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1. INTRODUCTION

Public discussion of seasonally adjusted time series usually
concentrates on the current data, that is, the seasonally adjusted value
of the current month's unemployment or money supply, for example. That
such figures will be revised in subsequent months, as new data offer a
clearer picture of short-run movements in the seriesj is increasinglyi
recognised. One might then wish to attach a standard error to the preliminary
data as an indication of the likely magnitude of subsequent revisions.
Moreover, if the final adjusted value that eventually emerges is regarded
as only an estimate of a "true" deseasonalized series, then again, an
indication of the likely error is called for. It is the purpose of this
paper to propose a framework for the calculation of such guantities, in the
context of an approach to seasonal adjustment that is gaining increasing
support. While research that would have as an "important byproduct ...
estimates of the random 'variability of seascnally adjusted series" was
recommended over twenty vears ago by the President's Committe; to Appraise
Employment and Unemployment Statistics (1962, p.19), the problem still

appears to be open.

Traditional seasonal adjustment procedures, of which the best known
is the Census Bureau's X-11 method (Shiskin et al., 1967), are often
criticised for their ad hoc nature, despite their apparent success in
satisfying the demands of users of statistics. More recently, "model-based"
methods have been developed, resting con the application of signal extraction
theory to stochastic models for the unobserved trend-cycle, seasonal and
irregular components of the observed series (Box, Hillmer and Tiao, 1978;
Burman, 1980; Hillmer and Tiao, 1982). The present paper utilises a Kalman

filter formulation of these methods, which is equivalent to the classical



Weiner-Kolmogorow theory for stationary series, but offers a more appropriate
extension to the nonstationary case. We show that in general the Kalman
filter offers a convenient approach to the calculation of the variance of

the seasonal estimate.

Many of the features of the traditional methods are essentially
linear filtering operations, and Wallis (1982) presents the linear filters
implicit in the X-1ll procedures. Since the current seasonally adjusted
value ana the adjusted value for the curréht period that one will calculate
in twelve months' time are each linear filters of the original data, so is
their difference, the revision, hence given the covariance structure of the
original data it‘is a simple matter to calculate the covariance structure
of these revisions. In.practice this calculation is not performed, since
it rests on an assumption of stationarity, while most economic time series
are integrated or difference~-stationary series. We argue that for such
geries the Kalman filter provides a more appropriate fo;ndation, with its
explicit treatment of initial conditions and abandonment of the unrealistic

notion of an infinite sample.

In Section 2 we describe the model-based or signal extraction
approach to seasonal adjustment, and present the Kalman filﬁér set-up for
both curreént adjustment and subsequent revision. This is seen to yield
naturally the standard error of the adjusted series. We also present two
models that are later used for illustrative purposes, one from our earlier
work (Burridge and Wallis, 1983b) and the other from Bell and Hillmer (1983,
§7.4). 1In Section 3 we discuss various questions that arise in practical
implementation of the Kalman filter and present numerical results for the two
models. For each model the wvariance of the current adjusted figure is
approximately twice that of the eventual final adjusted figure. Section 4

contains concluding comments.



2. SEASCONAL ADJUSTMENT AND KALMAN FILTERING

2.1 Seasonal adjustment as signal extraction

We assume that the observed time series, Yt' is the sum of several
unobserved components, not all of which may be of interest. Usually it is
convenient to work with three, namely the trend-cycle, seasonal and

irregular components, denoted C_, St and It respectively, thus

t

(2.1) Yt = Ct + St + It.

~

The seasonal adjustment problem is to obtain an estimate, St’ of the seasonal

cemponent and subtract it from the original series, yielding the seasonally
adjusted series. For an adjustment performed using information available

at time t+k, we write the adjusted value as

@ Y

(2.2 Yo, t4k - Tt T Sy, eekc

. a
The current or preliminary seascnally adjusted figure is Yt .
14

and as time goes by and more observations become available this is

modified by a sequence of revisions

~

r(k,k+l) - a a - s
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In the signal extraction literature the three components in (2.1)
are treated as uncorrelated random processes, and the signal extraction
problem is to estimate St’ say, from observations on Y. The linear least

squares (l.l.s.) solution to this problem is to construct a linear filter
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so as to minimize the mean square error E(St = St t+k) . The expression
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fk(L) is a polynomial in the lag operator L, including negative powers up

to L-k. The classical theory assumes that the autocovariances (or equivalently
_.the spectra). of the components and hence of the cbserved variable are known.

Both in theoretical work and . in practical implementation this requirement has

been met by postulating linear models for the components and expressing the

auto;ovariances.as functioﬁs_of,thcse,mddels'Aparameters.; In the,presenﬁ

approach we work directly with»the linear models for the components, which

are assumed known and of the form

2y ”¢é(if$£ = eé(i)wi£1”¢¢(L¥€t"'=” ec{L)WEEi It =ve

and v_ are uncorrelated normally distributed white noise

where w. _, WZt €

1t
series. The 1l.l.s. results we employ cover the case of correlated noises

with finite second moments, but we retain the more restrictive assumptions

for ease of presentation.

2.2 Thetstate*space form and_xalman_filterv

We analyse the model (2.4) in state-space form, writing the state

transition equation and the measurement eguation as

{2.5a) : xt+] = Fxt + th+l

T
Hx + v, .

(2.5b) . . .

N
[}

In general x,_ and Y, denote the state vector and the output vector respectively,

t



and wt and vt are independent serially uncorrelated normal random variables
with zero means and covariance matrices Q and R. In the present case Y,
is a scalar, and denoting the degrees of the lag polynomials in (2.4)

by m, n, p and q respectively we obtain the form (2.5) through the

following definitions and equivalences:

N .
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F2 is similarly defined by matching coefficients in the model

for ct to elements of x_ .,

2t
S
lo9...0L0...000...000...0
GT =
00...000...010...010...0
T 3
H = 10... 01l0... (0]
T . 2 2
wt = (wlt' w2t) Q = diag [Gw ' Gw J

1 2

R = oi (scalar).



The specification is completed by the assumption that in advance of any
observations, the initial state wvector XO is known to be normally distributed

ith mean x_ and covariance O < P < », Usually x_ and P will have
Wt 0 & Z%o0,-1 Y X5 0,-1

to be chosen by the researcher, and appropriate choices are discussed in

section 3.

Denoting by the information set comprising the initial

t+k

conditions together with cbservations yo,,yl,..., Vs under our assumptions
the 1.l.s. estimate of % (of which S, is the first element) is given by

the conditional expectation

A

= E(x_| &

2.7 e, t+k e

this estimate, and its covariance

g E £ ek Be T Fe e

r,eek - BIX

may be obtained recursively from the Kalman filter equations set out below.
The first set give the recursions for x s P and

. P s e
€, e-1" Te,t’ Tt t-l g, b7 T LiZeassy

~

_ cond set give th or . an r j fixed . =0,1,...
thg second set give those for xj,j+k and Pj,j+k for j fixed and k=0,1, B

and the third set give notational definitions. First,

= g <+
t,t e, -1 Ke ¥y
Xeel,e - TXee
(2.9a)
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initialized by xo

l
M
p
=]
fol]
g

,-l'— o 0,-1° As time passes we obtain a sequence
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of estimates, S t=0,1,..., for use in the preliminary adjustment

tat’
Yi ! from the first element of xt £ To obtain the subsequent revisions,
[ 4 7
for some chosen time j, we use the next recursions to update xj 4k for
&
k=0,1,... :
R = X, . + K, .
- xj,j+k J,i+k-1 jk Yj+k
S o "2 Fr
. P, . = P, S H o, .
(2-9b) j.j+k j,i+k-1 j,i+k-1 Crj+k i Pj,j+k-l
Pi34c = Ty By, g4k-1

-~

initialized at k=O by x, . and P

. =P, . from (2.9a). The intermediat
3.3 331 = Py,3-1 From (2.92) ¢ pntermectare

quantities are defined as follows:

- - a7t x
e Ye t,t=-1
“-2
. K, = Pt,t—l B o,
~ T
(2.9¢) F, = FlI-x = ]
~2 T
o, = (m Py oy B+ R]
R .
ik j,3+k-1 = 94k

We note that ci is the innovation variance of yt,

2 T " 2 ~2
(2.10) o, E(yt H xt,t—l) Eyt,

]
1]

while Pj k is the covariance between the error in the current one-step
I

forecast of the state and that in the estimate of xj;
~ ~ Lo T

(2.11) Pik = By T Fype, e By 7%, 5]
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Since all the guantities required to ‘smooth' the estimate xj p using
14

(2.9b) are functions of the iterates in (2.9a), it is natural to implement
these equations in tandem. That is, we run (2.9a) alone until Yj has been
processed, and then augment the recursions with (2.9b). Notice that with

the correspondences in (2.6), we can extract 'smoothed' estimates of

~

S from x as we go along, but that further smcothing

g=1' Vg2 S| t,t

A

of St-m+l requires implementation of (2.9b). The recursions have the great

merit that the sequences of covariance matrices, which contain the measures
of the standard errors of the seasonally adjusted series which we seek., are

functions of the initial condition, P , and model parameters alone. In

0,—1
consequence, they may be evaluated off-line, and the nature of their

dependence on P may be examined to guide our choice of starting values.

O,-]'.'

2.3 The steady state of,the Kalman @i;ter

At first sigh? this recursive signal extraction algorithm may seem
inconsistent with the l.l.s. results for stationary processes presented,
for example, by Whittle (1963), applied to the seasonal adjustment problem
by Grether and Nerlove (1970), and extended to difference-stationary
processes by Cleveland and Tiao (1976) and Pierce (1979). In Whittle's
treatment the filter (2.3) is obtain;d by inverting the covariance matrix

of the data, y = (yo, yl,..., yt+ )T, and estiméting St as its projection

k
on y:

-~

-~ A A~

T -1
(2.12) St,t+k = st,___l + cov(S,, g) [var(g)] (g S ¥—1)

where StT—l and 'y

y_; are the unconditional expectations of S, and y {usually

zero). As the length of the available. record increases indefinitely

(t,k»*) so the coefficients on successive data values come to depend on



their distance from t but not on t itself, and they are given as functions
of the model parameters by the formulae to be found in chapter 6 of
Whittle (1963). The fact that these formulae yield well-defined stable
filters when stationary models of the form (2.4) are extended to cover
difference-stationary models led Whittle and subsequently Pierce (1979) to
conclude that they delivered the 1l.1l.s. estiﬁates in these more general
circumstances. The same result was obtained by Cleveland and Tiao (1976}
by explicitly assuming the existence of a doubly infinite sample

{yt; -® < t < =} and showing that the coefficients in (2.12) approach
appropriate limits. We prefer not to invoke the latter assumption, which
does not yield the required result for more general non-stationary cases,
and which begs the guestion of whether such a sample is possible. However,
as we have shown elsewhere (Burridge and Wallis, 1983a) the results obtained
by these authors are substantially correct, and may be rigorously derived

using the Kalman filter apparatus.

The key result is that if
(i) the parameterization (2.4) is parsimonious, that is, that each of the
pairs of polynomials {¢S(L), SS(L)} and {¢C(L), Gc(ﬁ)} have no common
factors, and
(ii) the autoregressive lag polynomials ¢S(L) and ¢c(L) £ave no unstable
common factor (that is, a common factor (1 - AL) with |A] > 1),
t=0,1,...}

then from any finite non-negative definite P the sequence'{P

0,-1 t,t-17

tends to a limit given by the unique positive definite steady-state covariance,

P, which satisfies the fourth eguation of (2.9a)

(2.13). P = FPF' + GgGI.

The correspondence between the Kalman filter and the limiting form of (2.12)
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is then obtained by taking as initial conditions x

O'= 0, and P

o,-1 - F-
The significance of this result is two-fold: first, it shows that a
particular assumption about initial conditions is implicit in the usual
formulation, and secondly it indicates the precise sense in which results
for stationary processes can be extended to cover the non-stationary case.
We note finally that when P satisfies {(2.13), all subsidiary gquantities in
(2.9) are also in steady state (that is, the filter (2.9a) does not depend

on t, nor (2.9b) on j).

2.4 Model specification for seasqnal adjustment

Our numerical illustrations use two mcdels that are specializations
of (2.4). The first,presented in Burridge and Wallis (1983b), is chosen to
correspond to a decomposition of Yt implicit in the Census Bureau's X-11
seasonal adjustment method. That is, the optimal signal extraction filter
for this model closely approximates the symmetric or "hisforical" X-11
linear filter. Writing the model initially in terms of a seasonal compcnent,

St' and a combined non-seasonal component, Nt = Ct + It' we have

Model 1
(1L +L + L2 4+ ... + Lll)S£ = (1 + o.7lL12 + l.OOL24)wl -
2 ' 2
(2.14) : (1 - L) Nt = (1 - 1.59L + 0.86L )nt
2 '
" Ja = 0.017.
Y1

The second model is that fitted to the U.S. Bureau of Labor Statistics
series 'employed non-agricultural males aged 20 and-over' by»Bell and
Hillmer (1983). It is obtained from a seasonal ARIMA model for the observed

series ‘using the 'canonical decomposition' method of Hillmer and Tiao (1982).
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Again the model is initially written in two-component form:

Model 2
(L + 1. + L2 + ...+ Lll)st = (1 + 2.093L + 2.722L2 + 2.977L3 + 2.869L.4
+ 2.581L5 + 2.169L6 + 1.670L7 + 1.206L8
(2.15) + .745L9 + .4111}0- . 7Lll)w
1,t
(1 - .260L) (1 - L)‘Nt = (1 - .990L + .000699L2 = .00001L3)nt
02 = 82.11, 02 = 14,412.
wl n

Bell and Hillmer find this model an interesting one for various purposes

because it is different from the models that justify the use of X-11.

The composite models for the observed series corresponding to these
unobserved-components models ban be readily obtained; indeed, Bell and
Hillmer's derivation of Mcdel 2 began with the gmpirical composite model.
The models are

Model 1 (L -o)(1 - le)Yt

B(L)et

Model 2 (L - .26L)(1 - L) (1 - le)Y (1 - O.88L12)€

t t

cj = 16,164.
The moving averadge operator in Model 1, B(L), is of degree 26, its complexity
being the counterpart of the relative simplicity of (2.14), the formulation
in which the model was first deriwved. By contrast, the second composite model
has a simple seasonal ARIMA form with two estimated parameters, and a relatively
complex component form (2.15). Its error variance differs slightly from

Bell and Hillmer's original estimate. Since the error variances of the
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first model can be scaled arbitrarily, the X-11 filters determining only
their relative values, for subsequent comparative purposes we assign

the same value, ci = 16,164, for the innovation variance of Y.

The non-seasonal components in both models have AR and MA cperators, ¢n
and en,'say, of equal degree, so these components may be further decomposed
into the sum of a white ncise irregular component, It' and a trend-cycle
-component Ct of the same form. This is accomplished by choosing a variance,

R, for the white noise irreqular component, and then obtaining Qc(z) and
ci by canonical factorization of the covariance generating function of

)
$_(LIC_ = ¢_(L)(N_ - I), namely

SR I -1 _ 2 . -1, _ -1
(.%.16) °_w7 ec(z) Bc(z ) = T 6n(z) e‘n(z ) lfcbn(z) ¢n(,z ).

Setting R= 1.0 scarcely alters the parameters, and we obtain, for Models

1 and 2 respectively,

. ‘ 2 e . . o) 2 2 = ] 2 = ] v.
(2.17a) L-we = A- 1.59% + .86L )Wy, owl _lao.a, cw2 10,631
: 2 , 2 , 3
(2.170) (1 = .26L)(1 - L)"Cc, = (1 - .989L + .00686L" + .00000804L)wW,. .
02 = 82.11, 02 = 14,409,
Y1 My

From the point of view of seasonal adjustment,which requires estimation

of St’ it is irrelevant whetlier we work with N, or Ct + I " These are

= t’

observationally equivalent, and the further decomposition is somewhat arbitrary.

However experience suggests (Schmidt, 1976) and our own experiments confirm

that the recursions (2.9) can become numericallz unstable when R=0. To avoid

this problem we therefore employ the C

N specifications given in (2.17a,b)

together with a unit variance white noise It' in place of the Nt specifications

given in {(2.14), (2.15) respectiveiy.
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The seasonal component in both models has ¢S(L) =1l 4+ L 4+...+ Lll,

thus the sum of twelve consecutive terms meanders slowly around zero. While
the pseudo-spectrum of Y has spikes at frequencies ku/6, k=0,l,...,6, this
specification entirely associates the spike at the origin with the non-
seasonal compenent. Then ¢S(L) and ¢C(L) have no unstable common factors,

so ensuring the convergence of the filter covariance to a steady state.
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3. NUMERICAL RESULTS

3.1 Passage to the steady state

The practical significance of the theoretical results cited in
section 2.3 about convergence of the covariance sequence {Pt t—l} to a
,

steady state P depends on the rate of this convergence in the present models.

An associated practical guestion concerns the choice of initial condition,

Po 1 If the initial condition is the null matrix, PO_ 17 O, then we also
2w, rT

" have the result (Caines and-Mayne,_1970) that_under the present assumptions,

the matrices P are non-negative definite, and so diagonal

- P
t+l,t t,t~1

elements of‘Pt -1’ representing the variances of the state estimates,
7. '

converge monotonically. To illustrate the speed of this convergence, we

, that is var(s Y+ for Models 1

plot the second diagonal element of P £
.t

t+l,t

and 2 in Figures 1 and 2 respectively. As the figﬁres indicate, var(st t)
-, %

reaches its steady~state value in Model 1 after five years,’while;convergence
in Medel 2 is rather slower, taking twenty years to be within 1% of the

steady-state wvalue.

In practical situations the initial condition P IR O might be

0,-1

thought to be unreasonable, since it represents perfect knowledge of the

initial state vector. Since we treat this as a random variable, a more

realistic assumption might be PO 1 >> P, and in Figures 3 and 4 we provide
similar plots for the initial assumption PO 1 = 10 P. Although for a
-

general P we no longer have results about the monotonicity of the sequence,

O,‘-l

-~

.we see that in this case var(St_t) again approaches its steady-state value
’ ) .
monotonically. The principal difference between the behaviour of the filter

covariances for the twe models is the slower convergence in Model 2. This

is essentially due to the relatively small innovation variance of its seasonal
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.

component, 031; increasing this by a factor of 3 reduces the time taken for
convergence, reported above, from twenty to eleven years. Nevertheless in
both models as originally specified, the rate of convergence is such as to
ensure that, for practical purposes, discussions of the variance of seasonally
adjusted series can proceed in terms of the steady-state covariance matrices.
Also the results indicate that a practical way of calculating P is simply to

run the recursions until convergence {(remembering that this calculation is

independent of an observation sequence).

An alternative initial choice arises if it is assumed that the
economic érocess described by the data coriginated earlier than the starting
point of the time series under c¢onsideration, a finite recoxrd of which is
available for analysis, for then our results about the speed of convergence

to the steady state might suggest the choice P = P, having in mind the

0,-1
stationarity of the steady-state signal extraction error. The calculation
~of P can be performed off-line, morecover the remaining filter calculations

are simplified if P is replaced by P from the beginning. However the

trt—l
use of the Kalman filter to calculate the seasonally adjusted figures
raises a further initialization question, namely the chcice of an initial

state vector, and this is discussed in the next section. We return to the

results on the variance of the seasonally adjusted series in section 3.3.

3.2 Current adjustment with the Kalman filter

Use of the recursions (2.9a) for data processing requires the choice

of an initial condition ;O' as well as P . In this section we report

O,-l

our experience in working with the original series to which Model 2 was fitted

by Bell and Hillmer, plotted in Figure 5.
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First, we note that the non-staticnarity of x_ makes inappropriate

12

the choices that might be natural in a stationary enviromment, namely

X = 0, the unconditional mean, together with P

o = P, the steady-state

0,-1

covariance, ori%h_lequal'to the unconditional covariance of xt. Also the

choice Po 1 = 0, used for illustrative purposes in the previous section, is
o

irrelevant for practical purposes, as already noted. In the absence of

information about the levels the components had reached when observations

began, the difficulty is that a poor guess at x_together with too small an

¢]

_initial variance causes the filter to attach too much weight to this misleading

informaticon, and a long time could elapse before the data come to dominate

the initial cheoice. In the present case the "stationary" choice
: ry

x =0, P_

o 0.-1 = P results in an "adjusted" series that is still obviously
¥y

seasonal at the end of the record (176 observations).

It is more realistic in the present model, in which the trend-cyc¢le
compenent principally accounts for the drift in the series, to assign an
initial state vector in which the p components relating to Ct'are the correct

order of magnitude. Alsc the uncertainty surrounding the initial choice

should be reflected by setting Po 1 > P. For illustrative purposes we
-
consider the choice xo 1= (Orsees O y2, ¥y YO' o, O,*O)T, ensuring that
14

the level of the trend-cycle is about right but taking no prior view on the

shape of the seasonal pattern, and we reflect this uncertainty by choosing

PO 1= 10 P, as in a previous illustration. Applying the filter appropriate
(4

to Model 2 produces the current~adjusted series, Y , pPlotted in Figure 6.

a
t,t
After an initial "learning" period the filter settles down, and the general

appearance of the latter part of the series is acceptable.

To approximate the application of X-11 to this series, we also apply

the f£ilter appropriate to Model 1, with similar initial choices
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xO,—l =
adjusted series is plotted in Figure 7. While at first sight this might also

(Oseeer Of ¥qr yo, o, O)T and PO,-l = 10 P. The resulting current-
appear acceptable as a seasonally adjusted series, closer scrutiny indicates
important differences between the two filters. A subsidiary output from the
recursions (2.9a) is an estimated innovation series, ;t' and in Figures 8

and 9 we plot the autocorrelation functions of the innovation series
corresponding to Figures 6 and 7 respectively, having discarded the first
three years of each series. We see that while the first corre;ogram,
corresponding to the Model 2 filter, does not exceed twice the standard

error, indicating that the innovation series is approximately white noise,

the second indicates substantial residual autocorrelation. In effect, this
provides evidence for the unsurprising conclusion that adjustment based on an -
inappropriate model is less than optimal; more generally we recommend this

calculation as a simple check on the performance of the filter.

3.3 The variance of the adjusted series

a

The steadv-state variance of the current-adjusted values Yt e
14

»

conditional on the data, is given by var(S ) already discussed in section

t,t
3.1. Conditioning on the data restricts attention to the error variance of
the seasonal component estimate, which is the appropriate measure of the

"accuracy" of the adjusted data, and we emphasise that this guantity should
not be interpreted as an unconditiocnal variance of the adjusted series, even

for a stationary series. Expressing these values alternatively in terms of cz,

, . . 2 . . .
the innovation variance of ¥, or Uw , the innovation variance of the seasonal

1
component, we have
Model 1: var (¥ ) = 2441.7 = .151 o = 13.51 o2
t,t g w
1
a ‘ 2 2
Model 2: var (Y ) = 2506.4 = .155 0 = 30.52 o .
t,t € w

1
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The improvement in the seasonal adjustment of a given data point as

more data are obtained can be studied by turning to the recursions (2.9b),

and considering var(St t+j), j=0,1,... . For Model 1 this is plotted in
14

Figure 10. It is seen that the variance of the "historical® or "final"

a

adjusted figure Yt,t+h

, say, is approximately half that of the current or
preliminary adjuéted figure. This reduction is achieved after an additional
three years' data have been observed, after which further.reductions are
negligible. This corresponds to the familiar property of the X-11

procedure, which Model l.represen:s>xn,a signal extraction context: although -
the half-length of the X-1l1 filters is approximately seven years, the remote
weights are very small, and it is not usually necessary to revise seasénally
adjusted data that are more than three years old. The variance of the final
figure, taking h=36, is

a

- Model 1 r{Y .
e var(¥,

) = 1118.0 = .0892 6° = 6.183 o> .
€ Wy

The behaviour of the variance as additionai observations are obtained
is seen to be a small reduction as each of the first two observations arrive,
followed by a pauée until the next observation on the same month arrives;
when there is a striking fall. The further reductions to the historical
value are mainly achieved at j=24 and’j=3é, again indicating the particular
value of additional observations on the month in question. These results
allow a user to attach a standard error to an adjusted value Ya ; it is

t,t+3

~

the standard error of St £+ viewed as an estimate of St' and varies with
r

j but not t.

Attention might alternatively be focussed on the revision process,
and at some intermediate point a user might wish to know by how much an

adjusted figure is likely to be revised. Since in the present case, as in
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Pierce (1980), the revision is independent of the error in the final estimate,

the variance plotted in Figure 10 can be decomposed and we have

(j,h). a a . -
X y = 3 - Y = -
rar(z,” ) = varl¥ on T Y eeg) T VAE(S L g) - var(s, ).
j=0'l'o-o,h-
Thus if the intermediate figure Y: £4+4’ i<h, is regarded as an estimate
r

or forecast of the final adjusted wvalue 3

€. t+h’ then the appropriate
’

standard error is the square root of the difference between the solid and

dotted lines in Figure 1O.

The corresponding results for Model 2 are plotted in Figure 11.

The historical variance is

‘ a _ _ _ : 2 2
Model 2: var(yt,t+h) = 1242.8 = .0769 oe = ’15.136 O

which is again approximately one-half of the variance of the preliminary
estimate, although a much longer period is required to achieve this than

in Model 1. The signal extraction filter corresponding to Model 2 is
relatively long, as noted by Bell and Hillmer, and the variance is not

within 1% of the final value until eighteen years have elapsed. (This

accords with our experience in running the recursions (2.9b) with the actual
data: revisions to the early seasonal estimates continue throughout the record.)
Nevertheless standard error calculations for this model can proceed exactly

as in the preceding case.



20

4. CONCLUSION

This paper has presented an approach to model-based seasonal
adjustment using the Kalman filter. For the computation of seascnally
adjusted data, this represents an alternative to existing methods based
on classical signal extraction theory that is computationally more
convenient and offers a more rigorous development in the nonstationary
case. The steady-state Kalman filter ceincides with the classical signal
extraction filter in the case in which the latter is defined, namely the

stationary case.

An important byproduct of the approach, and the main contribution
of the paper, is the calculation of the variance of seasonally adjusted
data. Tor two models results are.presented which show how the wariance of .
the seasonally adjusted data is reduced from a §r31iminary vralue, through
subsequent revisions as more data become available, to a final or historical
value. The results also allow a user to attach a standard error of
revision to a preliminary adjusted value, as a caution against placing too

much reliance on the first-announced values for a given month.

The time series models underlying the method have been assumed to

. be known, and the contribution of the-uncertaintf surrounding_the identi-
fication and estimation of a model for the cbserved series and its subsequent
d6composition into medels for the components remains to be investigated. In
general such a contribution would be expected to be positive, thus the
estimates obtained by the present method might be expected to provide a

lower bound to the overall uncertainty in the seasonally adjusted data. Our
first model is one that provides a signal extraction interpretation of the

X-11 filter, and so the results for this model provide measures of the
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variability of the X-11 method when it is applied to data for which it is
optimal. We caution against interpreting these results as "X-11" results
in more general settings. The application of a sub-optimal filter to a
given series will produce inappropriately adjusted data, and it is not
possible to say whether the calculated variance of the seasocnal estimate

is too great or too small in general, simply tha£ it is wrong. The
situation is analogous to that which arises in least squares regression:
under classical assumptions the standard least squares calculations yield
an unbiased estimator of the covariance matrix of least squares coefficients;
when these assumptions are relaxed the standard calculations yield a biased
estimator of the covariances of the least squares coefficients, and the
bias cannot be signed without further detailed assumptions. Similarly, a
case~by-case analysis is necessary to assess the actual performance of
-x-ll or our sighal extracticn approximation when employed in inappropriate

situations.

Attention has been restricted to the revisions in seasonally
adjusted data that arise solely from improvements in the seasonal
decomposition as more data become available. In practice many economic
series are revised after their first appearance, in an attempt to reduce
errors arising from other sources. The integration of these two kinds

of revision is a subject for further research.
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