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UNCBSERVED~COMPONENTS MODELS FOR SEASONAL

ADJUSTMENT FILTERS

Peter Burridge and Kenneth F. Wallis
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Time series models are presented for which the seasonal component
estimates delivered by linear least squares signal extraction closely
approximate those of the standard option of the widely-used Census
X-11 program. Earlier work is extended by consideration of a broader
class of models and by examination of asymmetric filters in addition
to the symmetric filter implicit in the adjustment of historical
data. Various criteria that guide the specification of unobserved-
component models are discussed, and a new preferred model is
presented. Other models generate filters that approximate X-11
rather well, explaining the wide acceptance of the X-11 method.
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1. INTRODUCTION

Procedures for the seasonal adjustment of economic time series used
by official statistical agencies are often criticised for their ad hoc
nature. While practical statisticians justify these procedures on intuitive
and pragmatic grounds, pointing to their apparent success in satisfying the
demands of users of statistics, theorists point to the absence of well~-
specified objectives and criteria of performance. Indeed, the very notions

of the three components of a series that underly the practical procedures

- trend-cycle, seasonal and irregular - are not well-defined.

Recently—developed alternative techniques rest on a more formal
specification of the problem. Given stochastic models for the unobserved
components, and a linear least squares criterion, classical signal
extraction theory as described, for example, by Whittle (1963) can be
applied to obtain an "optimal" estimate of the deseasonalized series.

The seasonal adjustment problem was formulated in this way by Grether and
Nerlovev(1970), who assumed stationarity of the components and hence of

the observed series. Subsequent work (Cleveland, 1972; Cleveland and

Tiao, 1976; Box, Hillmer and Tiao, 1978; Burman, 1980; Hillmer and Tiao,
1982) has considered extensions to series that are adequately represented
by models of the Box-~Jenkins seasonal ARIMA class amd so can be reduced to
stationarity by differencing. A practical difficulty in implementing
seasonal adjustment methods based on optimal signal extraction theory is
that of specifying models for the uncbserved components of the observed
series, and while various suggestions have been made, the resulting methods

have not yet been widely adopted by official statistical agencies.



In this paper we use the signal extraction approach to study the
properties of a widely-used seasonal adjustment procedure, namely the Census
Bureau's X-11 method (Shiskin et al., 1967), which we represent as a set
of linear filters, as in Wallis (1982). These filters range from the omne=
sided moving average implicit in the preliminary adjustment of the current
observation, through a number of asymmetric moving averages, to the symmetric
moving average implicit in the adjustment of historical data. We
present models whose optimal signal extraction filters virtually coincide
with certain of these moving averag;sirand‘ﬁor which X-11 therefore prqvidesA
the linear least squares estimate of the seasonally adjusted series. Our
analysis extends that of Cleveland and Tiao (1976), who consider a truncated
version of the symmetric X-=11 filter, and Wallis (1981), who presents
seasonal ARIMA models for the observed series for which the asymmetric
X-11 filters minimize revisions in the seasonally adjusted series. Many
statistical agencies run the X-11 program only once a year, and at that
time project seasonal factors for the adjustment of the next twelve months'
data, to be used as the data become available. Kenny and Durbin (1982)
and Wallis (1982) have argued that this practice should be replaced by
running the program every month, and it is not considered in‘the present

paper.

The signal extraction interpretation of the X-11 filters is
described in Section 2, and the models for which X-11 represents the
optimal procedure in this sense are presented in Section 3. Section &

contains concluding comments.



2. THE X-11 LINEAR FILTERS AND SIGNAL EXTRACTION MODELS

2.1 The X-11 linear filters

The X-11 procedure assumes that the observed monthly time series
variable Yt is made up of three unobserved components, namely the
trend-cyecle; seasonal and irregular components,; denocted Gt, St and Lt

respectively. We work with the additive decomposition
(2.1) Y = Ct + St + I

the program also includes a multiplicative option, which is essentially the
same as (2.1) on taking logarithms. The seasonal adjustment problem is to

obtain an estimate St cf the seasonal component and subtract it from the

original series, yielding the seasonally adjusted series
(2.2) Y, = Y -8

The fact the X-11 program provides a decomposition of the original series
into three estimated components, but we restrict attention to the seasonal
component; we also neglect the option of graduating extreme values of the
estimated irregular component. The program comprises a sequence of moving

average or linear filter operations, whose net effect can be represented

by a single set of moving averages. For a date sufficiently far in the

past, the final or historical adjusted value Yém) is obtained by application
of the symmetric filter am(L),
(m) _ - .
v, am(L) Y, I am,j Yt-j s



where L 1is the lag operator, and a i =a . for symmetry. For current
b ’

and recent data this filter cannot be applied, and truncated, asymmetric

filters are employed:

(2.3) SN A R | - Y k=0,1,....m
° t ak t j="k ak,j t-j ’ P

For the filter (L), the subscript k indicates the number of "future"
a, :

values of Y entering the moving average; equivalently the superscript on

(k)

Y indicates that Yi

is the adjusted value of -Yc calculated from

observations Y , Y

tem® Yeemel® "t Y 5000, Y .  Thus Yio) is the

t’ t+k

first-announced or preliminary seasonally adjusted figure. For the X-11

filters considered here the value of m is 84 (it is assumed that at the
stage at which the program chooses a 9-, 13, or 23- term Henderson moving
average to estimate the trend-c¢ycle component, the 13~term average is chosen).
The program is then represented as a set of 85 linear filters, in which
respectively 0,1,...,84 "future" data-points appear. Although m=84 implies

that seven years' past data are required to calculate a current seasonally

adjusted value, the remote weights are very small.

A useful description of the filters is provided by the frequency

response function

~iwj ie, (w)

a, W = Ia e = | a|e ,

the squared gain Iak(w)lz, or transfer function of the filter, representing
_the extent to which the contribution of the compoment of frequency w to

the total variance of the series is modified by the action of the filter.

The weights and transfer functions of three X-11 filters of particular

- interest, ao(L), (L) and a84(L), are presented in Figures 1-3
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where they act as benchmarks for the signal extraction filters described
below. Further details of their calculation may be found in Wallis (1982),

and a listing of the coefficients is available on request.

2.2  Linear least squares signal extraction

In the signal extraction literature the unocbserved compoments
introduced in (2.1) are treated as uncorrelated random processes, and the
signal extraction problem is to "estimate" St’ say, from observations on
Y. The linear least squares approach to this problem is to construct a
linear filter

A

(2.4) s, = fk(L) T,

so as to minimise the mean square error E(St = St)2 s where k again

indexes the number of future observations available as of time ¢t.

The classical theory assumes that the autocovariances of the unobserved
components and hence of the observed variable are known. Both in theoretical
work and in practical implementation this requirement has been met by
postulating linear models for the components, and expressing the auto-
covariances as functions of those models' parameters. Accordingly, we

consider component models of the following form

(2.5) ¢C(L) Ct = BC(L) U ¢S(L) St = GS(L) Ve s I _=w

where u v, and w

te are uncorrelated normally distributed white noise

t

series. Particular specifications are achieved by imposing restrictions

on the autoregressive and moving average lag polynomials in (2.5); these



are discussed in the next section. For the moment we simply assume that
each compouent is "parsimoniously parameterized", that is, that each of
the pairs of polynomials '{¢C(L), GC(L)} and '{¢S(L), GS(L)} have no
common factors, and also that the pair '{¢C(L), ¢S(L)} has no common

factor. Then the composite model for Yt is
(2.6) O(L) Y, = 8(L) e,
where ¢(L) = ¢e(L) ¢S(L) and B8(L) 1is obtained as the canonical

factorization of the autecovariance generating function of ¢(L)Yt,

defined in terms of the parameters of (2.5), namely

[}

@ Ela@|? = Zlo (8 (] + Lo (8 ()| + o (220 (@) |2

 where the notation }h(z)lz detotes h(z)h(z V).

The signal extraction filters depend, essentially, on the ratio of
the second term on the right-hand side of (2.7) to the complete expressiom.

Thus we have

2 -1 -1
oo ¢ (2) ¢_(2) $ (z 7) 6_(2) 8_(z )
(2.8) £(2) = Sl = | e 8 8

02 8(z) ' 8(2;15 ¢S(Z) _

where |h(z), denotes that part of h(z) containing powers of =z greater
-k

‘than or equal to =k, and as k#= we obtain the symmetric filter

03 |¢C(Z) GS(Z)I2

(2.9) £ (2) = _
- o? [8(2) |2

These results, as treated extensively by WhittLer(1963)iArésted initially

on an assumption of stationarity and a semi-infinite sample {YT; T <t + kl.



Cleveland and Tiao (1976) and Pierce (1979) have considered extensions to
difference-stationary processes, and Burridge and Wallis (1983) show that
the same filters can be obtained more generally as the steady-state Kalman

filters under appropriate assumptions on initial conditions.

2.3 Model specification

In seeking unobserved—component models which lend a signal—extraction
interpretation to the X-11 filters, we postulate various possible forms of
the component models (2.5) and in each case choose particular parameter
values by matching the corresponding signal extraction filters to the X-11
filters by numerical methods. Since the signal extraction filters are
defined in (2.4) as filters that estimate the seasonal component, the

correspondence we seek is
(2.10) ak(L) = 1 - fk(L)’

where the ak(L) are X-11 filters defined in (2.3) and fk(L) are given,
for particular component model specifications, by (2.8). In this section

we discuss various criteria that guide the selection of such specificatioms.

First, preliminary investigation indicated the need to incorporate
differencing and seasonal differencing operators, (1 - L) and (1 - le)
respectively, in accordance with the common empirical identification of the
composite model (2.6) with the Box-Jenkins seasonal ARIMA model. Following
Cleveland (1972), Box, Hillmer and Tiao (1978), Burman (1980) and Hillmer

and Tiao (1982) we factor the seasonal difference operator as



12 2 11

(2.11) 1-1L (L - +L+L"+ ... +L)

(1 - L) U(), say,

and associate (1 - L) and U(L) with, respectively, the trend-cycle and
seasonal autoregressive operators, ¢C(L) ‘and ¢S(L). While the operator
(1 - L12) produces spikes in the pseudo-spectrum at frequencies

jn/6, j = 0,1,...,6; the factorization identifies the peak at the origin
with the ordinary difference operator (1 - L) and properly associates

it with a nonseasonal component. This also conforms to th assumption of
the previous section that ¢C(L) and ¢S(L) have no common factor:
Pierce (1979) shows that application of a filter corresponding to (2.8) to
a series in which signal and noise processes share a common unit root
yields a signal estimate with unbounded variance, while in the Kalman
filter context Burridge ané Wallis (1983) show that conditioms for the
convergence of the signal extraction error variance exclude the existence
of an unstable common factor, such a factor representing an "undetectable"

case, in the state-space terminology.

A second consideration for the autoregressive specification arises
from the fact that, in (2.10), ak(L) is a polynomial in L of finite
degree whereas fk(L) is infinite. In seeking models for which the
equivalence holds we ignore the remote coefficients of fk(L) and fit only
the m+ k + 1 ﬁon—zero coefficients of ak(L). In general, models with
a predominantly autoregressive specification, so-called "bottom—heavy"
models, generate very long signal extraction filters which are not well
able to approximate the relatively rapid decline of the X-11 filter
coefficients, especially at multiples of 12 lags. Thus, while in empirical
modelling of observed time series one is often indifferent between enhancing

an inadequate model on the autoregressive or the moving average side, in



the present context there is a clear preference for "top-heavy", or moving-
average—dominated specifications. Following Cleveland (1972) and Cleveland
and Tiao (1976), the moving average operator es(L) is written as a
polynomial in L12, as in the conventional Box-Jenkins seasonal specificatiom,

again ensuring a top-heavy specification.

Thirdly, while in practical time series analysis a three-component
decomposition may be useful, identifying in particular am irregular
component to assist the analysis of outliers, we note that this may not be
possible in the present context. The difficulty is most easily seen by
considering the denominatcr of the symmetric filter (2.9), given as ﬁhe
right-hand side of (2.7), and studying the first and third terms, which
do not appear in the numerator of the filter. With ¢S(L) = (L) as
defined in (2.11), ¢C(L) = (1 - L)d' and GC(L) a polynomial of degree
q with coefficients to be determined, them if d < q multiple sets of
values of these coefficients give the same filter, in each case being
accompanied by appropriate variations in the variances ci and Jé .
Equivalently we note that the sum of an ARMA (p,q) process and an independent
white noise process has an ARMA (p,q) representation provided that p < q.
Thus an emphasis on '"top~heavy'" or "balanced" models for Ct together with
a white noise specification for It precludes separate identification of
their models from the filter coefficients, and when this occurs we report
a model for the composite nonseasonal element Nt = Ct + It . (The
possibility of arbitrarily allocating white noise to the seasonal component,
which arises in the empirical identification of components from a given
composite model for an observed series, and which must be ruled out by an
arbitrary "minimum variance" or "canonical" assumption (Box, Hillmer and
Tiao, 1978; Hillmer and Tiao, 1982) does not occur in the present case,

2)

. : . . . 2
where a given filter determines the variance ratio ov/oe.
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For each model specification of a given form, we find the parameter
values that minimize the unweighted sum of squared differences between the
X-11 coefficients and those of the truncated signal-exiraction-based
adjustment filter by numerical methods. That is, over the m + k + 1
coefficients of ak(L), we seek to make (2.10) hold as closely as possible
in this semse. Our least squares criterion differs from those used by
Cleveland (1972) and Cleveland and Tiao (1976) in two respects. First, the

"X-11" filter used by Cleveland omits the intermediate adjustments of the
estimated seasonal components (steps (c¢) and (g) in Wallis' description) and
is truncated after 42 terms. Secondly, Cleveland and Tiao fit their model to
this truncated seasonal filter and to the corresponding trend filter
simultaneously, while we fit only the seasonal adjustment filter. Our
results extend the work of these authors by estimating a wider class of
models, and by fitting these to two of the asymmetric filters, aO(L) and

alZ(L), in addition to the symmetric filter a_,(L). This enables us to

84
test whether the same model emerges from the signal extraction interpretation
of these filters, hence whether the X-11 filters are internally consistent

in this sense.



3. ESTIMATION RESULTS

3.1 Introduction

It is clear from Figures 1-3 that the X-11 filters are dominated by
their seasonal weights, and so models whose optimal signal extraction
filters match these principal characteristics will tend to give a goed
overall fit. For example, the elementary model

(1L ~-L) Ct = u_, U(L) St = v, I =w

with appropriately chosen innovation variance ratios achieves a residual

11.

sum of squares of 0.023 against the sum of squares of the a84(L) coefficients

of 0.785. While we can thus say that it accounts for 97.1 per cent of the
variation in the weights, we see below that slightly more elaborate models

are able to reduce substantially the residual sum of squares.

Our calculations were organized as follows. Working with a three-
component specification, we normalized on the irregular variance (03 = 1.0)
and tested various seasonal and cyclical specificatioms, in each case
calculating the values of the parameters, including oi and 03 , that
give the best fit. As noted in section 2.3, the seasonal component models
have ¢S(L) = U(L) and GS(L) a polynomial of degree Q in le.

Preliminary investigations led to cyclical component models having

d . . . . . .
¢C(L) = (1 - L), since estimation of unrestricted autoregressions in general

resulted in unit roots being found; GC(L) is a general polynomial of
degree q. If q > d the decomposition of the nonseasonal into cyclical
and irregular components is not unique, as noted above, but this difficulty

is avoided at the estimation stage by assigning a convenient value to the



12.
cyclical innovation variance.

Within the range of possibilities thus delineated, the choice of a
final model is guided by the same considerations that conventionally apply
in the empirical modelling of observed time series. A given model is
extended if adding a further parameter achieves a gubstantial reduction in
residual sum of squares, but if the additiomal parameter results only in
a marginal improvement, a preference for simple, "parsimonious” models leads

us back to the initial specificationm.

3.2 Models for :aG(L), a15(L) and égA(L)

The specification eventually chosen, for each of these three filters,
has d =2, q =2 and Q = 2: reducing the order of either moving average
specification substantially increases the residual sum of squares, while
including a third parameter causes only a slight decrease. A closely
competing specification has d =1, ¢ = Q = 2, but this results in a

combined residual sum of squares some 10 per cent greater.

For the one-sided filter, ao(L), the preferred model is

ULy s, = 1+ 1.001%% v,
(3.1)
1-0%N, = (1-1.43L+0.70L% n,
Giloi = 0.018, RSS = 0.041, original sum of squares = 0.931
The coefficients in BS(LD are estimated, but the coefficient of iz is

non-zero only in its fourth»deéimal place, and is not reported. The



associated signal extraction adjustment filter, AO(L), and its transfer
function are plotted in Figure 4. We find that, of the three filters
considered, the goodness of fit is poorest in the one-sided case, principally
because in the X-11 filter (Figure 1), the weight at lag 24 is greater than
that at lag 12, while in the signal extraction filters such weights decline
smoothly. This feature of X-11 is possibly due to the ad-hoc adjustment

of end-weights of some of the component moving averages, which has been

remarked upon elsewhere (Kenny and Durbin, 1982; Wallis, 1981).

For the asymmetric filter alz(L), the preferred model is

13;

sy s, = (1 +0.33 1 40,90 124 v
(3.2)
(1 - 1,)2 N, = (1-1.55L +0.8 L2) N,
cg/ci = 0.026, RSS = 0.017, original sum of squares = 0.717

-~

The coefficients and transfer function of the associated filter alZ(L)

are plotted in Figure 5. A particular feature of the transfer function for
the X-11 filter alZ(L) (Figure 2) is that it does not appear to represent
a step in a gradual transition from the ome-sided to the symmetric filter:
the characteristic oscillations between the seasonal frequencies are absent,
the seasonal dips cover a rather wide frequency band, and the initial
departure from 1 occurs at a rather lower frequency. It is interesting

~

that the transfer function of alZ(L) has the same appearance, thus these
features seem to be associated with the lag-12 filter, even when it is

an optimal signal extraction filter for a model of the same form as (3.1).

For the symmetric filter ag,(L) the pref&rred model is
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(1 +0.71 le + 1.00 L24) v

U(L) s,
(3.3)

(1 - 1)2 N, (1-1.591 +0.8 L% n

03/0% = 0.017, RSS = 0.0036, original sum of squares = Q.785

It is in this case that the closest match of a signal extraction filter to

an X~11 filter is achieved, and the coefficients and transfer function of

284
Figure 3.

(LY are plotted in Figure 6, for comparison with those of a84(L) in

The composite model for the observed series corresponding to the

unobserved=components models (3.1) - (3.3) is
. _ 12 o
(3.4) (L -1 =L Yt = B(L) € >

where the moving average operator, B8(L), 1s of degree 26. Its coefficients
are given, for each of the three cases, in Table 1. While the higher-order
coefficients are negligible, intermediate coefficients at lags 2-11 are
not, thus the common multiplicative specification (1 -~ 8L)(1 - @le) can
only be an approximation to B(L). Simple specifications for the component
models typically do not yield simple overall models! The three composite
models are rather similar, and in broad outline also correspond to the
model of Cleveland and Tiao (1976), although their decomposition into
seasonal and nonseasonal components is somewhat different.

- C;ﬁpafing tﬁéiéoﬁponeﬂﬁ mbaels,»ﬁé'note thgﬁﬁthe é&%iﬁg ;ﬁéraéei
specifications are more similar than might appear at first sight. Each

moving average operator has a pair of complex conjugate roots, and expressing
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TABLE 1

Coefficients of the composite moving average operator B(L) = 1-+81L-+...-b626L26

for component models (3.1) - (3.3)

Lag (3.1) (3.2) (3.3)
1 -.53 -.64 -.67
2 .28 .30 .29
3 .23 .23 .23
4 .23 .22 .22
5 .22 .22 .21
6 .22 .21 .20
7 21 .20 .20
8 .21 .20 .19
9 .20 .19 .19

10 .19 .18 .18

11 .14 .13 .12

12 -.43 SRR =33

13 .45 A4 .45

14 = 02 02

15 = = -

16 = = -

17 - - -

18 = - -

19 = = -

20 - - -

21 = = e

22 - = -

23 -.01 -.01 -.01

24 05 .05 04

25 -.04 -.05 -.04

26 01 .02 01

02/02 .012 .016 .011
vi'e

-~ denotes a coefficient less than 0.0l in absolute value
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these in polar form gives the modulus and angle as follows:

seasonal MA nonseasonal MA
modulus angle modulus angle
(3.1) 0.999 0.50w 0.824 0.837
(3.2) 0.997 0.457 0.910 0.82m
(3.3) 0.999 0.38mw 0.930 ~ 0.83w

To consider the impact of these differences in parameter values together

with the observed variations in variance ratios, we calculate the residual
sum of squares in fitting to each of the three X-11 filters the signal
extraction filters associated with each of the estimated quels (3.1) - (3.3),

~with the following results.

X~11 filter

Model ao(L) alZ(L) ‘ a84(L)
(3.1) , 0.0413 0.0236 0.0151
(3.2) 0.0547 0.0168 0.0043
(3.3) 0.0561 . 0.0175 0.0036

The "diagonal" element is the smallest in each columm, representing the best-
fitting model already chosen, but we see that the alternative estimated models
fit a given filter relatively well, models (3.2) and (3.3) being rather close
together and fitting better overall than model (3.1). The perceived differences
between the estimated models indicate that, with a signal extraction inter-
pretation, the X-11 filters are not internally consistent. Nevertheless these
differences are seen to be slight, indicating that the inconsistency is not

- great, altheough the faet that ab(L%i—is-theAeutlier~amengrthe~thfee—£ilters -
considered is a matter for c¢oncern, given that publiec attention is usually
focussed most heavily on the first—announced seasonally adjusted figure,

and that less attention is usually paid to subsequent revisions.
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Our finding that models with q = Q=2 and d =1 are close
competitors, at their best-fitting parameter values, to the models (3.1) -
(3.3), and that much simpler models can also fit rather well, indicates a
certain robustness of the X-11 filters in this context. This corresponds
to the general acceptance of X-11 across a wide range of observed series.

To investigate this further within the framework of our preferred model
specification, we have studied the sensitivity of the residual sum of
squares to parameter variation. With respect tc the innovation variance
ratio ai/og » increasing this lengthens the signal extraction filter and

so worsens the approximation at longer lags. Since it is the rather small
variance ratio that makes the higher-order coefficients in the composite
moving average B(L) negligible (Table 1), this suggests that the optimal
signal extraction interpretation of X-11 does not hold up well for composite
" models with moving average specifications of higher order than the widely~-
used (1 - aL)(1 - ele). With respect to the moving average parameters,

we have considered variations in their values accompanied by compensating
variations in the innovation variances that keep the variances of U(L) St
and (1 - L)2 Nt in the same proportion. Then the goodness of fit is more
sensitive to changes in the nonseasonal moving average parameters, so much
so that the roots of the seasonal moving average operator can be driven quite
close to zerc without dramatically worsening the fit. Again this is a
reflection of the variance ratio, and suggests that a wide range of seasonal
component specifications can be well accommodated in X-11. Variations in
the nonseasonal moving average parameters have a greater effect on the
composite moving average B(L), suggesting that the appropriateness of X-11
for a series adequately represented by the seasonal ARIMA (0,1,1) x (0,1,1)12
specification would depend on the similarity of its key parameters to those

given in Table 1.



4. CONCLUSION

The models (3.1) - (3.3) represent data generation processes for
which seasonal adjustment (at lags O, 12 and 84 respectively) is
accomplished virtually optimally, in a linear least squares sense, by
the X-11 program. Our analysis extends previous work by considering
asymmetric X-11 filters as well as the symmetric "historical" filter, and
by searching over a wider class of models. Some divergence from previous

‘results is also to be expected as we concentrate exclusively on the
seasonal adjustment filter, unlike Cleveland (1972) and Cleveland and Tiao

(1976), who include the trend filter in their fitting exercises.

The overall model for the cbserved series implied by these component
models is similar in broad outline to that of Cleveland and Tiao, although

there are differences in detail. Ina particular, since in our models 813.

is greater in absolute value than 8 the common multiplicative specifi~

12°
cation (1 - 8L)(1 - Gle) is a less appropriate approximation. However
greater differences are to be found in the specification of the components.
The use of both trend and seasonal filters allows Cleveland and Tiao to
specify a three-component model, whereas in the context of our preferred

forms and fitting only the seasonal filter only a two—component specification

is possible. Our seasonal component incorporates the autoregressive

11

operator U(L) =1 +L + ... + L7, whereas theirs has the seasonal

difference 1 - le. While the process of specifying the components has

some essentially arbitrary elements, our choice avoids associating a spectral

~peak at the origin with the seasonal component and, given that the mon—

seasonal autoregression includes the factor (1 - L), ensures that the

rror

signal extraction ariance converges to a fimite limit, both of which

seem reasonable. Thus we suggest that the models (3.1) - (3.3) should

18.
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replace that of Cleveland and Tiao as the "standard" interpretation of
X~11 in a pure seasonal adjustment context. Since these models are not
identical, and so the X~11 filters are not internally consistent in a
signal extraction sense, strictly speaking, the particular model (3.1),
(3.2) or (3.3) to be adopted as a justification of X~11 depends on whether
one is considering the adjustment of current data, of one-year-old data,

or of historical data.

When amendments or exXtensions to existing procedures are proposed,
it is conventional to evaluate them by studying their effect on a sample
of real or artificial time series. Our results enable us to predict the
results of comparisons between model-based signal extraction methods of
seasonal adjustment and X-11l: for data well-described or generated by
the models of section 3, little improvement will be observed. To demonstrate
any advantage of a signal extraction method over X-11 it will be necessary

to choose data of a considerably different form.
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