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1. Introduction

Econometric analysis of time series data is frequentliy preceded by regres-
sion on time to remove a trend componéﬁt in the data. The resulting residuals
are then treated as a stafionary series fc which procedures requiring station-
arity, such as spectral analysis, can be appiied. The objective is often to
investigate the dynamics of transitory movements in the system, for example, in
econometric models of the business cyclé. When the data does consist of a deter-
ministic function of time plus a stationary error then regression residuals will
clearly be ﬁnbiased estimates of the stétionary component. However, if the data
is generated by (possibly repeated) summation of a stationary and invertible pro-
cess then the series cannot be expressed as a deterministic function of time plus
a stationary deviation, even though a least squares trend line and the associated
residuals can always be calculated for any given finite sample. In a recent
paper, Chan, Hayya, and Ord (1977) (hereafter CHO) were able to show that residu-
als fromllinear regression of a realization of a random walk (the éummation of -a
purely random series) on time have autocovariances which for given lag are a
function of time and therefore that the residuals are not stationary. Further,
CHO established that the expected sample-autocovariance function (the expected
autocovariances for given lag averaged over the time interval of the sample) is
a function of sample size as well as lag and therefore an artifact of the detrend-
ing procedure. This function is:characterized by CHO in their Figure 1 as being
effectively linear. in lag (although the exact function is a fifth degree poly-
nomia])lwith the rate of décay from unity at the origin depending iﬁversely on
sample size. The first differences of a random walk are, of course, stationary
with zero autocovariance at all lags. They concluded that 'the low frequency
portion of the spectrum will be exaggerated and the high frequency portion atten-

vated" relative to the appropriate first difference transformation.



The objeétive of this paper is to show that after the expected sample auto-
covariance function given by CHO is corrected for several errors in the values
of coefficients and is eiamined;over a greater range of lags it is seen to imply
strongly pseudo-periodic behavior in the time trend residuals. The corresponding
spectral density fuﬁction has a single peak at a period corresponding to .83 of
the number of observations in the sample. The distribution of the peak in sample
power spectra is studied in a Monte Carlo experiment and is shown to have a mean
period corresponding to .65 of sample length with a standard deviation of .21 of
sample size. Our results suggest that inappropriate detrending of time series
will tend to produce apparent evidence of periodicity which is not in any mean-
ingful sense a property of the underlying system. They further suggest that the
dynamics of econometric models estimated from such data may well be wholly o} in
part an artifact of the trend removal procedure. Since the random walk model is
widely  -accepted as a valid representation of stock market prices we illustrate
the phenomenon of pseudo-periodicity by applying time trend regression to the
Standard and Poor's 500 Stock Index, We also offer some evidence about the effect
of serial correlation in first differences on the distribution of peaks in sample

power spectra.

2. The Expected Sample Autocovariance Function and Approximate Expected Autocorre-
lation and Spectral Density Function for Time Trend Residuals from a Random Walk

The autocovariance function for the residuals produced by regression of a
réalization of a random walk on time has been derived by CHO (their expression
3.10) and for given lag it is a function of time and tﬁe number of observations in
the sample. The reslduals are therefore nonstationary, but it is straightforward
to derive the expected value of the sample autocovariance function as the average
across the sample of the autocovariances for given lag. The expression given by

CHO (3.13) for this averaged autocovariance contains several numerical errors



which materially affect its shape. The corrected expression in the notation of

CHO 1is

n
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where N = 2n + 1 is the length of the sample and 02 is the variance of the steps
{et} in the underlying random walk. We follow CHO in approximating the expected
sample autocorrelation function by p(s,n) = cov(s,n)/cov(0,n) which can be

written as

Stem) =1+ (Syl52 = 3047t - 150072 + 2070 + 6n”
n"" 32 + 8on~l + 40072 - 20n™3 - 12074
5,2,180 + 270n"> + 9on”~?
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+S¢ -~ 2 - .
32 + 80n ~ + 400~ - 20n ~ - 12n (2.2)

1t 1s apparent that for large samples p becomes a polynomial in (s/n) and will
therefore take on the same numerical value at whatever lag corresponds to a given
fraction of sample length. Maxima and minima will likewise occur at fixed func-
tions of sample length and at the same values of p. The exact function is plot-
ted in Figure 1 for sample length 101(n = 50). Note.that the autocorrelations

decline monotonically until a value of ~.28 is reached at lag 34 (that is .34 of
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sample length), then increase until a value of .08 is reached at lag 81 (.80.
of sample length) and finally decline toward zero. For comparison, in a sample
of length 11 (n = 5) the minimum occurs at lag 4 (.36 of sample length) with a
P value of -.29 and the second maximum at lag 9 (.82 of sample length) with a
value of .08. For practical purposes then the shape of the p function is effec—
tively independent of sample size. The incorrect expression for p(s,n) given by
CHO does not decline as rapidly at low lags, the slope for small values of (s/n)
being roughly -3.5 for the CHO expression as opposed to -4.75 for the corrected
expression. The CHO expression reaches a first minimum of +.09 at about .33 of
sample length and a second maximum of +.22 at about .66 of sample length before
declining toward zero. The figures provided by CHO show only the linear decline
which characterizes the function for small values of (s/n). The corrected func-
tion is mo;e strongly non-linear even at low lags since the coefficient of
(s/n)2 is now larger. Calculated values for the CHO and the corrected p(S) at
selected lags are compared in Table 1 for a sample size of 101.

The corrected expected autocovariance function has the appearance of a
damped sine wave which is indicative of pseu&o-periodic behavior in the residual
series with a period equal to .80 of the length of the sémple or equivalently a
frequency of 1.25N_1. The sample spectral density function corresponding to
_B(S,n) is defined as SDF(f,n) =1 + 2 g—l'a(s,n)cos(Zﬂfs), 0<f<, and is plotted
in Figure 2 for N = 51 and 101 over 0<ffji0. It has its maximum at frequency
.024 for N = 51 and at .012 for N = 101 each corresponding to 1.25N 1. Note that
as the sample size 1s increased the value at the maximum of the spectral density
increases and the entire distribution becomes more concentrated at lower
frequencies. It is also possible to show that the value of the function

at frequency f = 0 is identically zero, while for the corresponding func-

tion implied by the CHO expression the value at £ = 0 is of order n with
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TABLE 1

APPROXIMATION TO EXPECTED SAMPLE AUTOCORRELATION FUNCTION

FOR SAMPLE OF LENGTH N = 101 (n = 50): CORRECTED AND CHO EXPRESSION

Lag s | 1 2 3 4 5 _10 20 30 50 75

p(s) 91 .82 74 .66 .58 <26 -.13 |-.28 -.16 | .07

CHO .93 .87 | .81 75 | .70 47 .19 .10 | .16 | .20




leading term (5/6)n and thus rises roughly in proportion to sample size. The.
density function values at f = in both cases decrease roughly in proportion to
sample size, leading terms being (5/2)1'1'-1 and (_15/8)n“1 for corrected and CHO
versions respectively. The graphical characterization displayed by CHO in their
Figure 1 is of monotonic decline from the origin while the corrected function
rises from zero at the origin to a peak at frequency 1.25N—] and then declines,
Their graphical characterization is also not correct for the CHO density function
expression which in fact has a prominent peak at a frequency of about 1.37N_1 in
addition to a peak at the origin.

Sample estimates of spectral demsity functions are usually computed in prac-
tice from a sample autocorrelation function which is truncated at a lag consid-
erably smaller than the maximum (N-1) lags computable. The effect of truncation
of the p(s,n) function on the corresponding spectral density function is to
reduce the prominence of the major peak and to introduce secondary peaks at
higher frequencies which are not present in tﬁe complete function. The secondary
peaks are spaced at frequency intervals equal to the inverse of the lag at which
the p(S) function is truncated. For a sample of length 101 the primary peak is
still in evidence using as few as 25 lags in the autocorrelation function and has
shifted from a period of 83 to one of 62 but disappears when only 16 lags are
used. In effect, the nonlinearity of p(s,n) and therefore its pseudo-periodicity
is decreasingly evident at very low lags where the function is roughly exponential,
resembling that of -a first order autoregression. The spectral density function

in that case of course also resembles that of a first order autoregression

except for weak secondary peaks‘as noted above.

3. The Sampling Distribution of Peaks in Sample Spectral Density Function

The corrected theoretical results of CHO imply that one would expect to

find a predominant peak at a low frequency in the sample spectrum of residuals



obtained.by regression of a random walk on time but do not lead readily to a
| description of the sampling distribution of the period or frequency at which the
predominant peak occurs. We have conducted a Monte Carlo experiment to provide
some idea of what this distributioﬁ looks 1ike. Realization of length 101 obser-
vations were generated by a random walk process, regressed on time, and the sam-
ple autocorrelafions and spectrum calculated. For each realization the spectrum
was searched to find its maximum on a gfid of .001 inte:vals»sgarting at .010,
the lowest frequency of.practicql interest. This was repeated for 500 indepen-
dent realizations. |

In 20 cases out of 500 the maximum was recorded at f = .010. The highest
frequency at which the maximum was recorded was at .065 corresponding to a period
of 15. The value of the spectral density in that casé was 15.22 which would be
regarded as highly siénificant by an investigator having the null hypothesis of
white noise. The mean frequency at which maxima occﬁtred was .018 corresponding
to a period of 56, while the mean period at which maxima occurred was 66 corres~
ponding to a frequency of .015. The standard deviation for peak frequencies was
.008 and for peak periods 21.5. The average sample autocorrelation function
reached a low point of -.23 at lags 29 through 34 and a second maximum of +.06
at lags 78 through 87 which compare with ~.28 at lag 34 and +.08 at lag .81 for
the expression p(S) given by (2.2) which appro#imatee the expected value of p(S)
by the ratio of expected autoc§§ariances. Thé average sample spectral demsity
reaches its peak at'the same frequency as the theoretical approximation (.012)
but at a lower value, 21 compared with 27.

?he results of the sampling experiment suggest then that we would expect
apparent periodicity to be encountered at something around two-thirds of the
length of the sample if a random walk describes the true nature of the data being

detrended. Further, in many samples the predominant peak will occur :at a period

equivalent to half or less of sampleilength.
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4. Spurious Periedicity in Stock Market Priées

An extensive literature supports the hypothesis that tﬁe log of stock mar-
ket prices is well characterizeq as a random walk. For exampie, Granger and
Morgenstein (1963) studied the spectrum of first differénces'of a stock price
index and concluded that it is essentially flat as the hypothesis implies. To
see 1f time trend residuals from ;tock.price index display the spurious low fre-
quency periodicity suggested -by our anaiysis we examinq.monthly closing values-
for.the Standard and Poor's SOOIIndex; The Ménte Carloc evidence suggests that
we should find a prominent peak at a'frequenéy equal to about 1.82N-i. If this
peak appears in the s;mple spectruﬁ and is indeed spuriéus,,then extention of the
sémple by addition of more data should be accompanied by a shift in the peak
to a proportionately lower frequency. Genuine periocdicities should, in contrast,
persist as the record is lengthened.

| To carry out this kind of experiment we divided the 192 month period Janu-
ary 1961lthrough December 1976 info two 96 month periods and detrended the data
in logs for each subperiod separately. fhe‘samp}é'épectral densities for each
using all 95 computable sample autocorreigtions are displayed in Figute 3. Each
exhibits a highly significant peak at a frequency-close to.the expected value of
.019 whiéb corresponds to a period of 53 months. When the combined sample of
192 months is detren&ed-the sample spectrum is the one displayed in Figure 4.
The predicted frequency for the spurious peak is .009. What is observed is a
very low frequency.peék at .006, a second and less prominent peak at .013, and
a third very prominent peak at .020. Lengthening of the sample has evidently
resulted in separation of the peak'at'.019 into two peaks, one presumably the
spurious peak and the other possibly a genuine periodicity; Note that .021
might be thought of as a "Presidential frequency' since it corresponds to the

48 months between Presidential elections. To see if this peak as well as the
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lower frequency peaks can be related to structure present in the first differences
the sample spectra for first differences were computed and are displayed in Fig-
ure 5. For the 1961-1968 subperiod no significant peak is evident near the Pres-
idential frequency; however, a significant peak is apparent around .019 in the
1969-1976 subperiod. The effect of linear regression detrending was evidently to
add a spurious peak near .02 in the earlier subperiod and to greatly reinforce

the peak present in the second subperiod.l This reinforcement also carries over

to the spectrum forlthe detrended combined sample in what we can only interpret

as a phenomenon akin to resonance which we spéculate may also account for the

peak at .013 which does not show up in any of the other spectra.

5. The Effect of Serial Correlation in First Differences on the Sample Spectrum

Analysis of the pure random walk case has indicated that as sample length
increases the sample spectrum of time trend residuals will become increasingly
concentrated around a peak at a frequency which decreases in proportion to the
inverse of sample size. Descriptively, the residuals will tend to exhibit cycles
of increasing length and increasing amplitude around a fitted trend line as the
length of the sample is increased. Clearly, periodicities due to underlying
autocorrelation in first differences will be of fixed period and amplitude and,
hence, will contribute relatively less to total variance in longer samples. In
the mixing of actual periodicities with the spurious periodicity associated with
regression detrending we would expect as a rough éharacterization that positive
autocorrelation in first differences would reinforce the spurious low frequency
peak and negative autocorrelation would dilute it. This is confirmed in a second
Monte Carlo experiment in which thirty independent samples of length 101 obser-
vations were generated by the'integra;ed process

= +
Xe=X_,+tD0,

D, =¢D,_; * €, (5.1)



using successively 0, +.3, -3, +.8, -.8 aé'values for ¢. The random number gen-
erator was restarted with the same seed for each successive value of ¢ so that
there was no sampling variation across values of ¢.

The results of the experiment are summarized in Table 2. They indicate that
the spurious peak will dominate the spectrum in a sample of realistic length and
for values of ¢ of the magnitude often gncountered in practice. They confirm
that the effect of underlying positive autocorrelation will be to shift the dis-
tribution of the peak towards lower frequenéies (longer periods). The average
of the sample spectra shows greafer concentration of variance around its peak and
slight shifting of the peak to lower frequencies. The correspondingly reverse
implications are confirmed for the case of negative autocorrelation.

While the sample spectra do then exhibit characteristics traceable to the
underlying autocorrelation structure of the first difference process, it seems
unlikely that the latter would be detected in practice. For example, consider
the comparison in Figure 6 of the averaged sample spectra of detrended data from
(5.1) for ¢ = -.3 with the theoretical spectral density of the first differences.
Evidently, the ﬁigh frequency power present in the theoretical spectrum is oblit-
erated by the low frequency power introduced by regression detrending. It seems
plausible to us that a major cost of inappropriate detrending may be that genu-
ine dynamics will often be overlooked. Perhaps this explains in part why Granger
(1966) was able to characterize economic time series as having a "typical spec-
tral shape" which was closely a#in to that described in this paper as being typ-

ical of integrated time series which have been detrended by regression on time.
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SUMMARY OF MONTE CARLO EXPERIMENT FOR

INTEGRATED PROCESSES WITH AUTOREGRESSIVE DIFFERENCES

Average of

Average Sample SDF

) Peak Freq. Peak Period Freq. at Peak| Value at Peak
0.0 .021 57 .014 15.7

0.3 .020 59 .014 16.7
-0.3 .021 57 014 14.8

0.8 .019 63 .013 22.1
-0.8 .022 56 .014 10.9
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