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Abstract

We study the value of public information in a stochastic exchange economy where agents trade

assets to reallocate risk and mandatory (retirement) savings imposes a lower bound on the market value

of some agents’ holdings of a financial asset. Since equilibrium prices depend on the agents’ beliefs

about the states of nature, the arrival of information shifts the agents’ mandatory savings constraints.

We show that the arrival of public information can generate an ex-ante Pareto improvement relative

to an uninformative equilibrium even when ex-post improvements are not possible.

1 Introduction

Nicholas Barr and Peter Diamond [2] write about the “aging crisis”, discussing how in recent decades

reductions in mortality and fertility, and lower labor force participation by older men, have increased

pension costs to unsustainable levels in many countries. Several countries have responded to this crisis

by changing their pension systems, including the famous reform in Chile in 1981 which introduced

mandatory fully funded individual savings accounts.

In economies with mandatory individual savings, the government may give consumers a choice about

where to invest their savings. In the literature on the design of such systems, information is a key input

into the consumer’s decision making process. In this paper, we study the value of information in a

stochastic pure exchange economy where all agents trade assets in financial markets to reallocate risk,

and some of the agents face a mandatory savings constraint.

These systems involve complicated rules and poor financial literacy is widespread in many countries,

so “more” information is normally viewed as desirable. However information can affect welfare through

another channel, by affecting prices. Surprisingly, to the best of our knowledge, this channel has been

largely ignored in the literature on pensions, even though the theoretical literature suggests that the

welfare effects of public information might be ambiguous, depending on the asset structure. Cuevas,

Bernhardt and Sanclemente [5], and Da, Larrain, Sialm and Tesada [6] show how the release of informa-

tion has led to massive coordinated movements between the available social security portfolios in Chile,

∗We thank Dan Bernhardt, Roberto Pancrazi, Carlo Perroni and Herakles Polemarchakis for their comments to earlier

versions of this draft. We are also grateful to audiences at Newcastle Business School and Grenoble Applied Economics Lab

at the University of Grenoble-Alpes
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affecting the prices of the social security portfolios and the domestic stock market. Thus the release of

new information appears to affect those who did not act upon the new information, as well as those out-

side the pension system. Therefore, it is important to understand the welfare effect of information-driven

price changes when some agents face mandatory savings constraints.

We consider a two-period exchange economy with two agents, a single consumption good and uncer-

tainty about the state of nature in period 1. There are two states of nature that realise in period 1 but

no aggregate uncertainty. In period zero, agents trade two Arrow securities and a risk-free bond.1 One of

the agents faces a mandatory savings constraint modelled as a lower bound on the value of the holdings

of the risk-free bond, and short-sale constraints on the other assets. We call her the constrained agent.

The other agent is unconstrained.2 We call her the unconstrained agent. We model an information

structure as signals that lead agents to update their common prior belief over the states of nature via

Bayes’ rule.

We study the welfare effects caused by information that arrives before agents trade in financial

markets. In particular, we look for an information structure that allows a benevolent planner to obtain a

Pareto improvement relative to the equilibrium in which agents do not have access to information before

trading, hereafter the uninformative equilibrium. Throughout our analysis we assume the Planner faces

the same constraints as the agents in terms of the available assets, information, and savings constraints.

We consider two welfare notions depending on whether one evaluates allocations ex-ante or ex-post, i.e.

before or after observing the signal.

In the absence of the savings and short-sell constraints, the existing assets would allow the agents

to generate any desirable future consumption vector. However, the savings constraints and short-sale

constraints prevent the equilibrium from being fully Pareto efficient when they are binding. Since the

savings constraint is modeled as a lower bound on the value of the holdings of the risk-free bond,

it depends on the equilibrium (gross) interest rate. Different information structures lead to different

posterior beliefs and thus result in different equilibrium prices and, possibly, a different interest rate.

Therefore changes in information can shift the lower bound on the holdings of the risk-free bond. If the

savings constraint is relaxed, the Planner can access allocations that are Pareto superior, but that were

not feasible at the uninformative equilibrium interest rate.

When studying the existence of ex-post improvements, i.e. Pareto improvements under each signal,

we show that an ex-post improvement exists if and only if the savings constraint is relaxed under every

signal. We begin our analysis by asking if there exists an alternative allocation and a belief different

to the common prior such that the alternative allocation satisfies the savings constraint at the initial

equilibrium prices, and that Pareto dominates the uninformative equilibrium allocation when utilities

are computed using the new belief. The answer is no. For every alternative belief, the allocations that

Pareto dominate the uninformative equilibrium allocation are outside the constrained feasible set of the

uninformative equilibrium. All the Pareto superior allocations violate the savings constraint at initial

equilibrium prices. Thus ex-post constrained Pareto improvements exist if and only if the constraint set

1We consider mandatory savings in a redundant assets to mimic how these types of social security systems work in

practice.
2We work with an unconstrained agent because that is what we observe in the Chilean case, where only formal workers

are forced to save. If we were to assume that both agents have mandatory savings constraints, but the unconstrained agent

were completely free to choose the Arrow-Debreu securities, then the bond would need to be in positive net supply. We

expect all our results to hold with this modification.
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of the Planner is enlarged for every signal.

To study ex-ante improvements, i.e. Pareto improvements in expected value, we define the Pareto

frontier as the maximum utility the constrained agent can attain in the constrained feasible set as a

function of her posterior belief and the utility of the unconstrained agent. We relate the existence of ex-

ante improvements to the concavity of the Pareto frontier. We show that there exist ex-ante improvements

if and only if the concavification of the Pareto frontier evaluated at the prior belief and the uninformative

equilibrium utility level for the unconstrained agent lies above the uninformative equilibrium utility for

constrained agent, i.e. the Pareto frontier evaluated at that point.

The Pareto frontier fails to be concave in beliefs and the utility of the unconstrained agent under

general conditions. In the simple case where the savings constraint does not prevent full consumption

smoothing across states, the objective function defining the Pareto frontier is independent of the belief.

Therefore the posterior belief only affects the Pareto frontier through its effect on the equilibrium interest

rate and, therefore, on the constrained feasible set. Thus if prices do not change with changes in

information it is not possible to obtain ex-ante improvements. Consequently, changes in prices are a

necessary condition for the existence of ex-ante improvements.

We show there exists a threshold on the posterior beliefs such that equilibria are first best if and only

if the belief is weakly above that threshold. Since there is no aggregate uncertainty, the gross interest rate

is equal to one in every first best equilibria. Fixing the utility of the unconstrained agent, this means that

the constrained feasible set, and thus the Pareto frontier, is constant for beliefs above the threshold. For

beliefs below the threshold, the savings constraint is binding in equilibrium and the equilibrium interest

rate is strictly less than one, as equilibrium prices must induce the unconstrained agent to increase her

consumption in period zero. If the common prior is below the threshold, then the constrained feasible

set in the uninformative equilibrium contains the constrained feasible set for beliefs above the threshold.

This implies that the Pareto frontier at the uninformative equilibrium attains a higher value relative to

the constant value to the right of the threshold.

Following Kamenica and Gentzkow [14], we say a distribution of beliefs is Bayes’ plausible if the

expected posterior belief is equal to the prior. If the common prior is below the threshold, then for

any Bayes’ plausible distribution of beliefs with support equal to the common prior and a belief to the

right of the threshold, the expected value of the Pareto frontier is greater than the Pareto frontier at the

threshold. Consequently, the frontier fails to be concave in the posterior belief.

Finally, we show that there are information structures that allow the Planner to obtain ex-ante

improvements, i.e. we show that the concavification of the Pareto frontier lies above the Pareto frontier

when evaluated at the prior and the initial utility for the unconstrained agent. To show the existence

of ex-ante improvements we fix the utility of the unconstrained agent at the uninformative equilibrium

level for every posterior belief. We fix a support for the beliefs and we look for the probabilities of the

beliefs that satisfy Bayes’ plausibility. Then we ask what are the probabilities (of the beliefs) that keep

the constrained agent indifferent with respect to the initial equilibrium. We show that if the prior is

close to the aforementioned threshold, the Bayes’ plausible probabilities differ from the probabilities that

keep the constrained agent indifferent. In particular, the constrained agent is better off relative to the

uninformative equilibrium, and as the unconstrained agent is indifferent by construction, we obtain an

ex-ante improvement.

Our work is related to a large literature that analyzes the effect of public information in two-period
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competitive economies with homogeneous beliefs and complete markets to share risk.3 In a seminal

paper, Jack Hirshleifer [13] considers a situation where initially uninformed agents are revealed the

true state of the world before trading and, therefore, no risk sharing trade that benefits all agents is

possible. Initially uninformed traders cannot all be made better off even if the new information that

is revealed before trading is only partially revealing. Marshall [16] showed that the contract curve is

independent of the posteriors when beliefs are homogeneous (and markets are complete), therefore if the

equilibrium without information lies in the contract curve, then it also belongs to the contract curve for

every vector of posterior beliefs. Thus there are no ex-post improvements. In the special case where

initial endowments are an equilibrium in the economy without information, he showed that changes in

information cannot reduce the ex-ante utility of any agent, as they can always stand pat and not act

upon the new information, nor increase agents’ ex-ante utility. When endowments are not an equilibrium

without information, he argued that public information cannot obtain Pareto improvements. This result,

closely related to the Sunspot theorem by Cass and Shell [4], was formally proved by Hakansson, Kunkel

and Ohlson [11] who gave a set of sufficient and necessary conditions for public information to have social

value in pure exchange economies under uncertainty. Full Pareto efficiency of the initial equilibrium is a

sufficient condition for public information to be of no social value.

When prior beliefs are heterogeneous, Marshall [16] gave an early example of public information

having social value. Ng [19] showed that when initial endowments are an equilibrium in the economy

without information, then the arrival of information makes some individual better off and no individual

worse off. This follows directly from the fact that agents can always decide not to trade. If beliefs

are heterogeneous, new information will make individuals willing to trade, hence they cannot be worse

off. He also showed that when initial endowments are not an equilibrium in the economy without

information, if prices are the same in the economies with and without information, then the equilibrium

with information represents an ex-ante constrained Pareto improvement when beliefs coincide after the

release of information. The results follow from a standard revealed preference argument.4

Recently, Maurer and Tran [18] study the value of public information in an economy with multiple

consumption and trading dates. They show that when beliefs are heterogeneous, the Hirshleifer effect is

reversed if information arrives before the first round of trading. This result holds when agents anticipate

small benefits from risk sharing and large benefits from intertemporal consumption smoothing.

Gottardi and Rahi [10] consider the case of a pure exchange economy with one good, two periods

and incomplete markets. They show that ex-post Pareto improvements can be attained for any change

in information, by adjusting agents’ asset holdings to the new information.5 However when comparing

different equilibria, they show that the overall effect on welfare can go in any direction. The difference

lies in an additional welfare effect that arises due to the adjustment in equilibrium prices. They conclude

that competitive markets typically do not deal with changes in information in a way that is welfare-

3With the exception of Maurer and Tran [18], this literature does not consider markets that are open before signals

arrive.
4In his analysis, Ng [19] uses the value of optimization to measure changes in welfare. That is, he evaluates different

allocations at the new beliefs induced by the new information, but he fails to integrate across all the signals.
5Since the condition for constrained Pareto optimally of equilibria can be characterized in terms of the equality of the

marginal rate of substitution between assets and present consumption for all agents (Diamond [9]), it typically depends on

the beliefs of the agents. If one keeps the allocation fixed and changes the beliefs, nothing ensures that the condition for

constrained Pareto optimality holds for the new beliefs.
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improving even though it is feasible to do so.6 In contrast, in our model ex-post improvements are only

possible under special conditions. There in no ex-post constrained Pareto improvements with respect to

the uninformative equilibrium if and only if the uninformative equilibrium interest rate is greater than

the equilibrium interest rate of all the signals of the informative information structure.

From a methodological point of view, this paper is also related to the literature on Bayesian persua-

sion. Kamenica and Gentzkow [14] study a symmetric information model where two players, a sender

and a receiver, interact. The sender can send signals to the receiver, who upon observing the signal takes

an action that affects the payoff of both agents. The authors show that the sender can send signals that

result in the receiver taking an action that gives the sender higher expected utility, relative to the action

taken based on the prior, if and only if the concavification of the sender’s expected utility lies above the

expected utility function when evaluated at the action the receiver takes under his prior. Thus we can

relate our analysis for a competitive economy to the literature on Bayesian persuasion. We can think of

the Planner as the sender, whose payoff function is given by the Pareto frontier. The agents play the role

of the receiver. They observe the signal sent by the Planner and take an action, their excess demand, to

maximize their payoff, taking prices as given. These actions affect the Planner’s payoff as they determine

equilibrium prices and the constrained feasible set.

In the next section we formally introduce our model. In section three we define an equilibrium in

our economy. In section four we relate changes in information and welfare, and in the next two sections

we study ex-post and ex-ante improvements. We finish with conclusions in section seven. All proofs are

relegated to the appendix.

2 The model

There are two periods, 0 and 1, and a single consumption good. At period 1, s = 1, 2 states of the world

realize.

The economy is populated by two agents indexed by h. A consumption plan for agent h is given by

xh =
(
xh0 , x

h
1 , x

h
2

)
. Agent h has endowments wh = (wh0 , w

h
1 , w

h
2 ) where wh0 > 0 is agent h’s endowment

in period 0 and whs > 0 is agent h’s endowment in state s = 1, 2. There is no aggregate uncertainty,∑
hw

h
s = w for s = 0, 1, 2.

Agents’ common belief about the probability of state one is denoted by π ∈ [0, 1]. Both agents have

utility functions V (xh, π) : R3
+ × [0, 1] 7→ R that can be represented as a time-separable expected utility

function with Bernoulli function v : R+ 7→ R. That is, for every consumption plan xh,

V (xh, π) = v(xh0) + πv(xh1) + (1− π)v(xh2).

We assume that v is twice continuously differentiable, strictly increasing, strictly concave, and that

limxhs→0 v
′(xhs ) =∞, where v′ denotes the first derivative of v with respect to its argument.

6They relate their analysis to the Hishleifer effect and the Blackwell effect. The former effect follows from the example

by Hirshleifer [13] and it is related to how information affects welfare through the change in equilibrium prices. The latter

effect makes reference to Blackwell [3], who showed that agents can hedge risk more efficiently by adjusting their portfolios

to the new information.
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2.1 Financial markets

There are three securities, indexed by l, that are traded in a competitive market at period 0. The payoffs

of these assets are in units of the consumption good of period 1. Assets 1 and 2 are Arrow-Debreu

securities while asset 3 is a risk free bond paying one unit of the consumption good in all states. Let

Φ =

(
1 0 1

0 1 1

)
,

be the payoff matrix, where the element (s, l) of Φ is the payoff of asset l in state s.

Let q = (q0, . . . , q3) ∈ R4
++ be the vector of period 0 prices, where q0 is the price of the consumption

good and ql is the price of asset l = 1, 2, 3, and let zh = (zh1 , z
h
2 , z

h
3 ) ∈ R3 be agent h’s vector of asset

holdings. We say a consumption plan xh can by financed at (q, wh) by a portfolio zh if:

q0x
h
0 +

∑
s

qsz
h
s = q0w

h
0 ,

xhs = whs + zhs + zh3 , ∀s = 1, 2.

One of the two agents living in this economy faces a mandatory savings constraint. Let’s call her

agent c (for constrained). Agent c’s mandatory savings constraint is such that the value of her holdings

of asset three have to satisfy:

q3z
c
3 ≥ q0θ3, (1)

where θ3 > 0 is an exogenous parameter. The savings constraint on asset three implies that she faces

a lower bound on the value of her holdings of the risk free bond, and this lower bound depends on

equilibrium prices.

In addition to the mandatory savings constraint, agent c faces short-sale constraints on assets one

and two. That is, her holdings of assets one and two have to satisfy:

zcl ≥ θl, (2)

with θl ≤ 0 an exogenous constant for l = 1, 2. Short-sale constraints are needed in order to have

equilibria where the mandatory savings constraint is binding. If there were no short-sale constraints,

then agent c could undo the savings constraint (1) as she could generate any date 1 consumption plan

in R2
+ with the existing assets. In that case any equilibrium would be fully Pareto optimal.7 The other

agent, agent u (for unconstrained), faces no constraints besides the usual budget constraint.

2.2 Information

Prior to trading, agents observe a public signal possibly correlated with the state of the world s. This

signal does not directly affects utility functions, endowments, or asset payoffs. We fix a finite set of signal

realizations Y = (y1, y2, y3).
8 Once signal yk is observed agents update their common prior belief about

7An alternative approach, used in a previous version of this paper, is to assume that the government can target agents’

savings directly, i.e. we could assume the government imposes a lower bound on total savings. All the result in the current

paper hold if we use the alternative approach.
8The number of signal realization is set equal to the number of agents plus the number of states of the world minus one.

We need at least three signals to use Carathéodory’s theorem in the proof of Corollary 4.
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the state of nature, π0, to the posterior belief π(yk) via Bayes’ rule. Let pr(yk|s) denote the conditional

probability of signal yk given state s. The 2× 3 matrix of conditional probabilities:

Y =

(
pr(y1|1) pr(y2|1) pr(y3|1)

pr(y1|2) pr(y2|2) pr(y3|2)

)
,

is called an information structure. Let pr(yk) =
∑

s pr(yk|s)π0s . Then beliefs are given by:

πs(yk) =
pr(yk|s)π0s

pr(yk)
.

If Y is such that pr(yk|1) = pr(yk|2) for all k then the beliefs coincide with the prior for all signals.

We call such an information structure uninformative. We call the information structure informative

otherwise.

3 Equilibrium

Both agents take the price vector q as given. Agent c’s budget set, denoted Bc(q, wc), is the set of

consumption plans that can be financed at (q, wc) by a portfolio zc that satisfies constraints (1) - (2).

That is,

Bc(q, wc) ≡
{
xc ∈ R3

+

∣∣∣∣∣ ∃zc ∈ R3 s.t. q0x
c
0 +

∑
s

qsz
c
s = q0w

c
0, x

c
s = wcs + zcs + zc3 ∀s,

zcs ≥ θs ∀s, q3zc3 ≥ q0θ3
}
.

Since agent u neither faces a savings nor short-sale constraints, her budget set, denoted Bu(q, wu), is

simply defined as the set of consumption plans that can be financed at (q, wu) by a portfolio zu. That

is,

Bu(q, wu) ≡

{
xu ∈ R3

+

∣∣∣∣∣ ∃zu ∈ R3 s.t. q0x
u
0 +

∑
s

qsz
u
s = q0w

u
0 , x

u
s = wu

s + zus + zu3 ∀s

}
.

A financial market equilibrium is defined as follows:

Definition 1. Given π, a financial market equilibrium is a collection of prices q ∈ R4
++, consumption

plans x = (xu, xc) ∈ R6
+ and portfolios z = (zu, zc) ∈ R6, where zh finances the consumption plans xh at

(q, wh), such that:

1. xh ∈ argmax
{
V h(xh, π)

∣∣xh ∈ Bh(q, wh)
}
∀h ∈ {c, u},

2.
∑

h z
h = 0.

Hereafter we refer to any consumption plan satisfying Definition 1 as an equilibrium allocation.

To prove the existence of a financial market equilibrium for all beliefs π ∈ [0, 1], we need the following

assumptions on c′s endowment vector:

wc0 ≥ θ3,

wcs ≥ −θs for s = 1, 2.
(A0)

Proposition 1. If (A0) is satisfied, then a financial market equilibrium exist for all π ∈ [0, 1].
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Proposition 1 is proved in several steps. First we define the concept of a non-arbitrage equilibrium

following Magill and Quinzii [15]. Then we show the equivalence between both types of equilibria in the

absence of arbitrage. Working with a non-arbitrage equilibrium is useful because it allows us to use the

standard existence proof in models with contingent consumption.

Given a vector of prices q, we say there is no arbitrage if there does not exist z ∈ R3 such that:[
−q
Φ

]
z > 0.

It is not difficult to show that with our payoff matrix there is no arbitrage if and only if q1 + q2 = q3.
9 It

is direct to see that u’s optimization problem has no solution if there are arbitrage opportunities. Thus

every equilibrium satisfies absence of arbitrage. Since the gross interest rate is given by R = (q1 + q2)
−1,

then in equilibrium R = q−13 .

Assumption (A0) is needed to ensure that c’s optimization problem has a solution for every π ∈ [0, 1].

The savings and short-sale constraints imply that there is a lower bound on xcs for s = 1, 2 given by:10

xcs ≥ wcs + θs + θ3R for s = 1, 2. (3)

The second condition in assumption (A0) implies that the lower bound on xcs is positive when prices

are strictly positive. When both lower bounds are binding, c’s period 0 consumption is given by: xc0 =

wc0 − θ3 −
∑
psθs. If prices are positive, then the first condition in (A0) ensures xc0 ≥ 0.

From here onwards we normalize q0 = 1, i.e. the equilibrium price of the consumption good at period

0 is set equal to one. Before discussing the effect of changes in information on welfare, we show that,

given a belief, if the Planner is constrained to satisfy c’s mandatory savings and short-sale constrains

he cannot obtain a Pareto improvement. We follow the literature on constrained Pareto optimality and

assume that the Planner can freely allocate period 0 consumption, but period 1 consumption can only

be allocated using the existing assets. The allocation assigned by the Planner to agent c is required to

satisfy the short-sale constraints and the savings constraint, that is q3z
c
3 ≥ θ3 where q3 is the period zero

equilibrium price of the bond before the Planner redistribute assets and period 0 consumption.

Definition 2. The consumption allocation x ∈ R6
+ is constrained feasible if there exists an asset alloca-

tion z ∈ R6 such that:

1. xhs = whs + zhs + zh3 , for s = 1, 2. ∀h,

2.
∑

h z
h = 0,

3. zcs ≥ θs, for s = 1, 2,

4. zc3 ≥ θ3R.

We define the constrained feasible set under belief π, CFS(R), as the set of all constrained feasible

allocations. Formally:

9If q1 + q2 > q3, use the vector z = (−1,−1, 1). If q1 + q2 < q3, use the vector z = (1, 1,−1).
10To see this just replace the lower bounds on zcl for all l in the expressions for xcs for s = 1, 2.
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Definition 3. The constrained feasible set, CFS(R), is the set of all constrained feasible allocations:

CFS(R) =

{
x ∈ R6

+

∣∣∣ ∃z ∈ R6 s.t. xhs = whs + zhs + zh3 ∀(h, s),

zcs ≥ θs ∀s, zc3 ≥ θ3R and
∑
h

zh = 0

}
.

It is straightforward to redefine the constrained feasible set independently of the portfolio of agent c

by replacing the lower bounds on the components of this vector straight into the expressions for xcs:

Definition 4. Given a belief π, the constrained feasible set, CFS′(R), is the set of all constrained feasible

allocations:

CFS′(R) =
{
x ∈ R6

+ | xcs ≥ wc
s + θs + θ3R ∀s, and xu = w − xc

}
.

It is trivial to show that CFS(R) ⊂ CFS′(R). It is also true that CFS′(R) ⊂ CFS(R).1112

Proposition 2. There is no constrained feasible allocation that Pareto dominates the financial market

equilibrium allocation.

To prove Proposition 2 we follow the standard proof of constrained Pareto optimality in economies

with two period and a single consumption good, for our definition for the constrained feasible set.

4 Changes in information and welfare

In this section we define the welfare notions we use in the rest of the paper, and we relate changes in the

information agents have before trading to the agents’ welfare. Proposition 2 tells us that changing the

beliefs, and hence the information structure, is a necessary condition for obtaining Pareto improvements

if the Planner must satisfy c’s constraints at equilibrium prices.

The mandatory savings constraint for agent c depends on equilibrium prices and, therefore, on the

agents’ beliefs. By changing the information structure, the Planner can change the posterior belief of

the agents and, as R is a function of π, shift the mandatory savings constraints to reach allocations that

were not feasible under the original information structure. Thus it may be the case that changing the

information structure allows the Planner to reach allocations that are Pareto superior with respect to the

starting information structure, but that weren’t feasible before the change in information. For example if

R is increasing in π, by inducing a belief below the prior the Planner can enlarge the constrained feasible

set. For this reason from now on we make explicit the dependence of the constrained feasible set on the

belief, i.e. we write CFS(R(π)).

We wish to study the welfare consequences of changes in information. Our reference point will

always be what we call the uninformative equilibrium. Under an uninformative information structure,

by definition π(yk) = π0 for k = 1, 2, 3. We define an uninformative equilibrium, as an equilibrium of

the economy where agents make decisions on the basis of the prior π0.

11To prove that CFS′(R) ⊂ CFS(R), fix zc3 = θ3R and notice that with the existing asset structure, and ignoring c’s

constraints, the agents can generate any period 1 consumption in R2
+. Hence there exist a zcs such that wcs + zcs + zc3 = xcs ≥

wcs + θs + θ3R for s = 1, 2. Our choice of zc3 implies: zcs ≥ θs for s = 1, 2. Finally xu = w − xc implies
∑
h z

h = 0.
12Notice that if we were to write Definition 2 in terms of contingent consumption instead, we would have to rewrite the

conditions for feasibility, and replace conditions 3. and 4. by equation (3).
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By Proposition 1 there exist at least one vector of prices that clears the market at π0. If the

equilibrium is unique, it is clear that this unique equilibrium is the uninformative equilibrium. If there

are multiple equilibria, we pick one of them, and set the uninformative equilibrium equal to it for every

signal realisation. Therefore, by definition, the uninformative equilibrium is signal invariant.

Definition 5. Consider an information structure Y . Let x(yk) be an (equilibrium) allocation when signal

yk is observed in the economy with information structure Y . Then, x(Y ) = (x(y1), x(y2), x(y3)) is an

(equilibrium) allocation under information structure Y . If Y is the uninformative information structure,

then we define an uninformative equilibrium allocation as the equilibrium allocation under information

structure Y , say x(Y ), that satisfies x(y1) = x(y2) = x(y3).

Starting from the uninformative equilibrium, we will look for an informative information structure

that allows the Planner to obtain welfare improvements in a sense that will be made precise below. We

consider two welfare notions depending on whether one evaluate allocations ex-ante or ex-post, i.e. before

or after observing the signal. Formally:

Definition 6. Let Y and Ŷ be an uninformative and an informative information structure respectively.

Let π(yk) and pr(yk) for k = 1, 2, 3, be the beliefs and the probabilities of the beliefs under Ŷ , respectively.

We say x(Y ) is ex-ante constrained Pareto efficient under Ŷ if there is no allocation under information

structure Ŷ , call it x(Ŷ ) = (x̂(y1), x̂(y2), x̂(y3)), such that x̂(yk) ∈ CFS(R(π(yk))) for all k and:∑
k

pr(yk)V (x̂h(yk), π(yk)) ≥
∑
k

pr(yk)V (xh(yk), π(yk)),

for all h ∈ H and with strict inequality for some h.

Definition 7. Let Y and Ŷ be an uninformative and an informative information structure respectively.

Let π(yk) and pr(yk) for k = 1, 2, 3, be the beliefs and the probabilities of the beliefs under Ŷ , respectively.

We say x(Y ) is ex-post constrained Pareto efficient under information structure Ŷ if there is no allocation

under information structure Ŷ , call it x(Ŷ ) = (x̂(y1), x̂(y2), x̂(y3)), such that x̂(yk) ∈ CFS(R(π(yk))) for

all k and:

V (x̂h(yk), π(yk)) ≥ V (xh(yk), π(yk)),

for all h ∈ H and with strict inequality for some h, for all k.

From Definition 6 we see that the concept of an ex-ante constrained Pareto improvement is related

to an (constrained) improvement in expected value. Definition 7 provides a stronger concept of im-

provement: a (constrained) Pareto improvement for every signal at the new beliefs. Clearly an ex-post

improvement is a sufficient condition for an ex-ante improvement.

To clarify the difference between these two concepts, consider the right diagram in Figure 1. There we

show the uninformative equilibrium under each signal, denoted by c∗, for a two dimensional information

structure. Remember that this equilibrium is signal invariant by definition. In the left diagram we

show some constrained feasible allocation under every signal of an informative information structure.

Notice that c(y1) and c(y2) may differ. When looking for ex-ante improvements, we take each utility

level under the informative information structure, and compute the expected value for every agent using

the probability of the signals as weights. Then we compare this expected value with the utility that

the agents obtain in the uninformative equilibrium. We look if they are better off before receiving
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information. When looking for ex-post improvements, we compare the c(y1) allocation with c∗, and c(y2)

with c∗ separately. If there is a constrained Pareto improvement for both cases, then we have an ex-post

constrained Pareto improvement. We look if they are better off after receiving each signal.

Figure 1: Ex-ante and Ex-post constrained Pareto improvements.

y1

y2

v(ch0 (y1))+
∑
s πs(y1)v(c

h
s (y1))︷ ︸︸ ︷
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h
s (y1)}h,s

{ch0(y2), c
h
s (y2)}h,s︸ ︷︷ ︸

v(ch0 (y2))+
∑
s πs(y2)v(c

h
s (y2))

y1

y2

u(ch∗0 )+
∑
s πs(y1)u(c

h∗
s )︷ ︸︸ ︷

{ch∗0 , ch∗s }h,s

{ch∗0 , ch∗s }h,s︸ ︷︷ ︸
u(ch∗0 )+

∑
s πs(y2)u(c

h∗
s )

Informative Y Uninformative Y

To prove the existence of ex-ante improvements one could work with the ex-ante utility function used

in Definition 6. Noticing that the existence of ex-ante improvement is closely related to the shape of the

boundary of the utility possibility set, the Pareto frontier, helps us to simplify the problem. Formally,

we define the Pareto frontier as a function F : [0, 1]× R 7→ R given by:

F (π, V ) = {Max
xc

v(xc0) +
∑

πsv(xcs)

s. t. xcs ≥ wcs + θs + θ3R(π) for s = 1, 2,

v(w − xc0) +
∑

πsv(w − xcs) ≥ V } .

(4)

Since we assume v is strictly increasing, the last constraint in the problem defining (4) will always bind

at any solution. Furthermore, Bayes’ rule implies that beliefs have to satisfy:
∑

k pr(yk)π(yk) = π0 for

any information structure. This condition is what Kamenica and Gentzkow [14] call Bayes-plausibility

of beliefs. Since by definition V (xc, π) = v(xc0) +
∑
πsv(xcs), we can relate the existence of an ex-ante

constrained Pareto improvement to the properties of function F .

Proposition 3. Let π0 and V h
0 be the common prior and the equilibrium utility level of agent h in the

uninformative equilibrium, respectively. The uninformative equilibrium allocation is not ex-ante con-

strained Pareto efficient if and only if there exist vectors (τ1, τ2, τ3) ∈ ∆2, (π1, π2, π3) ∈ [0, 1]3 and

(V1, V2, V3) ∈ R3 such that:

1.
∑

k τkπk = π0,

2.
∑

k τkVk = V u
0 ,

3.
∑

k τkF (πk, Vk) > F (π0, V u
0 ).

The proof of Proposition 3 is direct from the definitions of an ex-ante improvement and the Pareto

frontier, using constrained Pareto optimality of the uninformative equilibrium, and the fact that the
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uninformative equilibrium is signal invariant. Proposition 3 shows that we can work with the dsistribution

of posterior beliefs and the Pareto frontier to study the existence of an ex-ante improvement. In Corollary

4 we relate this to the concavification of F .

Definition 8. Let g : [0, 1]×R 7→ R. The concavification of g is given by: cav g(x) ≡ sup {y|(x, y) ∈ co(g)},
where co(g) denotes the convex hull of the graph of g.

From Definition 8 it is direct to notice that cav g is concave, and everywhere weakly greater than

g. While there are alternative definitions for the concavification of a function, the one we use is useful

when applying Carathéodory’s theorem when proving the “if” part in Corollary 4.

Corollary 4. There exist an ex-ante constrained Pareto improvement over the uninformative equilibrium

if and only if the concavification of F at (π0, V u
0 ) is greater than F (π0, V u

0 ). There cannot be an ex-ante

constrained Pareto improvement if F is concave.

In Kamenica and Gentzkow [14] the authors study a symmetric information model where a sender

can choose a signal she reveals to a receiver, who takes a (contractable) action that affects the payoff

of both agents. They ask whether there exist a signal that leads the receiver to take an action that

benefits the sender, relative to the equilibrium where actions are taken based on the prior beliefs. They

show that there exist such a signal if and only if the concavification of the expected utility of the Sender

evaluated at the action based on the prior beliefs lies above the expected utility of the Sender evaluated

at the same point.

Similar to their analysis we can relate the existence of an information structure that makes the

Planner better off with the concavification of the Pareto frontier. We can think of the Planner as the

sender, who can choose the information structure. Agents c and u play the role of the receiver. They

observe the signal and their actions (excess demands) determine the equilibrium interest rate, which

affect the Planner’s payoff through the constrained feasible set.

A difference between our model and those considered in Kamenica and Gentzkow [14], is that in their

models Bayes plausibility is the only constraint that the sender has to satisfy. Our sender also has to

make sure that the levels of utility he assigns to agent u in every signal are such that she is indifferent

with respect to the uninformative equilibrium in expected value. In a sense this makes the problem of

the sender more flexible as his expected payoff function can fail to be concave in beliefs, utility levels, or

both. However it makes the analysis more complicated.

The concavification of a function has also been used to analyze the value of knowledge in a game

theoretical context. Aumann and Maschler [1] use it to analyze whether a player benefits from using his

knowledge of chance’s choice in a infinite 2-person game. To our knowledge there are no papers taking

this approach when studying the value of public information in a market economy. The “usual” approach

is to work with information structure defined as we did in section 2 (or by joint probability distributions

as in Gottardi and Rahi [10]). From now on we think of information structures as a vector of beliefs and

a vector of probabilities of signals such that Bayes-plausibility is satisfied.

5 Ex-post improvements

In this section we study the existence of ex-post constrained Pareto improvements. In a similar model,

but without c’s savings and short-sale constraints, Hakansson, Kunkel and Ohlson [11] showed that if
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prior beliefs and information structures are homogeneous, utility functions are time-additive, and the

uninformative equilibrium is fully Pareto efficient, then there cannot be an ex-ante improvement over

the uninformative equilibrium. Thus no ex-post improvements exist either.

Consider an uninformative equilibrium where c’s savings constraint is not binding. Since with the

existent assets agent h can generate any consumption vector in R2
+, this implies that such an equilibrium

belongs to the Pareto set and hence is fully Pareto efficient. Therefore, a necessary condition for the

existence of an ex-post improvement is for c’s savings constraint to be binding in the uninformative

equilibrium. To ensure this is the case, we need to introduce some assumptions in the parameters of the

model.

First, endowments in state one and state two have to differ, otherwise there is no uncertainty. We

assume that c is relatively rich in state one:

wc1 > wc2. (A1)

Second, a priori we do not know which of the two lower bounds on c’s consumption in period one is

higher, but to know their relative size simplifies the analysis. We assume that the lower bound on xc1 is

the biggest of the two:

wc1 + θ1 ≥ wc2 + θ2. (A2)

Define the beliefs π1, π2 and π as:

π1 ≡
2θ3 + 2(θ1 + wc1)− wc0 − wc2

wc1 − wc2
,

π2 ≡
2θ3 + 2(θ2 + wc2)− wc0 − wc2

wc1 − wc2
,

π ≡ max{π1, π2} = π1.

Notice that the denominator of π1 and π2 is positive by (A1), and (A2) implies that the numerator of

π1 is weakly greater than that of π2.

Proposition 5. Assume (A1) and (A2) hold. Equilibria are Pareto efficient if and only if π ≥ π. If

an equilibrium is not Pareto efficient, then the lower bound on xc1 is binding at that equilibrium, i.e.

xc1 = wc1 + θ1 + θ3R(π).

Proposition 5 show that π is a threshold such that if the prior is below π, then the uninformative

equilibrium is not fully Pareto efficient. For π to be in the interval (0, 1) we have to assume:

(wc0 − wc1) > 2(θ1 + θ3) > (wc0 − wc1)− (wc1 − wc2). (A3)

Assumptions (A1) and (A2) are without loss of generality, we just specify the relative magnitudes to

simplify our analysis.13 Assumption (A3) is important. This condition ensures that we can partition

[0, 1] in two non-empty sets such that equilibria are first best if and only if agents’ belief is in one of the

13 If we write (A1) with the reverse inequality, then the condition in Proposition 5 would also hold with the reverse

inequality. If (A2) were to hold with the reverse inequality then π = π2, but we would have to adjust assumption (A3) to

make sure that π2 ∈ (0, 1).
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partitions, and if agents’ belief is in the other partition at least one of the lower bounds on c’s period

one consumption is binding. We exploit this difference in the section on ex-ante improvements.14

From now on, assume π0 ≤ π. We show at the end of section 3 that equilibria are constrained Pareto

efficient. The following proposition shows that if the constrained feasible set does not vary with changes

in the information structure, the Planner cannot obtain an ex-post constrained Pareto improvement,

that is even if he uses a belief different from the common prior to compute expected utilities.

Proposition 6. Let x be the equilibrium allocation under π0. There is no x̂ ∈ CFS(R(π0)) and π1 ∈ [0, 1]

different from π0, such that V (x̂h, π1) ≥ V (xh, π1) for all h and with strict inequality for some h.

By constrained Pareto optimality, it follows that the allocations that make both agents better off

at the prior are not constrained feasible. Proposition 6 shows that this remains true even if we use a

different belief to compute the utility that both agents get from consuming their allocation.

To understand the idea behind Proposition 6 see Figure 2. For simplicity, assume there is no con-

sumption in period 0, and that c faces some lower bound on period 1 consumption, depicted by the

dashed straight lines in the figure. The shaded area represents the constrained feasible set. Assume

both constraints are binding at equilibrium and that this equilibrium is not in the Pareto set, which is

depicted by the diagonal of the box. The solid indifference curves represent this equilibrium. We need to

understand how the indifference curves that pass trough the initial equilibrium allocation change when

we increase the belief of state one. By definition the new indifference curves, depicted by the dashed

lines, pass through the initial equilibrium. To keep u indifferent we need to increase consumption in one

state and reduce consumption in the other state, but this implies reducing one of c’s consumptions. By

doing that we are choosing an allocation outside of the constrained feasible set.

If only one constraint is binding at equilibrium,15 then the argument we just gave is not enough. If

only the constraint on xc1 is binding, then xc1 > xc2 and xu2 > xu1 .16 Thus we could reduce xu1 and increase

xu2 to make u indifferent without leaving the constrained feasible set. But as MRSc1,2 < MRSu1,2 this

change cannot make c better off, where MRSh1,2 =
∂v(xh1 )

∂xh1
/
∂v(xh2 )

xh2
.

Proposition 6 makes clear that the only way to obtain an ex-post improvement is to find beliefs

such that the equilibrium interest rate under each signal is below the interest rate of the uninformative

equilibrium. In that case the constrained feasible set in the uninformative equilibrium is contained in

the constrained feasible set of each signal of the informative information structure. The next theorem is

a direct consequence of Proposition 6.

Theorem 7. Let πk for k = 1, 2, 3 be the beliefs under some informative information structure. The

uninformative equilibrium is ex-post constrained Pareto efficient if and only if R(πk) ≥ R(π0) for some

k.

Theorem 7 shows that ex-post improvements are possible if and only if the constrained feasible set

under π0 is contained in the constrained feasible set of the beliefs under all signals of the informative

14Notice that if the conditions in (A0) are satisfied with equality, then for (A3) to hold we need θ2 > −θ3 > θ1. Assuming

this last condition is true and fixing the endowments of the agents, then (A0) and (A3) are still satisfied if we reduce θ3

and increase θ1 in the same magnitude and any θ2 satisfying (A0), i.e. if we work with θ′3 = θ3 −∆, and θ′1 = θ1 + ∆, for a

small and positive ∆.
15By Proposition 5 there are no equilibria that are not fully Pareto efficient and the lower bound on xc1 is not binding.
16In this case the lower bound on xc2 is somewhere to the right of the vertical dashed line depicted in the figure.
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Figure 2: Indifference curves rotate at the equilibrium allocation when the belief of state one is increased.

u

c

x2

x1

information structure. This is the case when R(π0) > R(π(yk)) for all k. When considering marginal

changes in the belief, then an ex-post improvement exists if and only if R attains a strict local maximum

at π0. This differs with Gottardi and Rahi [10] who show that when markets are incomplete ex-post

improvements are always feasible, and in no way this depends on how prices react to the new information.

The next corollary is implied directly by Theorem 7:

Corollary 8. If R is monotonic, then the uninformative equilibrium is ex-post constrained Pareto effi-

cient for every informative information structure.

The shape of the equilibrium interest rate as a function of the belief is key for the existence of ex-post

improvements. In appendix H we show that Corollary 8 is not an empty statement. In Lemma 3 we use

the implicit function theorem to prove that when (A2) holds with equality, R is a monotone increasing

function below π for any v strictly increasing and strictly concave.

6 Ex-ante improvements

In this section we study the existence of ex-ante constrained Pareto improvements. In the first subsection

we study the shape of the function F , and in particular we investigate when it is concave. In the second

subsection we look for sufficient conditions for ex-ante improvements to exist.

For the discussion in the main text we assume that assumption (A2) is satisfied with equality, i.e

wc1 + θ1 = wc2 + θ2. The proofs in the general case are relegated to the appendix. In what follows we

assume π0 < π to ensure the uninformative equilibrium is not Pareto efficient.

6.1 Non-concavity of the Pareto frontier

In Corollary 4 we have shown that a necessary condition for the existence of ex-ante improvements is

for F to be non-concave. To prove the non-concavity of F (π, V ), we show it is not concave in π when

V is restricted to be u’s utility level at the uninformative equilibrium, V u(π0), that is we define a new
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function f(π, π0) ≡ F (π, V u(π0)) and show that f(π, π0) is not concave in π. Formally,

f(π, π0) ≡ F (π, V u(π0)) = {Max
xc

v(xc0) +
∑

πsv(xcs)

s. t. xcs ≥ wc
s + θs + θ3R(π) for s = 1, 2,

v(w − xc0) +
∑

πsv(w − xcs) ≥ V u(π0) } .

(5)

When wc1 + θ1 = wc2 + θ2, there is always full smoothing in period 1 consumption in equilibrium, as

both lower bounds on period 1 consumption coincide. The solution to the maximization problem in (5)

is characterized by xc1 = xc2 for all π.17 Therefore the function f coincides with the function f̂ defined

below:

f̂(π, π0) = { Max
{xc0,xc1}

v(xc0) + v(xc1)

s. t. xc1 ≥ wc1 + θ1 + θ3R(π) ,

v(w − xc0) + v(w − xc1) ≥ V u(π0) } .

Proposition 9. Assume f is defined at (π, π0). If (A2) is satisfied with equality, or if (A2) is satisfied

with strict inequality and f is not differentiable at π, then f is not concave.

Notice that the function f̂(π, π0) depends on π only through R(·) as the objective function is inde-

pendent of π. If f̂(π, π0) is defined at (π, π0), then f̂(π, π0) is equal to some constant, say f(π0) for all

π ≥ π, as R(π) = 1 for all π ≥ π, i.e. the constrained feasible set is constant to the right of π.18 Also

notice that f̂(π0, π0) > f̂(π, π0) for all π ≥ π, this follows from the fact that the constrained feasible

set under π ≥ π is a proper subset of the constrained feasible set under π0, as R(π0) < 1 = R(π).19

Therefore f̂(π0, π0) ≥ f̂(π, π0). In fact, as the constrained feasible set for a given belief is a convex set

and the maximiser of the problem defining f̂(π, π0) belongs to CFS(R(π0)) for all π ≥ π, strict concavity

of v implies that f̂(π0, π0) > f̂(π, π0) for all π ≥ π.

Consider the beliefs π1 = π0 and π2 = 1. There exist a τ ∈ (0, 1) such that τπ1 + (1 − τ)π2 = π.

But τ f̂(π1, π0) + (1− τ)f̂(π2, π0) > f̂(π, π0). Hence the function f̂(π, π0), and therefore f(π, π0), is not

concave in π.

Notice that the analysis above helps us explain why there cannot be an improvement if R is indepen-

dent of π, or in the standard pure exchange economy with complete markets and no aggregate uncertainty.

In both cases the objective function and the constraints are independent of π. Strict concavity of the

objective function and convexity of the constrained set imply concavity of F .

In the general case, when (A2) is satisfied with strict inequality, it is not longer true that the objective

function in the problem defining f is independent of the belief, as the solution may not display full

smoothing in period 1. This implies that we cannot use the approach explained above to prove non-

concavity.

Notice that when (A2) holds with strict inequality, it is still true that R(π) = 1 for all π ≥ π. Lemma

4 in appendix H shows that R(π) < 1 for all π < π. Thus the right derivative of R with respect to π at

17 If the constraints on xc1 and xc2 are both binding at the solution, then xc1 = xc2 at the solution. If both constraints are not

binding, then xc0 = xc1 = xc2 at the solution. If only the constraint on xc1 is binding, then at the solution xc0 = xc2 > xc1, but

then if we assign to c the constrained feasible allocation (xc0, x̃
c, x̃c), where x̃c = πxc1 +(1−π)xc2, we make both agents better

off as v is strictly concave. Therefore we cannot have xc0 = xc2 > xc1 at a solution. To discard the case when xc0 = xc1 > xc2

at equilibrium, we use the same logic.
18 The same argument implies that if f̂ is defined at (π, π0), then it is defined at (π, π0) for all π ∈ [π, 1].
19See appendix H.
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π is zero. If the left derivative of R with respect to π at π is different from zero, the functions F and f

are not differentiable. In the appendix we show that a sufficient condition for non-differentiability of R

is:

wc0 − wc2 6= 2(θ1 + θ3). (A4)

Numerical results confirm that the intersection between the subset of parameter values that satisfy

assumptions (A0), (A1), (A2) with strict inequality and (A3), and the subset of parameter values that

satisfy (A4) is non-empty.

To prove the non-concavity of f in the general case we do an analysis around (π, π0) and we exploit

the non-differentiability of f at this point. We show that when f is non-differentiable at (π, π0) its slope

marginally to the right of π is bigger than its slope marginally to the left of π. This condition allows us

to prove non-concavity independently of the actual sign of these slopes.

So far we have assumed that f is defined at (π, π0). In appendix I, Lemma 8 provides a sufficient

condition for f to be defined at (π, π0). We show that if π0 is sufficiently close to π, then f is indeed

defined at (π0, π).

6.2 Sufficient conditions for an ex-ante improvement

In the previous subsection we argued that f , and therefore F , is not concave. In this subsection we

first determine the actual shape of f and that of its concavification. We complete the analysis with a

sufficient condition for the existence of ex-ante constrained Pareto improvements.

By Corollary 4 and the definition of f , to see if ex-ante improvements are possible we need to compare

cav f and f at the point (π0, π0). For simplicity, in the main text we assume that f(π, π0) is defined for

all π ∈ [0, 1].

Remember that when (A2) is satisfied with equality we always have xc1 = xc2 in equilibrium. Therefore

we can depict the equilibrium in an Edgeworth box. In Figure 3, where we have period 0 and period 1

consumption in the horizontal and vertical axes respectively, the dashed horizontal line represents the

lower bound on period one consumption and the uninformative equilibrium is given by a point like A for

any π0 < π. The Pareto set, characterized by full consumption smoothing across periods (and states), is

depicted by the diagonal line connecting the bottom left and upper right corners of the box.

Figure 3: Uninformative equilibrium and allocations xh(π0) and xh(π0).
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Let 1 ∈ R3 be the vector of ones. Consider the allocation

xc(π0) = 1α(π0) and xu(π0) = 1w − xc(π0),

where α(π0) is the solution to

2v(w − α) = V u(π0).

That is, xc(π0) is a constant consumption plan for c that gives u her uninformative equilibrium utility,

V u(π0). Allocation (xc(π0), xu(π0)) is depicted as point B in Figure 3, the point where u’s indifference

curve that passes through the uninformative equilibrium allocation (point A) cuts the Pareto set. Notice

that this allocation gives c the highest possible utility conditional on u being indifferent with respect to the

uninformative equilibrium. Thus, if (xc(π0), xu(π0)) is constrained feasible for π, f(π, π0) = V (xc(π0), π).

Consider also the allocation

xc(π0) =
(
α(π0), wc1 + θ1 + θ3, w

c
1 + θ1 + θ3

)
and xu(π0) = 1w − xc(π0),

where α(π0) is the solution to:

v(w − α) + v(wu1 − θ1 − θ3) = V u(π0).

That is, x(π0) is the period 0 consumption level for c such that if she consumes wc1+θ1+θ3 in both states in

period 1, then u is indifferent with respect to the uninformative equilibrium. Allocation (xc(π0), xu(π0))

is depicted as point C in Figure 3. Notice that xc(π0) is constrained feasible for every belief as R(π) ≤ 1

for every π ∈ [0, 1].

By construction u is indifferent between the uninformative equilibrium and allocations xu(π0) and

xu(π0). We have drawn Figure 3 in such a way that these allocations are well defined, however it may be

the case that one or both of them are not feasible. Lemma 9 in appendix J gives us a sufficient condition

for both allocations to be feasible. Assume for now that both α(π0) and α(π0) are in [0, w].

Define π(π0) as a belief such that α(π0) is c’s equilibrium consumption in state one. That is, π(π0)

is the value of π that solves:

α(π0) = wc1 + θ1 + θ3R(π).

Graphically, π(π0) is the belief that makes the lower bound on state one consumption to pass through

point B in Figure 3. Assume for now that π(π0) ∈ [0, 1]. Note that π(π0) < π0 as R is monotone

increasing below π whenever (A2) holds with equality and wj1 + θ1 + θ3R(π0) > wj1 + θ1 + θ3R(π(π0))

(See Figure 3).

As R(π) is increasing in π for all π < π, then xc(π0) is constrained feasible for all π ≤ π(π0).

Consequently, f is constant, say equal to f(π0), to the left of π(π0). Note that f(π0, π0) is c’s utility

associated with the indifference curve through point A, and f(π(π0), π0) is c’s utility associated with

the indifference curve through point B. Since point A is not in the Pareto set by Proposition 5, then

f(π, π0) > f(π0, π0) for all π ≤ π(π0).

The function f is constant to the left of π(π0) and in the previous subsection we argue it is also

constant to the right of π, i.e. f(π, π0) = f(π0) for all π ≥ π. A priori we do not know the shape of

f(π, π0) for π ∈ [π(π0), π]. If f is convex in this interval, then we have ex-ante improvements, as the

concavification of f in this case is equal to f to the left of π(π0) and to the right of π, and the straight

line joining f(π, π0) and f(π(π0), π0) elsewhere.
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In Figure 4a we have drawn f(π, π0) assuming it is strictly concave for π ∈ [π, π]. In this case the

concavification of f is given by the straight dashed line starting from f(1, π0) that is tangent to f ,

and cav f coincides with f for beliefs below the tangency point. We denote the tangency point by πt.

Therefore, we have ex-ante improvements if and only if π0 > πt.

Figure 4: f and its concavification when (A2) holds with equality.

π

f(π, π0)

ππ πt

E

Df(π0)

f(π0)

(a) π0 6= π

π

f(π, π0)

ππ0 π̃0

f(·, π0)

f(·, π)

f(·, π̃0)

(b) π0 → π

Suppose we have a common prior π0 below πt so that cav f(π0, π0) coincides with f(π0, π0) as in

point D in Figure 4a. A hasty conjecture would be that for a common prior π0 to the right of πt, cav

f(π0, π0) would lie strictly above f(π0, π0), like in point E in the figure. However, notice that π, πt, f

and f are all functions of π0. So by increasing π0 we change π and πt and also the value that f attains

at those points and at the point π, as by changing the common prior we are changing the expected

wealth of the agents in the uninformative equilibrium and the position of u’s indifference curve at this

equilibrium.

To understand how f changes as we increase the prior it is useful to go back to Figure 3. In

Figure 3 we show the effect of an increase in the prior on allocations xh and xh. If we change π0 to

π̃0 > π0, as u is relatively poor in period 1 (assumption (A1)), and as utilities are independent of the

probability of state one (since (A2) holds with equality), u’s indifference curve at the uninformative

equilibrium is shifted down. The same argument gives us that c’s indifference curve is shifted upwards

and the uninformative equilibrium moves from point A to point A’, i.e. c attains a higher utility at the

uninformative equilibrium. Thus f(π̃0, π̃0) > f(π0, π0). By definition, f(π̃0) is the utility of agent c at the

point where u’s uninformative equilibrium cuts the Pareto set. As u’s indifference curve is shifted down,

it now cuts the Pareto set in a point that gives c more consumption in every period, thus f(π̃0) > f(π0)

(see points B’ and B). As R is monotone increasing below π and wc1+θ1+R(π(π̃0)) > wc1+θ1+R(π(π0)),

then π(π̃0) > π(π0). Finally, as u’s indifference curve is shifted down and xc1 = w1 + θ1 + θ3 is unchanged

the point where it cuts the horizontal line at xc1 = w1 + θ1 + θ3 gives more period zero consumption to

c, i.e. xc0 is increased. Thus f(π̃0) > f(π0) (see point C’ and C).

The analysis above explains why f is shifted upwards when we increase agents’ prior, as shown in

Figure 4b. The extreme case when π0 = π is also shown in Figure 4b. In that case the uninformative

equilibrium is in the Pareto set, and it is constrained feasible for every belief, hence f is flat, and it lies

above f(π, π0) for all π ∈ [0, 1] and all π0 < π. See point A in Figure 5.
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Thus we see that even though f fails to be concave, it is not direct to see if cav f > f at the point

(π0, π0). If for a given prior we have π0 < πt(π0), it is also not clear if by changing the prior we can

move the economy to an uninformative equilibrium that is not ex-ante constrained Pareto efficient.

We will show that ex-ante improvements exist if π0 is close to π. Let’s redefine the prior on state one

as π0(ε) ≡ π − ε, with ε ∈ [0, π]. Therefore now all x, x and π are functions of ε.

The uninformative equilibrium displays full smoothing if and only if π0 ≥ π , hence π(ε) = π0(ε) if

and only if ε = 0. Above we argue that π(ε) < π0(ε) for all ε > 0.20 Consider the beliefs π1 = π(ε),

π2 = 1 and π3 = π0(ε). Notice that xc(ε) is constrained feasible under π1, and xc(ε) is constrained

feasible under π2. For an ex-ante improvement to exist, it is sufficient to find τ1 ∈ (0, 1) and τ3 ∈ [0, 1)

such that τ1 + τ3 < 1 and:

π0(ε) = τ1π1 + (1− τ1 − τ3)π2 + τ3π3,

V c
0 < τ1V (xc(ε), π1) + (1− τ1 − τ3)V (xc(ε), π2) + τ3V c

0 ,

since u is indifferent with respect to the uninformative equilibrium by construction when allocated xu

and xu.

Bayes plausibility implies that τ1 has to satisfy:

τ1 = (1− τ3)π
0(ε)− π2

π1 − π2
= (1− τ3)π

0(ε)− 1

π(ε)− 1
≡ τ̃(ε).

Let

V (ε) ≡ V (xc(ε), π(ε)),

V (ε) ≡ V (xc(ε), 1),

V0(ε) ≡ V c
0 .

Agent c is ex-ante indifferent between mixing V (ε), V (ε) and V0(ε), and the uninformative equilibrium

if she gets V (ε) with probability:

τ1 = (1− τ3)V0(ε)− V (ε)

V (ε)− V (ε)
≡ τ̂(ε).

If τ̂(ε) ≤ τ̃(ε), then there exist an ex-ante constrained Pareto improvement as V (ε) > V0(ε) > V (ε) (see

points B, A and C in Figure 3). Equality between τ̂ and τ̃ is sufficient as the Planner could still smooth

period 0 consumption between signals.

The limit as ε goes to 0 of τ̃(ε) is equal to 1 − τ3, as π(ε) converges to π0(ε) as ε tends to zero. If

we can show that the limit as ε tends to 0 of τ̂(ε) is equal to a(1− τ3) for some constant a < 1, then we

would have proved the existence of an ex-ante improvement.

20At a first glance there is no reason to think that π(ε) ∈ [0, 1]. For example if x(π0) < min
{π}
{wc1 + θ1 + θ3R(π)} then

x(π0) is never constrained feasible, or if R is strictly increasing below π, we may have x(π0) < wc1 + θ1 + θ3R(0) in which

case the same conclusion applies. In appendix J we formally show that π is well defined in an interval around ε = 0.
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Figure 5: Indifference curves at ε = 0.
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In Figure 5 we show the picture that led us to think that the limit of τ̂ is strictly lower than 1− τ3.
For this, we need the limit of V0(ε)−V (ε)

V (ε)−V (ε)
to be strictly lower than one. From the figure we see that the

ratio is strictly lower than one for every ε > 0. Agent c’s indifference curve at point C represents V0(ε),

her indifference curve at point B represents V (ε), and her indifference curve at point D represents V (ε).

Thus it is direct to see that V0(ε)−V (ε)

V (ε)−V (ε)
< 1 for all ε > 0. However this is not sufficient to prove that

the limit of the ratio is strictly below one, as the ratio is not defined at ε = 0. Point A depicts the

equilibrium when ε = 0. In that point V , V and V0 take the same value.

If we increase ε marginally starting from ε = 0, the indifference curves of the agents are shifted from

point A to those in the right of the figure. From c’s perspective, point B is associated with higher utility

relative to point C, i.e. V (ε) > V0(ε). As we can think of the (right) derivatives of V and V0 at ε = 0

as the distance between c’s indifference curves at points A and B, or points A and C respectively, this

suggest that if we apply L’Hôpital’s rule to compute the limit of V0(ε)−V (ε)

V (ε)−V (ε)
, we obtain a limit strictly

lower than one.

Theorem 10. Suppose either (A2) is satisfied with equality or (A4) holds. Then there exist a δ > 0

such that if ε ∈ (0, δ) then the uninformative equilibrium is not ex-ante constrained Pareto efficient.

However when using L’Hôpital’s rule to compute the limit of τ̂(ε), we need to apply it twice as in the

limit when the increment of ε goes to zero, V ′0 , V
′
, and V ′ coincide. We use an alternative approach to

compute the limit of τ̂(ε). First we define the function g(a, ε) = aV (ε) + (1 − a)V (ε) − V0(ε), mapping

R× [0, π] into R. Then we show that there exist a < 1 such that g(a, ε), as a function of ε, attains a strict

local minimum at (a, 0), and that g(a, 0) = 0. Thus g(a, ε) > 0 for all ε in a neighborhood of zero. Using

the definition of g, g(a, ε) > 0 is equivalent to aV (ε) + (1− a)V (ε)− V0(ε) > 0, or V0(ε)−V (ε)

V (ε)−V (ε)
< a < 1 for

all ε in the neighborhood. This last expression tells us that the limit of τ̂ is strictly below 1− τ3.
When assumption (A2) holds with strict inequality, the difference is that we do not know a priori if

π(ε) is above or below π0(ε), as we do not know how R changes when we vary the belief. In appendix J

we show that π(ε) is a continuous function in an interval around ε = 0. As π = π0 if and only if ε = 0,

continuity implies that π(ε) is always above or below π0(ε). If π(ε) < π0(ε), then the analysis explained

above is still valid. If π(ε) > π0(ε), then the only difference is that we need to set π2 = π0(ε) − γ for

some fixed and small γ > 0.
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7 Conclusion

We have shown that in economies where savings and short-sale constraints may prevent equilibrium from

being fully Pareto efficient, public information may have positive social value. Information-driven price

changes may allow a benevolent social planner facing the same information and asset constraints, to

obtain ex-ante constrained Pareto improvements under quite general conditions. Unlike Gottardi and

Rahi [10], ex-post improvements are attainable only under special conditions for the equilibrium interest

rate. The reaction of prices due to the arrival of new information is a necessary condition for information

to have social value. Thus we need to be careful when judging the welfare implications of such price

changes. Cuevas, Bernhardt and Sanclemente [5] documents that the Chilean authorities viewed the

arrival of new information as bad for the economy because it affected asset prices. Our analysis showed

that a Planner could take advantage of such a situation and improve welfare. However, our result on

ex-post improvements suggest that the authorities are right to be worried if they are concerned with

welfare from an ex-post point of view.

Our results provide new insights on the value of public information in exchange economies where

equilibria are not necessarily fully Pareto efficient. Gottardi and Rahi [10] show that with incomplete

markets a Planner can obtain ex-post improvements for any initial information structure, by locally

changing the information agents receive before trading. In our setting, constrained ex-post improvements

are possible only under special circumstances: the uninformative equilibrium interest rate needs to be

above the equilibrium interest rate for every signal of the informative information structure. In the main

result of the paper we show that ex-ante improvements exist if the common prior is sufficiently close to

the threshold dividing first best equilibria from equilibria where the savings constraint and short-sale

constraint are binding. These ex-ante improvements are not marginal in nature. We consider a situation

where posterior beliefs can be far away from the prior, in fact one of the posterior beliefs is equal to one.

Finally, we have shown that the study of the value of information in exchange economies can be

simplified by adopting the techniques used in the literature on Bayesian persuasion. The simplification lies

in realizing that information structures can be defined as a vector of beliefs and a vector of probabilities

of the beliefs such that Bayes plausibility is satisfied. By taking the Planner as the sender and the

agents as the receivers, whose actions affect the Planner’s payoff by changing equilibrium prices and

the constrained feasible set, we can relate the value of information to the concavity of the Planner’s

utility function, the Pareto frontier. The difference between our model and the standard problem in the

Bayesian persuasion literature is that on top of Bayes plausibility, the sender has to make sure that the

utility levels he assigns to the unconstrained agent, leave her indifferent with respect to the uninformative

equilibrium.

Our analysis used the condition that the total endowment is constant in every period and state of the

world. Possible extension of this work may be to relax this assumption and see if our results extend to

this more general setting. Also, in our current model there is no reason why agents should face mandatory

constraints, therefore the best thing the Planner could do is to remove the mandatory savings altogether.

We plan to extend our model to the case of preferences involving hyperbolic discounting or temptation,

where having mandatory savings constraints can be optimal. Finally, we have been silent about the

existence of ex-ante improvement through marginal changes in beliefs, in future work we plan to relate

this to Radner and Stiglitz [20].
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Appendix A Proof of Proposition 1

To prove the existence of an equilibrium, instead of working with the financial market equilibrium defined

in Definition 1, it is easier to write the model in terms of contingent consumption. For this, we define a

non-arbitrage equilibrium following Magil and Quinzii [15]. We then prove the equivalence between both

types of equilibria. First, let’s define alternative budget sets for both agents:

Bc(p, wc) =

{
xc ∈ R3

+

∣∣∣∣∣
2∑

s=0

psx
c
s =

2∑
s=0

psw
c
s, x

c
s ≥ wc

s + θs +
p0θ3
p1 + p2

∀s ∈ {1, 2}

}
,

Bu(p, wu) =

{
xu ∈ R3

+

∣∣∣∣∣
2∑

s=0

psx
u
s =

2∑
s=0

psw
u
s

}
.

(6)

where p = (p0, p1, p2) is the vector of contingent consumption prices. Using the budget sets in (6) we

can now define a non-arbitrage equilibrium:

Definition 9. Given π, a non-arbitrage equilibrium is a collection of prices p ∈ R3
++ and consumption

plans x = (xu, xc) ∈ R6
+, such that:

1. xh ∈ argmax
{
V h(xh, π)

∣∣xh ∈ Bh(p, wh)
}
∀h ∈ {c, u},

2.
∑

h

(
xh − wh

)
= 0.

Having defined both types of equilibria, we can now prove their equivalence. First we show the

equivalence of both budget sets in the absence of arbitrage.

Lemma 1. Let q = (1, q1) ∈ R4
++, and p = (1, p1) ∈ R3

++. If q1 = p1Φ, then Bh(q, wh) = Bh(p, wh) for

all h.

Proof. Notice that the non-arbitrage condition q1 = p1Φ implies: q11 = p11, q
1
2 = p12, and q13 = p11 + p12.

Assume xh ∈ Bh(q, wh) for all h, then:

xh0 − wh0 = −q1zh = −p1Φzh = −

(∑
s

p1sΦs

)
zh, (7)

where Φs represents row s of matrix Φ. The budget constraint in period 1 implies:

xhs − whs = Φsz
h,

thus we can rewrite (7) as:

xh0 − wh0 = −
∑
s

p1s(x
h
s − whs ). (8)

Furthermore as zcs ≥ θs for s = 1, 2, and q13z
c
3 ≥ θ3:

xcs = wcs + zcs + zc3 ≥ wcs + θcs +
θ3
q13
. (9)

Equations (8) and (9) imply that xh ∈ Bh(p, wh) for all h.

Assume now xh ∈ Bh(p, wh) for all h. Then xcs −wcs ≥ θs + θ3/(p
1
1 + p12). Fix zc3 = θ3/q

1
3 and zcS = θs

for s = 1, 2, and let consumption in period s be given by:

xcs − wcs = zcs + zc3.

As q13 = p11 + p12, replacing xcs = wcs + zcs + zc3 into
∑2

s=0 psx
c
s =

∑2
s=0 psw

c
s we obtain xc0 +

∑
k q

1
kz
c
k = wc0.

These two results imply that xc ∈ Bh(q, wh). For u the result follows from noticing that she can freely

choose the zu ∈ R3. Then for any xus − wus there exist zu ∈ R3 such that xus − wus = zus + zu3 .
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From the equivalence between the two budget sets under no arbitrage, when can prove the equivalence

between the two types of equilibria.

Lemma 2.

1. If (x, z, q) is a financial market equilibrium with q = (1, q1), then (x, p), with p = (1, p1), and p1

satisfying q1 = p1Φ, is a non-arbitrage equilibrium.

2. If (x, p) is a non-arbitrage equilibrium with p = (1, p1), then there exist portfolios zu and zc and

asset prices q1 = p1Φ such that (x, z, (1, q1)) is a financial market equilibrium.

Proof.

1. By Lemma 1, xh ∈ argmax{V (xh, π)
∣∣xh ∈ Bh(q, wh)} implyxh ∈ argmax{V (xh, π)

∣∣xh ∈ Bh(p, wh)}
for all h. As

∑
h z

h
l = 0 for l = 1, 2, 3, then

∑
h(xhs − whs ) = 0 for s = 0, 1, 2.

2. By Lemma 1, xh ∈ argmax{V (xh, π)
∣∣xh ∈ Bh(p, wh)} implyxh ∈ argmax{V (xh, π)

∣∣xh ∈ Bh(q, wh)}
for all h. As

∑
h(xhs − whs ) = 0 for s = 0, 1, 2, then

∑
h z

h
l = 0 for l = 1, 2, 3.

Using the equivalence between financial market equilibria and non-arbitrage equilibria, we can now

prove the existence of a financial market equilibrium following the standard proof involving contingent

consumption.

Proof of Proposition 1:

We will prove the existence of a non-arbitrage equilibrium, and then invoke Lemma 2.

It is well-known that agent u’s optimal demand function for contingent consumption is continu-

ous, homogeneous of degree zero, satisfies Walras’ law, satisfies non-negativity, and has the appropriate

boundary behavior. The proof can be found, for example, in Hildenbrand and Kirman [12]. Below we

will argue that c’s demand function has the same properties. Let’s start with continuity: As V (·) is con-

tinuous in consumption, if we can show that c’s budget correspondence, defined in (6), is compact-valued

and continuous, continuity of c’s demand function follows from the maximum theorem. That Bc(p, w) is

compact-valued is direct when prices are strictly positive. Let’s study its continuity.

Upper hemi continuity: Take a sequence (pn, wn) ∈ R4
++ × R3

+ converging to (p, w) ∈ R4
++ × R3

+. Let

(xn) ∈ R3
+ be a sequence such that (xn) ∈ Bc(pn, wn) ∀n. As we explained after Proposition 1 in page

7, our assumptions on θl for l = 1, 2, 3, guarantee that the budget correspondence is never the empty

set. Clearly the sequence (xn) is bounded below by the zero vector. Let p = maxs (supn ps,n) > 0,

where s ∈ {0, 1, 2}; w∗ = maxs (supnws,n) > 0, and p = mins (infn ps,n) > 0.21 Then xs,n ≤ pw∗

p for

all s and n. Hence the sequence (xn) is bounded, and by the Bolzano-Weierstrass Theorem it has a

convergent subsequence: xnk → x. Since xnk ∈ Bc(pnk , wnk):
∑2

s=0 ps,nkxs,nk ≤
∑2

s=0 ps,nkws,nk , and

xs,nk ≥ ws,nk + θs +
p0,nkθ3

p1,nk+p2,nk
for s = 1, 2. Taking limits it’s direct to see that x ∈ Bc(p, w), as weak

inequalities hold at the limit.

21Let ε be such that ps − ε > 0, where ps is the limit of the convergent sequence (ps,n). Then there exist N such that for

all n ≥ N : ps + ε > ps,n > ps− ε > 0. Therefore ps,n > min{ps− ε,min{ps,1, ..., ps,N−1}} > 0 for all n, as the sequence only

takes strictly positive values. This implies infn ps,n > 0. A similar argument gives us that w∗ and p are strictly positive

and do not diverge to infinity.
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Lower hemi continuity: Fix (p, w) ∈ R4
++×R3

+. LetO be an open subset of R3
+ such that Bc(p, w)∩O 6=

∅. Suppose Bc(p, w) is not lower hemi continuous at (p, w), then for every n ∈ N there exist a (pn, wn)

within a 1
n -neighborhood of (p, w) such that Bc(pn, wn) ∩O = ∅. Take any x ∈ Bc(p, w) ∩O such that x

is in the interior of Bc(p, w). Then λx ∈ Bc(p, w)∩O for λ ∈ (0, 1) sufficiently close to 1. But as (pn, wn)

converges to (p, w) and px−pw < 0 and xs > wxs+θs+p0θ3/(p1+p2) for s = 1, 2, continuity of λpnx−pnwn
and xs−wxs − θs−p0θ3/(p1 +p2) implies that λpnx−pnwn < 0, and xs > wcs,n+ θs+p0,nθ3/(p1,n+p2,n),

for s = 1, 2; for n large enough. But then x ∈ Bc(pn, wn) for such n. This contradicts O and Bc(pn, wn)

being disjoint. Thus the budget correspondence is continuous, and we obtain continuity of demand using

the maximum theorem.

Walras’ law follows from strong monotonicity of preferences, and homogeneity of degree zero follows

from the fact that the budget set does not change if we multiply all prices by the same constant.

Define the excess demand function of agent h as:

φh(p) = xh(p, wh)− wh,

where xh(p, wh) is h’s Walrasian demand function. The aggregate excess demand function of the economy

is:

φ(p) =
∑
h

φh(p).

As xh(·) is continuous, homogeneous of degree zero and satisfy Walras’ law, these properties are di-

rectly inherited by φ(p). As xh(·) ≥ 0, this implies there exist an m > 0 such that φs(p) > −m for

every s and all p. Finally we have to prove that if pn → p, where p 6= 0 and ps = 0 for some s, then

max {φ0(pn), φ1(p
n), φ2(p

n)} → ∞. Suppose this is not true. Then the sequences max
{
φh0(pn), φh1(pn), φh2(pn)

}
does not diverge to infinity for any h, and so each of the φhs (pn) for s = 0, 1, 2 does not diverge to infinity

for any h. Assume the value of c’s endowment is different from zero at the limit. Then, there is a

bounded set B ⊂ R3
+ such that φc(pn) ∩ B 6= ∅ for infinitely many n. Then the sequence (φc(pn)) ∈ B

has a convergent subsequence. Let φc∗ be the limit of this subsequence, and define xc∗ = φc∗+wc. Then

xc∗ ∈ R3
+ and pxc∗ = pwc. Take any other xc ∈ R3

+ such that pxc ≤ pwc. If pxc < pwc, then for n large

enough pnxc < pnwc. Let xcn = φc(pn) + wc, then xcn % xc. By continuity of preferences: x∗c % xc. If

pxc = pwc we can find a sequence (x̂cn) converging to xc with px̂cn < pwc, but then x∗c % x̂cn, and by

continuity of preferences: x∗c % xc. But this is a contradiction since by strong monotonicity the demand

of c at p is not well defined , because by consuming more of the good with price equal to zero, she can

increase her utility at no cost. If the value of c’s endowment at the limit is equal to zero, then the result

follows from doing the sames analysis for u as total endowment w is assumed to be strictly positive.

As the excess demand function is defined for all strictly positive price vectors, and satisfy all the prop-

erties explained above, existence of equilibrium follows from Proposition 17.C.1 in Mas-Colell, Whinston

and Green [17]. �

Appendix B Proof of Proposition 2

Let x = (xu, xc) be the competitive equilibrium allocation and normalize q0 = 1. Assume x is not

constrained Pareto optimal, then there exist a constrained feasible allocation x and a supporting portfolio

z such that v(xh) ≥ v(xh) for all h and, say, v(xc) > v(xc). As x is feasible,
∑

h x
h
s − whs ≤ 0 for
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s = 1, 2. This implies Φ
∑

h z
h ≤ 0. As equilibrium prices q satisfy no arbitrage:22 q

∑
h z

h ≤ 0.

Local non satiation of preferences imply that: xu0 +
∑3

s=1 qsz
u
s ≥ wu0 . Similarly, as v(xc) > v(xc):

xc0 +
∑3

s=1 qsz
c
s > wc0. Adding across consumers:

∑
h x

h
0 + q

∑
h z

h > w. Thus
∑

h x
h
0 > w which

contradicts constrained feasibility of x. �

Appendix C Proof of Proposition 3

If there exist an ex-ante Pareto improvement, then there exist an informative information structure Ŷ ,

and a constrained feasible allocation under Ŷ , (x̂(y1), x̂(y2), x̂(y3)) with:∑
k

pr(yk)V
u(x̂u(yk), π(yk)) =

∑
k

pr(yk)V
u(xu(yk), π(yk)),∑

k

pr(yk)V
c(x̂c(yk), π(yk)) >

∑
k

pr(yk)V
c(xc(yk), π(yk)).

(10)

where x is the uninformative equilibrium allocation. Set πk = π(yk) and τk = pr(yk) for k = 1, 2, 3, where

π(yk) and pr(yk) are the beliefs and signal probabilities implied by Ŷ . Bayes’ rule imply that the beliefs

under Ŷ , π(yk), have to satisfy condition 1 in the proposition. Let Vk = V u(x̂(yk), π(yk)) for k = 1, 2, 3,

then condition 2 is also satisfied. The allocation (x̂c(y1), x̂
c(y2), x̂

c(y3)) satisfy all the constraint in

(4) when F is evaluated at (π(y1), V1), (π(y2), V2), and (π(y3), V3) respectively. Hence F (π(yk), Vk) ≥
V c(x̂c(yk), π(yk)), and using (10), condition 3 is satisfied, as the uninformative equilibrium is constrained

Pareto efficient by Proposition 2, i.e. F (π0, V u
0 ) = V c(xc, π0) and

∑
k pr(yk)V

c(xc(yk), π(yk)) = V c
0 .

Assume there exist vectors (τ1, τ2, τ3) ∈ ∆2, (π1, π2, π3) ∈ [0, 1]3 and a vector of utility levels

(V1, V2, V3) ∈ R3 such that conditions 1, 2 and 3 are satisfied. Let x̂c(yk) be the argmax of the op-

timization problem defining F (πk, Vk), and x̂u(yk) = w− x̂c(yk) for k = 1, 2, 3. Then (x̂(y1), x̂(y2), x̂(y3))

is constrained feasible. Furthermore V u(x̂u(yk), πk) = Vk, and V c(x̂c(yk), πk) = F (πk, Vk) for k = 1, 2, 3.

Then conditions 2, and 3 imply that the allocation (x̂(y1), x̂(y2), x̂(y3)) obtains an ex-ante Pareto im-

provement over the uninformative equilibrium, as F (π0, V u
0 ) = V c

0 =
∑

k τkV
c(xc(yk), πk). �

Appendix D Proof of Corollary 4

We will start from the last part of the corollary. If F is concave, then
∑

k pr(yk)π(yk) = π0 and∑
k pr(yk)Vk = V u

0 implies
∑

k pr(yk)F (π(yk), Vk) ≤ F (π0, V u
0 ). Therefore we cannot have an ex-ante

improvement by Proposition 3. Next we need to show that if there exist an ex-ante Pareto improvement,

then cav F (π0, V u
0 ) is greater than F (π0, V u

0 ). If F coincide with cav F at the point (π0, V u
0 ), then

when
∑

k pr(yk)π(yk) = π0 and
∑

k pr(yk)Vk = V u
0 we have

∑
k pr(yk)cav F (πk, Vk) ≤ cav F (π0, V u

0 ) =

F (π0, V u
0 ), as the concavification is concave. But by definition cav F (πk, Vk) ≥ F (πk, Vk) for all k,

therefore
∑

k pr(yk)F (πk, Vk) ≤ F (π0, V u
0 ). Finally, assume the concavification of F is greater than F at

(π0, V u
0 ). Carathéodory’s theorem states that if a point m of R3 lies in the convex hull of the graph of F ,

then m lies in a 2-simplex with vertices in the graph of F . As the concavification of F is the boundary of

the closure of the convex hull of F , cav F (π0, V u
0 ) belongs to the boundary of a 2-simplex with vertices in

the graph of F . Therefore (π0, V u
0 , cavF (π0, V u

0 )) =
∑3

k=1 αkmk, with
∑

k αk = 1, αk ≥ 0 for all k, and

where mk = (πk, Vk, F (πk, Vk)) is a point in the graph of F for k = 1, 2, 3. As cav F (π0, V u
0 ) > F (π0, V u

0 ),

setting pr(yk) = αk we obtain that
∑

k pr(yk)F (πk, Vk) > F (π0, V u
0 ). �

22Otherwise the optimization problem of agent u has no solution.
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Appendix E Proof of Proposition 5

We start with the first part of the proposition. Let’s work with the model in terms of contingent

consumption. Assume the equilibrium under π is full Pareto efficient. Full Pareto optimality in our

economy is characterized by full consumption smoothing, i.e. xh0 = xhs for s = 1, 2 for all h. From

agents’ optimality conditions it is easy to see that this allocation implies that equilibrium prices are

(p0, p1, p2) = (1, π, 1 − π), and xc1 = 1
2 (wc0 + πwc1 + (1− π)wc2). In equilibrium, as R(π) = 1, we must

have xc1 ≥ wc1 + θ1 + θ3, hence:

1

2
(wc0 + πwc1 + (1− π)wc2) ≥ wc1 + θ1 + θ3. (11)

Solving the inequality in (11) for π we obtain:

π ≥ 2θ3 + 2(θ1 + wc1)− wc0 − wc2
wc1 − wc2

= π1. (12)

Assume now that π ≥ π1. From inequality (12) we can go back to (11) and therefore the allocation

xhs = 1
2

(
wh0 + πwh1 + (1− π)wh2

)
for s = 0, 1, 2 and for all h satisfy both lower bounds on c’s period 1

consumption, and jointly with prices (p0, p1, p2) = (1, π, 1− π) is the only equilibrium when the belief is

π. As there is full smoothing across time and states of the world, the equilibrium is fully Pareto efficient.

Now we prove the inverse of the second part of the proposition. First, notice that in any equilib-

rium where c’s lower bound on state one consumption is not binding, then the lower bound on state 2

consumption cannot be binding. As the lower bound on xc2 is the smallest of the two lower bound, if

it were binding, then c could increase her utility by marginally reducing xc1 and increasing xc2 to bring

both consumptions closer together. Assume now that in equilibrium the lower bounds on c’s state one

consumption is not binding (and therefore the lower bound on xc2 is also not binding), then from the

optimality conditions of both agents we have:

u′(xhs )

u′(xh0)
=
ps
πs

for s = 1, 2, ∀h. (13)

Equation (13) implies that the equilibrium allocation satisfies xh0 = xh1 = xh2 for all h. We obtain full

Pareto efficiency of the equilibrium. �

Appendix F Proof of Proposition 6

Assume, as a way of contradiction, that there exist x̂ and π1 such that V (x̂h, π1) ≥ V (xh, π1) for all h

and with strict inequality for some h. By convexity of CFS(R), if there exist such Pareto improvement,

then there exist a marginal improvement. Let’s compute the directional derivative of V (xu, π1):

DαV
u
0 = v′(xu0)α0 + π1v′(xu1)α1 + (1− π1)v′(xu2)α2, (14)

where xhs is h’s equilibrium consumption in state s in the uninformative equilibrium, with period 0 denoted

by s = 0. For u to be indifferent with respect to the uninformative equilibrium we need DαV
u
0 = 0.

When u is indifferent we can solve equation (14) for α0:

α0 =
−
(
π1v′(xu1)α1 + (1− π1)v′(xu2)α2

)
v′(xu0)

. (15)
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Computing the directional derivative for c, forcing changes in consumption to be feasible, we obtain:

DαV
c
0 = −v′(xc0)α0 − π1v′(xc1)α1 − (1− π1)v′(xc2)α2. (16)

Feasible changes that leave u indifferent have to satisfy (15). Replacing (15) into (16):

DαV
c
0 = −α1π

1v′(xu1)

(
v′(xc1)

v′(xu1)
− v′(xc0)

v′(xu0)

)
− α2(1− π1)v′(xu2)

(
v′(xc2)

v′(xu2)
− v′(xc0)

v′(xu0)

)
.

If in the uninformative equilibrium all constrains are binding, then xh0 6= xh1 6= xh2 . In particular we have

xc1 > xc2 > xc0 and xu0 > xu2 > xu1 . As v′ is decreasing:

v′(xcs)

v′(xus )
− v′(xc0)

v′(xu0)
< 0 for s = 1, 2. (17)

Therefore, for c to be better off we need at least one αs > 0. This means increasing u’s consumption in

one of the states in period 1, or reducing c’s consumption. But as both lower bounds are assumed to

be binding, those changes are not constrained feasible. There is no constrained feasible allocations that

attains a Pareto improvement.

If only the constraint on xc1 is binding in the uninformative equilibrium, then xh0 = xh2 for all h,

and xc1 > xc0. In this case equation (17) still holds for s = 1. For s = 2 the expression is equal to

zero. This implies that c is made better off if and only if α1 > 0, i.e. if and only if u consumption in

s = 1 is increased. This change is not constrained feasible and we reach the same conclusion: there is no

constrained feasible allocations that attains a Pareto improvement. �

Appendix G Proof of Theorem 7

Assume without loss of generality that R(π1) ≥ R(π0). Then CFS(R(π1)) ⊆ CFS(R(π0)). By Proposi-

tion 6 there is no feasible allocation in CFS(R(π0)), and so in CFS(R(π1)), that Pareto dominates the

uninformative equilibrium when utility is computed using π1.

Assume that R(πk) ≤ R(π0) for k = 1, 2, 3. Let x be the uninformative equilibrium allocation. As

xh1 6= xh0 for all h, x is not in the Pareto set under any belief. This means that for πk there exist a

different allocation, call it x̂, in the Pareto set, i.e. such that V (x̂h, πk) ≥ V (xh, πk) for all h with strict

inequality for some h. If x̂ ∈ CFS(R(πk)) for all k then the uninformative equilibrium is not ex-post

constrained Pareto efficient. If x̂ 6∈ CFS(R(πk)) for some k, consider the allocation x̃ = λx + (1 − λ)x̂

with λ ∈ [0, 1]. For λ sufficiently close to one, we can make x̃ ∈ CFS(R(πk)) and x̃ 6= x. Strict convexity

of preferences tells us that V (x̃h, πk) ≥ V (xh, πk) for all h with strict inequality for some h. Thus the

uninformative equilibrium is not ex-post constrained Pareto efficient. �

Appendix H Properties of the equilibrium gross interest rate

Lemma 3. If (A2) is satisfied with equality, i.e. wc1 + θ1 = wc2 + θ2, then R is increasing in (0, π).

Proof. Assume wc1 + θ1 = wc2 + θ2 and π ∈ (0, π).23 Then when both constraints are binding there is

full consumption smoothing in period 1. This implies q1/q2 = π/(1 − π), or R = π/q1. From u’s FOC

Rv′1 − v′0 = 0, where v′s ≡ v′(xus ). As both constraints are binding xus = wus − θs − θ3R for s = 1, 2; and

23it is easy to check that when wc1 + θ1 = wc2 + θ2, then π2 = π1.

28



xu0 = wu0 + θ3 + q1θ1 + q2θ2 = wu0 + θ3 + (πθ1 + (1 − π)θ2)R
−1. Let φ(R, π) ≡ Rv′1 − v′0, then using the

implicit function theorem:

R′ = −φπ
φR

=
v′′0(θ1 − θ2)R−1

v′1 +Rv′′1(−θ3)− v′′0
(
−(πθ1+(1−π)θ2)

R2

) > 0, (18)

where the inequality follows from both the numerator and denominator in (18) being positive. Assump-

tion wc1 + θ1 = wc2 + θ2 implies θ1 − θ2 = wc2 − wc1 < 0. As R > 0 and v′′ < 0, the numerator is positive.

As θ3 > 0 and θs ≤ 0 for s = 1, 2; the denominator is also positive.

It is straightforward to show that for all π ≥ π: R(π) = 1. The following lemma shows that for all

other beliefs the gross interest rate is strictly less than one.

Lemma 4. If π < π, then q1 > π, q2 ≥ 1− π, and R(π) < 1.

Proof. Equilibrium prices follow from u’s first order conditions, which are sufficient conditions for utility

maximization under our assumptions. These can be written as:

q1 = π
v′(xu1)

v′(xu0)
,

q2 = (1− π)
v′(xu2)

v′(xu0)
.

(19)

When π < π, the first best allocation is not constrained feasible and so we need to have: xc1 > xc0 and

xc2 ≥ xc0. This is equivalent to: xu1 < xu0 and xu2 ≤ xu0 . As v′′ < 0, from (19) we see that q1 > π and

q2 ≥ 1− π, and so q1 + q2 > 1. This implies R = (q1 + q2)
−1 < 1.

When (A2) is satisfied with equality Lemma 3 gives us continuity of R. If (A2) is satisfied with strict

inequality the following lemma gives us continuity of R in an interval around π.

Lemma 5. There exist a neighborhood around π such that the equilibrium gross interest rate is a con-

tinuous function of π.

Proof. If (A2) holds with equality the result follows from Lemma 3. Assume (A2) holds with strict

inequality and let’s work with the model in terms of contingent consumption.

When π = π equilibrium prices are the solution to the system:

πv′ (xu1)− p1v′ (xu0) = 0,

(1− π)v′ (xu2)− p2v′ (xu0) = 0.

When (A2) holds with strict inequality, the lower bound on xc1 is strictly above the lower bound on

xc2, thus: xu1 = wu1 − θ1 − θ3/(p1 + p2), x
u
2 = xu0 = (wu0 + p2w

u
2 + p1(θ1 + θ3/(p1 + p2))) /(1 + p2) >

wu2 − θ2 − θ3/(p1 + p2), where the last inequality follows from the fact that at π = π, the equilibrium

features full consumption smoothing.

The prices p1 and p2 are the endogenous variables, and π is a parameter. This system has a solution

at π = π, given by p1 = π and p2 = 1 − π. If we can show that the determinant of the Jacobian of

endogenous variables is not zero at π = π, then the implicit function theorem will give us continuity of

equilibrium prices, and therefore continuity of the equilibrium gross interest rate, in a neighborhood of

π. The Jacobian of endogenous variables is given by:(
πv′′1

∂xu1
∂p1
− v′o − p1v′′0

∂xu0
∂p1

πv′′1
∂xu1
∂p2
− p1v′′0

∂xu0
∂p2

(1− π)v′′2
∂xu2
∂p1
− p2v′′0

∂xu0
∂p1

(1− π)v′′2
∂xu2
∂p2
− v′o − p2v′′0

∂xu0
∂p2

)
, (20)
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where v′s ≡
∂u(xus )
∂xus

. Evaluating (20) at π = π, where xu0 = xu1 = xu2 , q1 = π and q2 = (1− π), it simplifies

to: πv′′1 (∂xu1∂p1
− ∂xu0

∂p1

)
− v′o πv′′1

(
∂xu1
∂p2
− ∂xu0

∂p2

)
0 −v′o

 , (21)

The determinant of (21) is given by:

− πv′′1v′0
(
∂xu1
∂p1
− ∂xu0
∂p1

)
+
(
v′0
)2
> 0, (22)

where the sign of the expression in (22) follows from strict concavity of v, and
∂xu1
∂p1
− ∂xu0

∂p1
= θ3−θ1

2−π > 0,

as θ3 > 0 and θ1 ≤ 0.24

Finally we show that (A4) implies that R is not differentiable at π.

Lemma 6. If wc0 − wc2 6= 2(θ1 + θ3), then R is not differentiable at π.

Proof. The right derivative of R at π is equal to zero as R(π) = 1 for all π ≥ π. If (A2) is satisfied

with equality, the result follows from Lemma 3. Otherwise, in a interval around π the equilibrium gross

interest rate can be define as:

R(π) =

{
RFB(π), if π > π,

RB(π), if π ≤ π.

where RFB is the interest rate under first best equilibrium prices, i.e. RFB(π) = 1 for all π. On the

other hand, RB(π) = (p1 + 1 − π)−1, where p1 given by the solution of u’s first order conditions when

p2 = 1− π and xu0 = xu2 .

This definition help us see that R′−(π) = R′B(π). Using the fact that RB(π) = 1, R′B(π) = p′1(π)−1.

Therefore we need to show that the first derivative of p1 with respect to π is different from one. At

π = π equilibrium prices follow from the system shown in the proof of Lemma 5. These prices feature

p2 = 1− π. Using the implicit function theorem:

∂p1
∂π

=
−
(
v′1 + πv′′1

∂xu1
∂π − p1v

′′
0
∂xu0
∂π

)
πv′′1

∂xu1
∂p1
− v′0 − p1v′′0

∂xu0
∂p1

.

In the limit v′0 = v′1, and it is easy to check that
∂xu1
∂π = −∂xu1

∂p1
. Therefore ∂p1/∂π = 1 if and only if

∂xu0
∂π = −∂xu0

∂p1
. In equilibria where p2 = 1− π and the constraint on xc1 is binding we have:

xu0 =
1

2− π

(
wu0 + (1− π)wu2 + p1

(
θ1 +

θ3
p1 + 1− π

))
.

Taking derivatives with respect to p1 and π:

∂xu0
∂p1

=
1

2− π

(
θ1 +

θ3
p1 + 1− π

)
− 1

2− π

(
p1θ3

(p1 + 1− π)2

)
,

∂xu0
∂π

=
xu0

2− π
+

1

2− π

(
−wu2 +

p1θ3
(p1 + 1− π)2

)
.

So,
∂xu0
∂π = −∂xu0

∂p1
if and only if:

xu0 = wu2 − θ1 − θ3,

wu0 + (1− π)wu2 + πθ1 + πθ3 = (2− π)(wu2 − θ1 − θ3),

wu0 − wu2 = −2(θ1 + θ3).

24 ∂xu1
∂p1

= θ3
(p1+p2)2

;
∂xu0
∂p1

= θ3p2+θ1(p1+p2)
2

(1+p2)(p1+p2)2
. Evaluating at π, where p1 + p2 = 1:

∂xu1
∂p1

= θ3;
∂xu0
∂p1

= θ1+(1−π)
2−π .
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Appendix I Proof of Proposition 9

Here we provide a proof for the case when (A2) is satisfied with strict inequality. First we will argue

that f and its argmax are continuous functions at π.

Lemma 7. Fix π0. Let π be in the interval around π where R is continuous and assume f is defined

at f(π, π0). The function f(π, π0) is continuous in π. Let x∗ be the argmax of f(π, π0), then x∗ is a

continuous function of π.

Proof. The function v is strictly increasing, this implies that the last constraint in the definition of f in

equation (5) will always bind at a solution. When that equation holds with equality we can solve it for

xc0 obtaining xc0 as a function of π, π0 and xcs for s = 1, 2:

xc0 = g(xc1, x
c
2, π, π

0) ≡ w − v−1
(
V u(π0)−

∑
s

πsv(w − xcs)

)
.

The function f coincides with the function f1 defined as:

f1(π, π0) =
{

Max
{xc1,xc2}

v(g(xc1, x
c
2, π, π

0)) +
∑

πsv(xcs)

s. t. xcs ≥ wcs + θs + θ3R(π) for s = 1, 2
}
.

We will argue that f1 is continuous. Consider the correspondence:

Γ(π) =
{

(xc1, x
c
2) ∈ [0, w]2 |xcs − wc1 − θ1 − θ3R(π) ≥ 0 ∀s = 1, 2

}
,

Theorem 2.2. in chapter 7 in De la Fuente [8] tells us that if the functions defining Γ(π) are continuous,

concave in (xc1, x
c
2) for a given π, if Γ(π) is compact and if there exist x̂ = (x̂1, x̂2) ∈ Γ(π) such that

x̂s − wc1 − θ1 − θ3R(π) > 0 ∀s = 1, 2, then Γ(π) is continuous at π. Clearly the functions defining Γ

are continuous and concave in consumption, and given a belief the set Γ(π) is compact. Assumption

(A3) implies wc1 + θ1 + θ3R(π) < w, therefore the point x̂ = (w,w) satisfy both conditions with strict

inequality. Hence Γ(π) is continuous in π.

As the function v is continuous and strictly increasing, its inverse is continuous. This gives us

continuity of the objective function defining f1. By Berge’s theorem of the maximum the function

f1(π, π0) is continuous in π and its argmax is nonempty and upper hemicontinuous. As f1 and f (and

their argmax) are equivalent, we obtain continuity of f and upper hemicontinuity of x∗.

Now we will argue that x∗ is single valued for a given π, therefore obtaining continuity of x∗. For

this we work directly with f . The maximization problem in f is characterized by a constraint set that

is convex and a objective function that is strictly concave in consumption for a given π, therefore x∗ is

the unique optimal solution.

Proof of Proposition 9:

The derivative of f with respect to π (where it exists) is given by:

∂f(π, π0)

∂π
= v(x1)− v(x2)− θ3R′(π)(λ1 + λ2) +

v′(x0)

v′(w − x0)
(v(w − x1)− v(w − x2)) ,

where λ1 and λ2 are the Lagrange multipliers associated with the constraints on xc1 and xc2 respectively.

For all beliefs strictly above π, R′(π) = 0. At π the right derivative of R is equal to zero and the left
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derivative is non-negative. Solving the maximization problem defining f we obtain:

λ1 =
v′(xc0)

v′(w − xc0)
πv′(w − xc1)− πv′(xc1),

a continuous function of π. If both lower bounds on consumption are not binding, then λ1 = λ2 = 0,

and it is straightforward to show that the Planner assigns an allocation featuring full smoothing across

time and states. At π the CFS is a proper subset of CFS(R(π0)) (R(π0) < 1). Therefore at π we must

have λ1 > 0, otherwise the first best allocation is constrained feasible in the uninformative equilibrium,

violating constrained Pareto optimality of the uninformative equilibrium. By continuity, for π slightly

below π it is still true that λ1 > 0. If R′−(π) 6= 0, where R′− denotes the left derivative of R, then we

have:

v′−(π, π0)− v′+(π, π0) = −θ3R′−(π)(λ1 + λ2) < 0.

R′−(π) is different from zero by Lemma 6. We want to show that there exist ε > 0 such that:

f(π, π0) < 0.5f(π + ε, π0) + 0.5f(π − ε, π0) (23)

Taking a first order Taylor approximation around π we can write f(π + ε) and f(π − ε) as:

f(π + ε, π0) = f(π, π0) + f ′+(π, π0)ε+ o(ε)

f(π + ε, π0) = f(π, π0)− f ′−(π, π0)ε+ o(ε)

where o(ε) represents the remainder. If (23) is not true then:

0 ≥ ε(f ′+(π, π0)− f ′−(π, π0)) + o(ε)

0 ≥ (f ′+(π, π0)− f ′−(π, π0)) +
o(ε)

ε

(24)

When R′− 6= 0, f ′+(π, π0)−f ′−(π, π0) > 0. If the approximation error in the Taylor approximation is non-

negative, then (24) is a contradiction. If the approximation error is negative, then as o(ε)
ε tends to zero

as ε goes to zero, for ε small enough we can make the modulus of o(ε)
ε smaller than f ′+(π, π0)− f ′−(π, π0)

and again we obtain a contradiction. �

The next lemma provides a sufficient condition for f to be defined at (π, π0).

Lemma 8. There exist δ > 0 such that if π0 ∈ (π − δ, π), then v is defined at (π, π0)

Proof. Let xus (π) be u’s equilibrium allocation when the belief is π for s = 0, 1, 2. When the belief is

equal to π we have: xus (π) = wu1 − θ1− θ3 for s = 0, 1, 2, by definition of π. This allocation is constrained

feasible by Proposition 1. Define αu as:

αu(π) = v−1 (V (xu(π), π)− v(xu1(π))) ,

i.e. αu(π) is the period 0 consumption that leaves u indifferent between the equilibrium under belief π,

and consuming (αu(π), xu1(π), xu1(π)). Clearly αu(π) = xu0(π), hence αu(π) ∈ (0, w). If the equilibrium

interest rate is continuous in π, so it is each component of the vector of equilibrium allocations. Therefore

αu(π) is continuous in π. This implies that there exist a δ > 0 such that for all π ∈ (π − δ, π):

αu(π) ∈ (0, w). Hence the set defined by the constraints in the definition of f is not empty for all

π0 ∈ (π − δ, π). Continuity of R in an interval around π is proved in Lemma 5 in appendix H.
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Appendix J Proof of Theorem 10

First we argue that if π0 is close to π then α(π0) and α(π0) are well defined.

Lemma 9. There exist a δ > 0 such that if π0 ∈ (π − δ, π), then α(π0) and α(π0) are in [0, w].

Proof. α(π0) ∈ [0, w] follows from Lemma 8, as α(π0) = w − αu(π0). Define αu as:

αu(π) = v−1
(
V (xu(π), π)

2

)
.

clearly αu(π) = xus (π) for s = 0, 1, 2, hence αu(π) ∈ (0, w). If the equilibrium interest rate is continuous

in π, so it is each component of the vector of equilibrium allocations. Therefore αu(π) is continuous

in π. This implies that there exist a δ > 0 such that for all π ∈ (π − δ, π): αu(π) ∈ (0, w). But then

α(π0) = w − αu(π0) ∈ [0, w].

Now we will show that π(ε) is continuous and well defined around ε = 0. For simplicity let’s assume

that π0(ε) = π − ε with ε = [−γ, π], where γ a small positive number such that π + γ < 1. We do this

to simplify notation and make π0 differentiable at ε = 0.

Lemma 10. Assume that (A2) holds with equality, or that (A2) holds with strict inequality and (A4)

holds (R′−(π) 6= 0), then there exist a ε̂ > 0 such that π(ε) is continuous for all ε ∈ [0, ε̂).

Proof. We start with the case when (A2) holds with strict inequality. Let v−1 be the inverse of v. By

the inverse function theorem v−1 is continuously differentiable. The belief π(ε) is the π that solves the

following equation:

w − v−1
(
V u(π0(ε))

2

)
= wc1 + θ1 + θ3R(π). (25)

At ε = 0 the solution to (25) is π = π ∈ (0, 1). In appendix H we argued that for all π ≤ π0 the

equilibrium gross interest rate is given by RB. We also showed that RB is differentiable at π, and its

derivative is, by definition, equal to R′−(π). Therefore we can rewrite (25) as:

w − v−1
(
V u(π0(ε))

2

)
= wc1 + θ1 + θ3R

B(π). (26)

As all the functions in (26) are continuously differentiable and RB
′

is different from zero at ε = 0 by

(A4), the implicit function theorem gives us continuity of π(ε) in an interval around ε = 0. Continuity

tells us that π(ε) ∈ (0, 1) for all ε in an interval around ε = 0. When (A2) is satisfied with equality,

monotonicity of RB allows us to use the implicit function theorem and draw the same conclusions.

Properties of g:

Notice that g(a, 0) = 0 for all a. When ε = 0, then π0 = π = π, therefore V (0) = V0(0) = V (0). Next,

we will show that the right derivative of g with respect to ε at (a, 0) is zero for all a.

Claim 1. limε→0+ gε(a, ε) = 0 for all a.

Proof. Taking the first derivative of g with respect to ε:

∂g(a, ε)

∂ε
= aV

′
(ε) + (1− a)V ′(ε)− V ′0(ε).
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Remember that the functions V (ε), V (ε) and V0(ε) are given by:

V (ε) = 2v(x(ε)),

V (ε) = v(x(ε)) + v(wc1 + θ1 + θ3),

V0(ε) = v(x0(ε)) +
∑
s

π0sv(xs(ε)).

(27)

where x0(ε) is c’s uninformative equilibrium allocation in period 0 when prior is π0 = π − ε, similarly

xs(ε) is c’s uninformative equilibrium allocation in state s. Consumption levels x(ε) and x(ε) are defined

by:

2v(w − x(ε)) = v(w − x0(ε)) +
∑
s

π0s(ε)v(w − xs(ε)),

v(w − x) + v(wu1 − θ1 − θ3) = v(w − x0(ε)) +
∑
s

π0s(ε).v(w − xs(ε))
(28)

Differentiating the functions defined in (27) with respect to ε:

V
′
(ε) = 2v′(x(ε))x′(ε),

V ′(ε) = v′(x(ε))x′(ε),

V ′0(ε) = v′(x0(ε))x
′
0(ε) +

∑
s

π0sv
′(xs(ε))x

′
s(ε)− v(x1(ε)) + v(x2(ε)).

(29)

Using (28) we can get an expressions for x′(ε) and x′(ε):

−2v′(w − x(ε))x′(ε) =− v′(w − x0(ε))x′0(ε)−
∑
s

π0sv
′(w − xs(ε))x′s(ε)+

v(w − x1(ε))− v(w − x2(ε)),

−v′(w − x(ε))x′(ε) =− v′(w − x0(ε))x′0(ε)−
∑
s

π0sv
′(w − xs(ε))x′s(ε)+

v(w − x1(ε))− v(w − x2(ε)).

(30)

When ε goes to 0+: x0 = x1 = x2 = x = x. Let φ(0+) ≡ limε→0+ φ(ε). In the limit we can rewrite (30)

as:
2x′(0+) = x′0(0

+) +
∑
s

πsx
′
s(0

+),

x′(0+) = x′0(0
+) +

∑
s

πsx
′
s(0

+).
(31)

Evaluating (29) at x0 = x1 = x2 = x = x and using (31) we have:

V
′
(0+) = V ′0(0+) = V ′(0+).

Next, we show that g(1, 0) is a strict local minimum.

Claim 2. If limε→0+ (x′0(ε)− x′1(ε)) 6= 0 holds, then limε→0+ gεε(1, ε) > 0.

Proof. Notice that gεε(1, ε) = V
′′
(ε)− V ′′0 (ε). Let us now compute the second derivatives of V0, and V :

V ′′0 (ε) =v′′(x0(ε))x
′
0(ε)

2
+ v′(x0(ε))x

′′
0(ε) +

∑
s

π0s

(
v′′(xs(ε))x

′
s(ε)

2
+ v′(xs(ε))x

′′
s(ε)

)
+

2
∑
s

(−1)sv′(xs(ε))x
′
s(ε),

V
′′
(ε) =2v′′(x(ε))x′(ε)

2
+ 2v′(x(ε))x′′(ε).
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where we have used the fact that the second derivative of π0 with respect to ε is zero. The second

derivative of x(ε) has to satisfy:

2v′′(w − x(ε))x′(ε)
2 − 2v′(w − x(ε))x′′(ε) = v′′(w − x0(ε))x′0(ε)

2−

v′(w − x0(ε))x′′0(ε) +
∑
s

π0
s

(
v′′(w − xs(ε))x′s(ε)

2 − v′(w − xs(ε))x′′s (ε)
)

+

2
∑
s

(−1)sv′(w − xs(ε))x′s(ε).

(32)

Now we can compute V
′′
(0+)− V ′′0 (0+):

V
′′
(0+)− V ′′

0 (0+) =v′′(x0(0+))

(
2x′(0+)

2 − x′0(0+)
2 −

∑
s

π0
sx

′
s(0

+)
2

)
+

v′(x0(0+))

(
2x′′(0+)− x′′0(0+)−

∑
s

π0
sx

′′
s (0+)

)
−

2v′(x0(0+))
∑
s

(−1)sx′s(0
+).

(33)

Using (32):

2x′′(0+)− x′′0(0+)−
∑
s

π0sx
′′
s(0

+) =
v′′(w − x0(0+))

v′(w − x0(0+))

(
2x′(0+)

2 − x′0(0+)
2−

∑
s

π0sx
′
s(0

+)
2

)
+ 2

∑
s

(−1)sx′s(0
+).

(34)

Equations (33) and (34) imply:

V
′′ − V ′′

0 =

(
v′′(x0(0+) + v′(x0(0+))

v′′(w − x0(0+)

v′(w − x0(0+)

)(
2x′(0+)

2 − x′0(0+)
2 −

∑
s

π0
sx

′
s(0

+)
2

)
.

As v′′ < 0, gεε(1, 0
+) > 0 if and only if 2x′(0+)

2−x′0(0+)
2−
∑

s π
0
sx
′
s(0

+)
2
< 0. Assume (A2) is satisfied

with strict inequality, then around π we have x0 = x2, and x′0 = x′2 (See appendix H). Using (31) to

replace x′(0+):

x′0(0
+)

2
+
∑
s

π0sx
′
s(0

+)
2 − 1

2

(
x′0(0

+) +
∑
s

π0sx
′
s(0

+)

)2

> 0,

(2− π)x′0(0
+)

2
+ πx′1(0

+)
2 − 1

2

(
(2− π)x′0(0

+) + πx′1(0
+)
)2
> 0,

(2− π)πx′0(0
+)

2
+ (2− π)πx′1(0

+)
2 − 2(2− π)πx′0(0

+)x′1(0
+) > 0,

x′0(0
+)

2
+ x′1(0

+)
2 − 2x′0(0

+)x′1(0
+) > 0,(

x′0(0
+)− x′1(0+)

)2
> 0.

(35)

If (A2) is satisfied with equality instead, then we have x1 = x2 and x′1 = x′2, and the same conclusion

follows.

Now we characterize when is it that condition limε→0+ (x′0(ε)− x′1(ε)) 6= 0 holds.

Claim 3. limε→0+ (x′0(ε)− x′1(ε)) = 0 if and only if R′−(π) = 0.

Proof. In an interval around π equilibrium prices are such that p2 = 1−π and R follows from u’s F.O.C:

Rv′1 − v′0 = 0,

35



where v′s = ∂u(xus )/∂xus . Differentiating this F.O.C. with respect to ε and taking the limit as ε approaches

0+:
−R′−(π)v′1 + v′′1x

′
1(0

+)− v′′0x′0(0+) = 0,

−v′0R′−(π) + v′′0(x′1(0
+)− x′0(0+)) = 0.

Therefore x′1(0
+) = x′0(0

+) if and only if R′−(π) = 0.

From Claim 3 we see that (A2) being satisfied with equality, or assumption (A4) are sufficient

conditions for g to attain a strict local minimum at (1, 0). This gives us the following lemma:

Lemma 11. If (A2) is satisfied with equality, or if (A4) holds, then limε→0 τ = (1− τ3)a < 1− τ3

Proof. The second derivative of g with respect to ε: gεε = aV
′′
(ε) + (1 − a)V ′′(ε) − V ′′0 (ε) is continuous

in a. As gεε(1, 0) > 0, continuity in a implies that there exist a < 1 such that gεε(a, 0) > 0. Using claims

1 and 2, g(a, ε), as a function of ε, attains a strict local minimum at (a, 0) with g(a, 0) = 0. Therefore

on a neighborhood of ε = 0, g(a, ε) > 0 for all ε. Thus aV (ε) + (1 − a)V (ε) − V0(ε) > 0 for all ε in the

interval. Solving for a:

1 > a >
V0(ε)− V (ε)

V (ε)− V (ε)
∀ε ∈ [0, ε). (36)

But (36) implies that the limit of τ̂ /(1− τ3) as ε tends to 0 is strictly lower than one, giving us the result

in the lemma.

Proof of Theorem 10:

Set µ < (1−τ3)1−a2 , where a = limε→0 τ̂ /(1−τ3) < 1. For this µ there exist a δ̂ such that for all ε ∈ [0, δ̂),

|τ̂ − a(1− τ3)| < µ. Similarly, for this µ there exist a δ̃ such that for all ε ∈ [0, δ̃), |τ̃ − (1− τ3)| < µ. Set

δ = min{δ̂, δ̃}, then for all ε ∈ [0, δ) we have:

a(1− τ3)− µ < τ̂ < a(1− τ3) + µ,

(1− τ3)− µ < τ̃ < (1− τ3) + µ.
(37)

Equation (37) imply that for all such ε, τ̂ < τ̃ as a(1− τ3) + µ < (1− τ3)− µ. �
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