numerically. It follows that �(~�) is also normal for large samples:

p
T [�(~�)� �(�)]

d! N

�
0;

@�(�)

@�0

����
~�

�~�

@�(�)0

@�

����
~�

�
:

Thus, if H0 : �(�) = 0 is true and the variance–covariance matrix is invertible,

T�(~�)0
�
@�(�)

@�0

����
~�

~�~�

@�(�)0

@�

����
~�

��1
�(~�)

d! �2(r);

where ~�~� is a consistent estimator of �~�.
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4.1 Deepness

The Wald test for the null of non-deepness is based on:

�D(�) = �D(�; �) :=
MX
m=1

��m(�m � �y)
3

where the ��m and �y are taken as fixed. Thus @�
@�i

= 3��m(�m � �y)
2 for �i = �m, m = 1; : : : ;M , and

@�
@�i

= 0 for �i 2 [�1; : : : ; �p; �
2;�].

Example 5. Thus for M = 2, the null of non-deepness is tested by:

T

"
2X

m=1

��m(e�m � �y)
3

#2 "h
3��1(e�1 � �y)

2 3��2(e�2 � �y)
2
i

~�~�D

"
3��1(e�1 � �y)

2

3��2(e�2 � �y)
2

##�1
d! �2(1);

where ~�D = [e�1 e�2]0.
4.2 Steepness

A Wald test for the null of non-steepness can be based on:

�S(�) = �S(�; �) :=
M�1X
i=1

MX
j=i+1

�
��ipij � ��jpji

�
[�j � �i]

3

where the ��m; pij and �y again are taken as fixed. Thus the test only concerns the vector of mean para-
meters:

r� =

266666664

�2 � �1
...

�M � �1
...

�M � �M�1

377777775
= Q�; with Q =

@r�
@�0

=

2666666666664

�1 1 0
...

. . .

�1 0 1

0 �1 1

�1 0 1

0

. . .

�1 1

3777777777775
;� =

h
�1 � � � �M

i0
:

Thus @�
@�0 = @�

@r�0
@r�
@�0

with @�
@r�m

= 3
�
��ipij � ��jpji

�
[�j � �i]

2 and @�
@�i

= 0 otherwise. The Wald
test statistic has the form:

�(~�)0
�

@�

@r�0Q
�
1
T
~�~�

�
Q0 @�

0

@r�
��1

�(~�)
d! �2(1):

In the case of a three-state Markov chain, for example:

Q =

264 �1 1 0

�1 0 1

0 �1 1

375 and
@�0

@r� =

264 3
�
��1p12 � ��2p21

�
[�2 � �1]

2

3
�
��1p13 � ��3p31

�
[�3 � �1]

2

3
�
��2p23 � ��3p32

�
[�3 � �2]

2

375 :
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4.3 Sharpness

The null of non-sharpness can be expressed as:

�TP (�) = �TP (�; �) := ��;

where the matrix � is defined such that pm1 = pmM and p1m = pMm; for all m 6= 1;M , and p1M =

pM1. Let the �ij be collected to the matrix �:

� =

264 �11 � � � �M1
...

. . .
...

�1M � � � �MM

375
the matrix of logit transition probabilities. Then the vector� is given by vecd(�), defined as vec(�)with
the diagonal elements �ij excluded. In the case of a three-state Markov chain, for example, we have that:

� = (�12; �13; �21; �23; �31; �32)
0 and � =

264 1 0 0 0 0 �1
0 1 0 0 �1 0

0 0 1 �1 0 0

375 :
For linear restrictions the relevant Wald statistic can be expressed as:

WTP = T (�~�� ')0
h
� ~�~� �0

i�1
(�~�� '):

Thus under the null of symmetric transition probabilities the Wald statistic has the form:

WTP = ~�0�0
h
�
�
1
T
~�~�

�
�0
i�1

�~�:

5 Extension to Markov switching intercept models

The MSI(M)-AR(p) model is characterised by MS in the Intercept, rather than MS in the Mean:

yt = �(st) +

pX
j=1

�jyt�j + ut; (6)

where ut � NID(0; �2) and st 2 f1; : : : ;Mg is generated by a Markov chain.
As before for the MSM-AR process, the MSI(M )-AR(p) process can be written as the sum of two

independent processes:
yt � �y = �t + zt (7)

where �y is the unconditional mean of yt, �y = ��1 (1)
PM

m=1
��m�m, where � (L) = 1��1L� : : :�

�pL
p, so that E[�t � �y] = 0. fztg is a gaussian process, �(L)zt = ut, and E[zt] = 0, so that �t

represents the contribution of the Markov chain, and E [�t] = 0. To derive an expression for �t; first
rewrite (6) as:

�(L) (yt � �y) = �t + ut: (8)

where �t is defined as

�t = �(st)� �� =

MX
m=1

�m
�
�mt � ��m

�
;
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and �� = ��1 (1)�y. In the case of a two-regime model we have that �t = (�1��2)�t with �t = �1t� ��1,
which equals 1� ��1 if the regime is 1 and���1 otherwise. As (7) has to be equivalent to (6), the following
expression for �t is obtained:

�t = ��1 (L) �t: (9)

Thus in contrast to the MSM-AR model, considered so far, where a shift in regime causes a once-and-
for-all jump in the level of the observed time series, the MSI-AR model implies a smooth transition in
the level of the process after a shift in regime.

Tests for asymmetries in MSI(M )-AR(p) models can be based on �t, which can be seen to be equi-
valent to the �t in MSM(M )-AR(p) models. Wald tests for deepness and steepness can be easily con-
structed by applying the procedures developed in section 4 to parametric tests for the skewness of �t and
��t; respectively.

A potential problem arises when the roots of � (L) are close to the unit circle, and in the extreme,
for the first-order polynomial, � (L) = 1 � �L, � = 1. Then �t = ��t; and testing �t for deepness
leads to conclusions for the deepness of �yt (rather than yt). In other words applying the conditions
derived for deepness in the MSM-AR model to �t provides a test of steepness of the MSI-AR model.
In our examples, the roots of � (L) are a long way from unity as we are modelling first differences, and
these exhibit little dependence relative to models in levels. Furthermore, the extreme case of a unit root
implies the data have not been differenced a sufficient number of times prior to modelling.

6 Empirical Illustrations

We apply the parametric tests discussed in section 4 to the MS(2)-AR(4) model of output growth of
Hamilton (1989) for the period 1953-1984, to the MS(3)-AR(4) model of Clements and Krolzig (1998)
for a number of sample periods, and to a number of bivariate models of post-war US output and em-
ployment motivated by Krolzig and Toro (1998). The latter illustrates the extension of the techniques to
multiple time series. The outcomes of the tests for asymmetries are compared with non-parametric tests
of skewness.

6.1 Empirical MS models of US output growth

MS-AR models have been used in contemporary empirical macroeconomics to capture certain features of
the business cycle, but the formal testing of asymmetries has been largely confined to non-parametric ap-
proaches. The seminal paper by Hamilton (1989) fit a fourth-order autoregression (p = 4) to the quarterly
percentage change in US real GNP from 1953 to 1984:

�yt � �(st) = �1 (�yt�1 � �(st�1)) + : : : + �4 (�yt�p � �(st�4)) + �t; (10)

where �t � NID(0; �2) and the conditional mean �(st) switches between two states, ‘expansion’ and
‘contraction’:

�(st) =

(
�1 < 0 if st = 1 (‘contraction’ or ‘recession’)
�2 > 0 if st = 2 (‘expansion’ or ‘boom’)

with the variance of the disturbance term, �2(st) = �2, assumed the same in both regimes. This is an
MSMean model, with the autoregressive parameters and disturbances independent of the state st.

The maximization of the likelihood function of an MS-AR model entails an iterative estimation tech-
nique to obtain estimates of the parameters of the autoregression and the transition probabilities govern-
ing the Markov chain of the unobserved states: see Hamilton (1990) for an Expectation Maximization
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(EM) algorithm for this class of model, and Krolzig (1997) for an overview of alternative numerical tech-
niques for the maximum likelihood estimation these of models.

The results for the original Hamilton model and sample period are recorded in Table 1. The tests for
skewness indicate significant negative skewness in �yt at the 5% level. The outcome of the tests on the
MS-AR model is similar. There is evidence of sharpness at the 10% level.

6.1.1 MSIH(3)-AR(4) Model

Sichel (1994) shows that post-War business cycles have typically consisted of three phases: contraction,
followed by high-growth recovery, and then a period of moderate growth. To capture this in a parametric
model, we consider the three-state MS model of Clements and Krolzig (1998)2 , where there is a shifting
intercept term and a heteroscedastic error term (denoted as an MSIH(3)-AR(4) model — where the H
flags the heteroscedastic error term, and 3 and 4 refer to the number of regimes and autoregressive lags,
respectively):

yt = �(st) +

4X
k=1

�kyt�k + �t; (11)

where �t � NID(�2(st)) and st 2 f1; 2; 3g is generated by a Markov chain.
Figure 3 and table 2 (reproduced from Clements and Krolzig, 1998) summarize the business-cycle

characteristics of this model. The figure depicts the filtered and smoothed probabilities of the ‘high
growth’ regime 3 and the contractionary regime 1 (the middle regime 2 probabilities are not shown).
The expansion and contraction episodes produced by the three-regime model correspond fairly closely
to the NBER classifications of business-cycle turning points. In contrast to the two-regime model, all
three regimes are reasonably persistent.

While Hess and Iwata (1997b) find their three-state MS model estimated for 1949-92 fails to generate
contractions of sufficient duration or depth, their estimated p11 is only 0:1267, while the lowest value in
the MSIH models recorded in table 2 is over 0:78, which directly translates into a longer duration of the
recession regime, and so we conjecture that the MSIH model may not have this shortcoming.

The tests for asymmetries in MSIH(3)-AR(4) models are recorded in tables 3 to 6 for various his-
torical periods. For the Hamilton sample period, and an extended period that includes the second half
of the eighties, the non-parametric skewness and model-based tests both indicate steepness asymmetries
(see tables 3 and 4). Both approaches indicate steepness of expansions, with the MS-AR model test per-
mitting rejection of the null at the 1% level. Moreover, there is clear evidence of asymmetric turning
points (or sharpness), which results from a rejection of p21 = p23, i.e., that moving from moderate to
low growth is equally as likely as moving from moderate to high growth. The three-state model permits
rejection of the non-sharpness hypotheses at a higher confidence level than the two-state model.

For the later sample period (see tables 5 and 6) the MS models continue to reject non-steepness at
the 5% level, in contrast to the non-parametric models that now flag deepness rather than steepness. The
major change in inference using the parametric tests is that there is no evidence of sharpness in the later
periods.

2A number of authors, including Hess and Iwata (1995), Boldin (1996) and Clements and Krolzig (1998), have found that
the 2-regime MS model does not yield a particularly good representation of the business cycle when fitted to periods outside
that in Hamilton (1989). For example, Clements and Krolzig (1998) find an average duration of contraction (1) of 2–3 quarters
for the period 1947–90, and of less than 2 quarters for 1959–96.
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6.2 Krolzig and Toro’s model of US output and employment

The Krolzig and Toro (1998) model of post-war US employment and output data is a cointegrated vector
autoregressive Markov-switching process, where some parameters are changing according to the phase
of the business and employment cycle. Employment and output are found to have a common cyclical
component, and the long run dynamics are characterized by a proportional cointegrating vector between
employment and output, with a trend included as a proxy for technological progress and capital accumu-
lation.

More formally, the long-run relationship between output, yt; and employment, nt, is given by the
cointegration vector �0 = (1 : �1) and the regime-dependent deviation from the trend in per-capita
output �(st) = E[yt�1�nt�1�t]. Then each regimem is associated with a particular attractor (�m; ��m)
given by the equilibrium growth rate ��m and the equilibrium mean �m:"

a11(L) a12(L)

a21(L) a22(L)

#"
�yt � ��(st)

�nt � ��(st)

#
=

"
�1
�2

#
(yt�1 � nt�1 � �(st)� t) +

"
u1t
u2t

#
; (12)

where utjst � NID(0;�(st)). Thus the regime-dependent drift term ��(st) is the equilibrium growth
rate, and shifts in the ��(st) map out changes in the business cycle state (e.g., expansion, contraction).
The equilibrium mean �(st) gives the state-dependent equilibrium level of labour productivity: shifts in
�(st) reflect changes in equilibrium per-capita output. As in the univariate MS models, the unobservable
regime variable st is governed by a Markov chain with a finite number of states defined by the transition
probabilities pij .

Short-run and long-run dynamics are jointly estimated in a Markov-switching vector-equilibrium-
correction (MS-VECM) model with three regimes representing recession, growth and high growth. The
ML estimation results for a first-order model estimated using data from 1969m2 to 1997m1 are presented
in table 7, for the model parameterised as:"

1� a11L �a12L
�a21L 1� a22L

#"
�yt
�nt

#
= � (st) +

"
�1
�2

#
(yt�1 � nt�1 � t) +

"
u1t
u2t

#
; (13)

with � (st) = � (st)� �� (st).
Tests for asymmetries in the model of the vector process are given in table 7, and fail to detect any

asymmetries. As noted in the introduction, we conjecture that this is because the lagged output terms in
the MS-VECM model largely mop up the asymmetries in the employment series (and similarly for the
lagged employment terms in the output equation)3 . Table 9 provides some evidence in support of that
conjecture. There we record the results for testing for asymmetries in a series of models that restrict the
interaction between the variables permitted in the autoregressive or gaussian part of the model. The top
panel relates to models with a homoscedastic error across regimes, the bottom allows regime-dependent
error variances.

The bottom left column is the preferred model of Krolzig and Toro (1998), and is shown here as well
as in table 7 to aid comparison of the results. The precise specification of each model is given in the notes
following the table. Consider the top panel, and compare the VECM(1) (the homoscedastic analogue of
Krolzig and Toro’s preferred model) with the DVAR(0). The latter excludes any dependence between
the series that may arise from the autoregressive part of the model. Then, we find not only evidence of

3Clements and Smith (1998) find that the non-linear terms in the Pesaran and Potter (1997) ‘ceiling and floor’ model of US
output growth become less important when lagged unemployment rate terms are added to the model; a similar phenomenon to
that alluded to here.
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steepness in both output and employment changes (as for the VECM(1)) but also deepness in employment
changes (at the 1% level) and in output changes at the 12% level.

Also apparent from the table is that systems models that allow for heteroscedasticity exhibit less evid-
ence of asymmetries than those where homoscedasticity is imposed. A potential drawback with the test-
ing procedures that we have set out is that no allowance is made for asymmetries that may emanate from,
or be captured by, regime-dependent error variances. The tests are designed to detect asymmetries in the
Markov chain component, �t, and do not rule out asymmetries that arise from the regime-dependent vari-
ances of the shocks. Figure 4 illustrates the data densities for variants of an MSMH(2)-AR(0) model:

yt = �(st) + �t; (14)

where �t � NID(�2(st)) and st 2 f1; 2g. Each panel plots the density of yt generated by (14), and
the density conditional on being in a regime. In the first panel, �1 = ��2 = �1:5, �21 = �22 = 1,
and prob(st = 1) = 0:5. From the propositions stated in section 3.2, and in particular Corollary 1, it is
apparent that the values of� (st) and �1 satisfy the conditions for �t, and thus yt, to exhibit non-deepness
(non-steepness is a property of the model, and non-deepness implies non-sharpness in this model). The
density exhibits skewness in the top right panel because the condition for non-deepness is not satisfied
by �1 = ��2 = �1:5 and prob(st = 1) = 0:3. In the bottom left panel the condition for non-deepness
is satisfied, because �1 = ��2 = �1:5 and prob(st = 1) = 0:5, but nonetheless heteroscedasticity,
�21 = 1 and �22 = 2, induces skewness in �t. The final panel is akin to the top right but now with
heteroscedastic errors. In the bottom left panel, then, the contribution of the Markov process is symmetric
but the unequal variances result in asymmetry.

That regime-dependent variances can affect the skewness of the observed variables in practice is ap-
parent for the MSIH(3)-AR(4) models starting in 1948 (see tables 3 and 4), where the observed growth
rates display negative skewness (deepness of contractions) but the NonDeeepness test, though not sig-
nificant, indicates positive skewness. In these models the third regime (high-growth) is associated with
the Korea boom in 1951-1952, and induces positive skewness of the hidden Markov chain. However,
the variance is much higher in regime 1 (recession), so that the observed variable is overall negatively
skewed (but not significantly).

7 Conclusions

We have set out the parametric restrictions on MS-AR models for the series generated by those models
to exhibit neither deepness, steepness or sharpness business-cycle asymmetries. For the popular two-
state model first proposed by Hamilton (1989) we have shown that deepness implies sharpness and vice
versa, and that the model (at least with gaussian disturbances) can not generate steepness. For three-
state models, which arguably afford a better characterisation of the business cycle, the three concepts are
distinct. We have shown how the parameter restrictions can be applied as Wald tests, and to illustrate,
report the results of testing for asymmetries in Hamilton’s original model, in three-state models, and in
bivariate models of output and employment.

The univariate three-state output models generally indicate steepness and, on the earlier sample peri-
ods, sharpness, in that the probability of moving from moderate growth to recession is significantly larger
than that of moving to high growth.

As expected, the well-specified systems models exhibited little indication of asymmetries, suggesting
the latter result to a large extent from omitted variables. Consistent with this, if we exclude linear depend-
ence between output and employment changes, as in the MS-DVAR(0) (with homoscedastic errors), then
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there is evidence of steepness and deepness asymmetries in both output and employment changes.
A comparison of the results of our tests with the non-parametric outcomes suggests our tests have

reasonable power to detect asymmetries. In some cases the ML estimates of the MS-AR model paramet-
ers would appear to indicate asymmetries but the tests do not reject the null. For example, the matrix
of the estimated transition probabilities may indicate asymmetries, but if the elements of the matrix are
imprecisely measured due to there being few observations for some regimes the tests may lack power.

We cautioned about the potential dependence of the results on de-trending by first-differencing, al-
though note that nothing in our approach precludes other methods of de-trending, and of the fact that no
account is taken of possible asymmetries accounted for by regime-dependent heteroscedasticity.
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8 Appendix

Proposition 1. An MSM(M )-AR(p) process is non-deep iff:

MX
m=1

��m�
�3
m =

M�1X
m=1

��m�
�3
m +

 
1�

M�1X
m=1

��m

!
��3M = 0 (15)

with ��m = �m��y =
P

i6=m (�m � �i) ��i and where ��m is the unconditional probability of regime m.

Proof. MSM(M )-AR(p) processes can be rewritten as the sum of two independent processes: yt �
�y = �t + zt: �y is the unconditional mean of yt:

�y = E [yt] =

MX
m=1

��m�m;

where ��m is the unconditional probability of regimem. Both zt and �t are zero mean, E[�t] = E[zt] = 0.
While the process zt =

Pp
j=1 �jzt�j + ut is gaussian and hence symmetric, the other component, �t,

is potentially asymmetric, and represents the contribution of the Markov chain:

�t =

MX
m=1

�mt (�m � �y) =

MX
m=1

�mt�
�
m = ��M +

M�1X
m=1

�mt (�
�
m � ��M )

with ��m = �m � �y and �mt = 1 if the regime is m at period t, and is 0 otherwise.
Thus the k-th moment of �t is given by:

E

h
�kt

i
=

MX
m=1

��m (�m � �y)
k =

MX
m=1

��m�
�k
m :

Using the adding-up restriction,
PM

m=1
��m = 1, we have:

E

h
�kt

i
=

M�1X
m=1

��m�
�k
m +

 
1�

M�1X
m=1

��m

!
��kM = ��kM +

M�1X
m=1

��m

�
��km � ��kM

�
:

2

Proposition 2. An MSM(M )-AR(p) process is non-steep if the size of the jumps, �j � �i, satisfies the
following condition:

M�1X
i=1

MX
j=i+1

�
��ipij � ��jpji

�
[�j � �i]

3 = 0: (16)

Proof. Write �t = M�t, where M = [�1 � � � �M ] and �t = [�1t � � � �Mt]
0. �mt = 1 if the period

t regime is m, and zero otherwise. Then ��t = �t � �t�1 = M��t = M�t �M�t�1: Clearly,
E[��t] = 0. We now introduce rM =[M0 
 1M � 1M 
M0]

0

and �
(2)
t = �t 
 �t�1, such that:

��t = rM�
(2)
t =

MX
i=1

MX
j=1

�i;t�1�j;t [�j � �i] :

Using that �j � �i = 0 for i = j, we can simplify to:

��t =

MX
i=1

X
j 6=i

�i;t�1�j;t [�j � �i] :
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The third moment is then given by:

E
�
��3t

�
=

MX
i=1

X
j 6=i

��ipij [�j � �i]
3

=

M�1X
i=1

MX
j=i+1

n�
��ipij � ��jpji

�
[�j � �i]

3
o
;

where the last line uses [�j � �i]
3 = �[�i � �j]

3.
Symmetry of the matrix of transition parameters (which is stronger than the definition of sharpness)

is sufficient for non-steepness as it implies that, for all i; j = 1; : : : ;M , we have that ��ipij � ��jpji = 0.
2
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Figure 1 Asymmetries in MS(3)-AR(p) Models.
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Figure 2 Business Cycle Asymmetries in Hamilton’s model and in a three-regime MS-AR Model.
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Figure 3 MSIH(3)-AR(4) model smoothed and filtered probabilities of the ‘extreme’ regimes, H , L.
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Figure 4 Asymmetries due to regime-dependent heteroscedasticity.
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Table 1 Tests for asymmetries in the MSM(2)-AR(4) (Hamilton), 1952:2 – 1984:4.

NonSharpness test: Chi(1) = 2.9682 [0.0849] �

NonDeepness test: -0.3148y Chi(1) = 1.6615 [0.1974]
Skewness (�y ): -0.4900 Chi(1) = 5.2025 [0.0226] ��

Skewness (�2
y): -0.0015 Chi(1) = 0.0000 [0.9945]

Note: Non-steepness is a property of the model: see Corollary 1.
Here and in subsequent tables � indicates significance at 10% level and
�� significance at the 5% level.
y is the value of �(�), to flag positive or negative skewness. In sub-
sequent tables the corresponding quantity for the test of NonSteepness
is also recorded.

Table 2 MSIH(3)-AR(4) Models.

Sample 48:2-84:4 48:2-90:4 60:2-90:4 60:2-96:2

Mean �3 -0.169 -0.081 -0.029 -0.050
Mean �2 1.463 1.413 0.904 0.838
Mean �1 3.447 3.430 1.463 1.406

�1 -0.110 -0.102 0.001 0.016
�2 0.110 0.109 0.021 0.022
�3 -0.169 -0.172 -0.133 -0.100
�4 -0.194 -0.191 -0.091 -0.098
�
2

1
0.848 0.816 0.869 0.796

�
2

2
0.534 0.496 0.118 0.115

�
2

3
0.017 0.018 0.402 0.406

Trans.prob p12 0.205 0.187 0.000 0.021
Trans.prob p13 0.024 0.021 0.132 0.128
Trans.prob p21 0.097 0.093 0.104 0.075
Trans.prob p23 0.000 0.000 0.007 0.000
Trans.prob p31 0.000 0.000 0.000 0.000
Trans.prob p32 0.162 0.162 0.087 0.091
Uncond.prob.1 0.285 0.298 0.264 0.231
Uncond.prob.2 0.673 0.663 0.334 0.447
Uncond.prob.3 0.042 0.038 0.402 0.322

Duration 1 4.372 4.814 7.563 6.745
Duration 2 10.318 10.701 9.576 13.089
Duration 3 6.154 6.145 11.544 10.946

Observations 147 171 123 145
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Table 3 Tests for asymmetries in the MSIH(3)-AR(4), 1948:2 – 1984:4 .

NonSharpness test: Chi(3) = 34141.9811 [0.0000] ��

p12 = p32 : Chi(1) = 0.0626 [0.8025]
p13 = p31 : Chi(1) = 0.0393 [0.8429]
p21 = p23 : Chi(1) = 34036.1776 [0.0000] ��

NonDeepness test: 0.0353 Chi(1) = 0.0082 [0.9277]
NonSteepness test: 0.2376 Chi(1) = 15.9515 [0.0001] ��

Skewness (� y): -0.1858 Chi(1) = 0.8403 [0.3593]
Skewness (�2

y): 0.3510 Chi(1) = 2.9980 [0.0834] �

Note: As p31 and p23 are close to zero, the matrix of second derivatives
used for the calculation of parameter covariance is singular and the gen-
eralized inverse has been used, which explains the magnitude of the test
statistics for non-sharpness.

Table 4 Tests for asymmetries in the MSIH(3)-AR(4), 1948:2 – 1990:4 .

NonSharpness test: Chi(3) = 31828.7577 [0.0000] ��

p12 = p32 : Chi(1) = 0.0225 [0.8808]
p13 = p31 : Chi(1) = 0.0417 [0.8382]
p21 = p23 : Chi(1) = 31701.5198 [0.0000] ��

NonDeepness test: 0.1271 Chi(1) = 0.1820 [0.6696]
NonSteepness test: 0.1966 Chi(1) = 17.7305 [0.0000] ��

Skewness (� y): -0.1587 Chi(1) = 0.7055 [0.4010]
Skewness (�2

y): 0.3451 Chi(1) = 3.3736 [0.0662] �

Note: As p31 and p23 are close to zero, the matrix of second derivatives
used for the calculation of parameter covariance is singular and the gen-
eralized inverse has been used, which explains the magnitude of the test
statistics for non-sharpness.

Table 5 Tests for asymmetries in the MSIH(3)-AR(4), 1960:2 – 1990:4 .

NonSharpness test: Chi(3) = 0.1474 [0.9856]
p12 = p32 : Chi(1) = 0.1211 [0.7278]
p13 = p31 : Chi(1) = 0.0217 [0.8830]
p21 = p23 : Chi(1) = 0.0043 [0.9478]

NonDeepness test: -0.1214 Chi(1) = 0.5352 [0.4644]
NonSteepness test: 0.0814 Chi(1) = 4.3970 [0.0360] ��

Skewness (� y): -0.6775 Chi(1) = 9.3336 [0.0022] ��

Skewness (�2
y): 0.2215 Chi(1) = 0.9972 [0.3180]

Table 6 Tests for asymmetries in the MSIH(3)-AR(4), 1960:2 – 1996:2 .

NonSharpness test: Chi(3) = 0.7539 [0.8605]
p12 = p32 : Chi(1) = 0.7271 [0.3938]
p13 = p31 : Chi(1) = 0.0225 [0.8809]
p21 = p23 : Chi(1) = 0.0045 [0.9462]

NonDeepness test: -0.0839 Chi(1) = 0.4681 [0.4939]
NonSteepness test: 0.0649 Chi(1) = 4.2702 [0.0388] �

Skewness (� y): -0.6412 Chi(1) = 9.8659 [0.0017] ��

Skewness (�2
y): 0.1874 Chi(1) = 0.8426 [0.3587]
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Table 7 Krolzig and Toro US output and employment model: Summary Table.

MSI(3)-VECM(1)
�yt �nt

Regime-dependent intercepts
�1 -0.2119 -0.0522

.2769 .1115

�2 0.6203 0.2368
.1143 .0428

�3 1.1914 0.4256
.2022 .0807

Autoregressive coefficients
�yt�1 -0.0019 0.0295

.0960 .0355

�nt�1 0.1111 0.5357
.1692 .0598

Adjustment coefficients
� -0.0038 0.0666

.0645 .0225

Regime 1: Variance
�y 1.0861 0.3979
�n .8468 0.2033

Regime 2: Variance
�y 0.1826 0.0229
�n .3940 0.0184

Regime 3: Variance
�y 0.6055 0.1461
�n .6403 0.0860

Erg.Prob Duration
Regime 1 0.2050 5.898
Regime 2 0.5131 19.472
Regime 3 0.2819 10.205

Table 8 Tests for asymmetries in the MSI(3)-VECM(1), 1960:3 – 1997:1.

NonSharpness test: Chi(3) = 1.9298 [0.5871]
p12 = p32 : Chi(1) = 0.2307 [0.6310]
p13 = p31 : Chi(1) = 1.7608 [0.1845]
p21 = p23 : Chi(1) = 0.0853 [0.7702]

NonDeepness test (� y): -0.0588 Chi(1) = 0.1786 [0.6726]
NonSteepness test (� y): 0.0377 Chi(1) = 2.3960 [0.1216]
NonDeepness test (�n): -0.0020 Chi(1) = 0.1125 [0.7373]
NonSteepness test (�n): 0.0014 Chi(1) = 1.4424 [0.2298]

Skewness (� y): -0.4624 Chi(1) = 4.9178 [0.0266] ��

Skewness (�2
y): 0.1477 Chi(1) = 0.5016 [0.4788]

Skewness (�n): -1.0625 Chi(1) = 25.9637 [0.0000] ��

Skewness (�2
n): 0.5329 Chi(1) = 6.5324 [0.0106] ��
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Table 9 A Comparison of Business Cycle Asymmetries in the Bivariate System, 1960:2 – 1996:2.

MSI(3) VECM(1) VECM(1,0) VECM(0) DVAR(1) DVAR(0)

NonSharpness test: 3.1710 [0.3660] 5.1372 [0.1620] 1.4544 [0.6928] 3.5032 [0.3203] 0.9484 [0.8137]
p12 = p32 : 2.9419 [0.0863]� 4.5876 [0.0322]�� 0.3596 [0.5487] 3.4565 [0.0630]� 0.6177 [0.4319]
p13 = p31 : 0.1658 [0.6839] 0.2692 [0.6039] 0.8916 [0.3450] 0.0119 [0.9132] 0.0004 [0.9834]
p21 = p23 : 0.0057 [0.9399] 0.7279 [0.3936] 0.0440 [0.8338] 0.0061 [0.9377] 0.2467 [0.6194]

NonDeepness test (�n): 0.7355 [0.3911] 0.2010 [0.6539] 0.8405 [0.3593] 1.7913 [0.1808] 12.2866 [0.0005]��

NonSteepness test (�n): 9.5860 [0.0020]�� 5.0429 [0.0247]�� 14.6834 [0.0001]�� 9.2695 [0.0023]�� 28.0373 [0.0000]��

NonDeepness test (� y): 0.5242 [0.4691] 0.0786 [0.7791] 0.2104 [0.6465] 0.4122 [0.5209] 2.4090 [0.1206]
NonSteepness test (� y): 9.8849 [0.0017]�� 3.4285 [0.0641]� 0.7490 [0.3868] 9.3314 [0.0023]�� 2.9357 [0.0866]�

MSIH(3) VECM(1) VECM(1,0) VECM(0) DVAR(1) DVAR(0)

NonSharpness test: 1.9299 [0.5871] 1.9387 [0.5852] 0.8690 [0.8329] 1.8665 [0.6006] 0.9790 [0.8063]
p12 = p32 : 0.2314 [0.6305] 0.2568 [0.6124] 0.6576 [0.4174] 0.3543 [0.5517] 0.5805 [0.4461]
p13 = p31 : 1.7598 [0.1847] 1.7612 [0.1845] 0.0308 [0.8606] 1.6774 [0.1953] 0.0922 [0.7614]
p21 = p23 : 0.0862 [0.7690] 0.0729 [0.7871] 0.3962 [0.5290] 0.0820 [0.7746] 0.2722 [0.6019]

NonDeepness test (�n): 0.1125 [0.7373] 0.1097 [0.7405] 1.0449 [0.3067] 0.5046 [0.4775] 0.8304 [0.3622]
NonSteepness test (�n): 1.4424 [0.2298] 1.9147 [0.1664] 12.6926 [0.0004]�� 1.6250 [0.2024] 10.9591 [0.0009]��

NonDeepness test (� y): 0.1786 [0.6726] 0.1916 [0.6616] 0.0695 [0.7921] 0.2673 [0.6052] 0.0082 [0.9277]
NonSteepness test (� y): 2.3960 [0.1216] 2.8544 [0.0911]� 3.0369 [0.0814]� 2.5050 [0.1135] 1.0399 [0.3078]

Note: VECM(1,0) denotes a VECM(1) with a12 = a21 = 0. The VECM(0) imposes the further
restrictions a11 = a22 = 0. The DVAR(1) is the VECM(1) with � = 0, and the DVAR(0) simply

relates the first difference of each variable to a regime-dependent intercept.


