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ABSTRACT

It is shown that under certain previously neglected conditions,
not implausible and consistent with profit-maximisation, the Cournot
oligopoly solution is unstable: a saddle point in R" whose unstable
manifold has dimension one, a line, and is contained in R:+ U RE_ U 0.
That is,output—deviations from equilibrium are (or become) all of the same

sign: boom or collapse for the whole industry.

Also, (i) a more general 'quasi-Cournot' model with non-zero
(but well-defined and parametric) conjectural variations is shown to have
similar behaviour as Cournot, (ii) Hahn's [3] range of cases where
stability obtains is widened somewhat and (iii) the problems of
regularity and linearisability of Cournot equilibria are briefly

considered.



1. Introduction

The stability properties of the Cournot model of oligopoly aroused
considerable interest back in the early sixties, culminating in a paper
by Frank Hahn [3], who found certain sufficient conditions for stability
of the model, under the standard adjustment system. These were that the
marginal-cost curve for individual firms should not fall faster (if
at all) than market demand, and that the marginal revenue of each
producer should fall, at given output of his, were the remaining
producers to expand their collective output. The meaning of the first
of these conditions is transparent, and it in fact seems an acceptable
assumption for most cases of interest. The second condition, however,
is stronger than it might at first sight look, for it excludes a class
of interesting cases, corresponding to certain perfectly reasonable
demand configurations, only on account of the shape of these demands,
basically their curvature, despite the fact that they are compatible

with market equilibrium.

The present paper extends the analysis of stability into the
cases just mentioned. Sufficient conditions are established, consistent
with profit-maximisation and hence a priori of interest, under which the
Cournot solution to the oligopoly problem is unstable (Sec. 3): a saddle
point in R" convergent on a hyper-surface (Sec. 4), so that the unstable
manifold has dimension one: a divergent line of flow (orbit) which acts
as an attractor for nearly all paths. This path, moreover, leaves from
equilibrium into the strictly positive and negative orthants (in the
space of divergencies of firms' outputs from equilibrium values). That

is, if instability arises it does so in the form of a boom or collapse



homogeneously across the industry. The conditions for instability, a
simple example will suggest, are perhaps special but by no means
peculiar. Cournot equilibria turn out to be less universally-stable

than a reading of the literature might suggest.

The above describes, in essence, our main results. Also, (i)
we shall briefly extend these results to a more general "quasi-Cournot"
model, with non-zero but parametric conjectural variations (Sec. 5) and
(ii) Hahn's range of cases where stability holds will be widened somewhat
(in appendix 2). Two technical points, local uniqueness (regularity)
of equilibria and linearisability (non-degeneracy) of the flow, are taken
up in appendices. In [6] we use the present stability results to show,
3 la correspondence principle, that certain 'perverse' effects of entry
into Cournot equilibrium only arise under unstable equilibria and can be
ruled out, while others (such as each firm's output rising with entry)

are consistent with the wider class of stable cases just referred to.

2i Framework

Let homogeneous output Y be produced by n possibly different
firms, producing y; at a cost ci(yi) each, and collectively facing
inverse demand p = p(Y). Each firm selects its own output taking
total production by all others, Qi =Y - y; » as given. Assuming
for convenience twice-differentiability of cost and demand functioms,

* .
profit-maximisation at an interior optimum requires s to satisfy

p(y: * Qi) + yz p'(y: + Qi) - ci (yz) = 0. (1)



We shall assume p'(*) < 0, as well as strict concavity of the profits
function for each fimm i, NI° = yip(Y) - ci(yi), relative to its own

output, so that
(' + yiP") + (P' - Cg ) <0, v yi’ Qi’ i, (2)

with p(*) and c(+) evaluated at (yi + Qi)' Under this assumption
{plus boundedness of the yi's and other minor points) mot only does
(1) become sufficient for an optimum for firm i, but existence of a
Cournot equilibrium is also ensuredl/, that is, existence of two vectors

; = (§i) and Q = (61) which solve (1) and (2), for all i, with

" This equilibrium may or may not be unique

g1

Q= Iy ¥y

(uniqueness is difficult to establish: see Friedman [1,p.713), but this
need not bother us here: our main purpose is to show certain equilibria
to be unstable, a property which holds globally if it does locally, in
sharp contrast with the more familiar discussions of stable equilibria,

where it is critical to determine whether the domain of the convergent

adjustment is 'small' or 'large'. Things would get trickier, on the
other hand, if equilibria happened not to be regular, that is not even
locally unique, isolated. This,one can dismiss as a non-generic,
'unlikely’ occurrencezj, although that is often a risky stand to take:

there may be endogenous forces picking up the odd one from all possible

events. We turn to this problem in the appendix and establish regularity

of all equilibria we shall be interested in in this paper.



3. Unstable Cournot equilibria

Let the system be in a disequilibrium position, with each output s
being continuously adjusted, with some delay, towards its current optimal
value, that is, the y: which solves (1) taking current output by others
as given. This (yZ) is unique by (2), even though equilibrium itself

may not be., Let this adjustment follow

y. =K.z. , Ki >0, each i, (3)

where z; = y: - Vs This could easily be replaced by any sign-
preserving C1 function of z,. The question is whether this process
tends towards an equilibrium y as defined above. Hahn [i] shows that
the system does converge if the following conditions are met:

11"t
Assumption A: (p' - ci) < 0 v'yii-gi’ i, that is, marginal

costs should not fall "too" rapidly, if at allj;

Assumption Bl: (p' + Ys p"') <0 ¥ Yi2 Qi i, which says that

marginal revenue for a producer should be a decreasing function of the
other producers' output or, equivalently, that marginal revenue be steeper
than market demand.éj Hence these two assumptioms, together, require
each term in brackets in (2) to be negative. This is not merely un-
necessary for (2) to hold: it actually leaves out important possibilities.

A simple example will illustrate this. Consider identical firms facing

constant marginal cost and isoelastic demand p = AYfl/e. Bl becomes
1 . : 1
€ > =T, while (2) requires only ¢ > 5T If n =10, for

example, ‘Bl does not leave out much - only price elasticities in the

interval (1/21, 1/10). But when n 1is lower the critical values for ¢



become higher and their range widens, becoming a substantial (1/3, 1)

for the duopoly case . And of course, demand curves with more interesting
shapes could rather more easily violate these stability conditions and
perhaps get the industry into disarray, or at least the model into

trouble. It is, therefore, of interest to look into the cases excluded

by Bl. As an alternative to it, consider

Assumétion B2 . (p' + yi—P") > - % (p' - CE) at equilibrium
-§i R 51 ; ¥, where, under A (which must hold when B2 does, if (2)

is tc be met), the last quantity is positive for each i. We shall

later interpret this condition. Notice that we only need to impose it

at (and, by continuity of all the functions involved, in a neighbourhood
of) equilibrium y , 6 » given our earlier remark on 'local' being
'global' instability. Notice also that Bl and B2 give disjoint
conditions on demands: the range in between is considered in the appendix

and shown to yield stable equilibria too, as Bl does.

I will now show that B2 guarantees instability of equilibrium.

Consider any point (yi) € R* such that

(z) >0 or (z) >0 (4)

That is, all firms' output-divergencies are of one sign, so that (from (3))
the industry as a whole is expanding or contracting, perhaps following
a change in conditions that affected all firms in a similar way: a demand
rise or a change in inputs' prices, say. Points where (4) holds clearly
occur in every neighbourhood of equilibrium - they do so with positive

medsure.



We ask whether a path starting from one such point has (zi) +0

or not. For this, let k be such that

& 2| < Iz ] vi, (5)

Maybe |Kkzk| = 0 of course. Suppose for concreteness, in (4), that
_ %

(zi) > 0. Then, from z;, =y, -y,

L[] .* L]
zk yk - yk . (6)

ok
Differentiating (1) to compute Yy gives

=—-q, I K, z, (N
k 14k i1

where

q = @'+ y; P /(2p" + y; P" - )y (&)

*
with p(*) and ck(°) evaluated at (yk + Qk) , as in (1). It

- is easy to check that B2 is equivalent to

1 3
q; < - =T ¥1 , 9)

while Bl corresponds to q; > O. Going back to (6) ,

z, = - (Kk 2, + qkt'ik Ki Zi) (Using (3)
and (7))
1
> - (Kkzk - n—l'iik K, zl) (by (9) and
(R;z,)> 0)
__ n ( ~ .ZiKizi
n-1 Kkzk n )

W
o

(by (5))



That is, whenever (zi) > 0, min (Kizi) is strictly increasing.
; i
Similarly, if (zi) < 0, then max (Kizi) is strictly decreasing.
i
We have proved

Theorem 1. Under B2, and for the adjustment mechanism (3), the Cournot

oligopoly solution is unstable.

4, Qualitative dynamics of unstable Cournot equilibria

It may be said that, as far as applications are concerned, it is

immaterial whether an equilibrium's instability takes the form of a source
(of divergent paths only) or of a saddle point of some sort - in either
case all but a zero-measure set of flows diverge from equilibrium. The
question, however, requires an answer if only to complete our theoretical
picture of Cournot dynamics, as well as for one's amusement with the
exercise which will provide us with a new, rather robust example of a
saddle point in positive economics. Moreover, knowledge of exactly how
Cournot equilibrium may fail to be stable will shed additional light on
our economic understanding of the dynamics of the model.

Linear flows in R" s x = Ax, are very nice in that ome has a
complete and rather simple catalogue of all their possible, qualitatively
different dynamical structures. Apart from solutions with closed-
cyclical components in some directions, which are non-generic (and will
anyhow be allowed for below), the general solution is the hyperbolic
flow [ 4]: a generalised saddle point, which can be decomposed
uniquely into two constituent manifolds, one whose flow is stable (a
sink) while the other has 'fully' unstable flow (a source), and
whose dimensions (2 O0) add up to n (the two extreme cases being stable

and fully unstable equilibria). There is no other possible behaviour.



In contrast, non-linear flows are tricky, and may in principle yield

nearly any dynamic configuration : semi-stable equilibria (e.g.

x x2), monkey-saddles (the simplest : four alternating stable/unstable
lines intersecting at 0 in R2 ; can you see the reason for the name ?),
etc. Their catalogue, however, reduces precisely to the linear one
whenever the non-linear flow is diffeomorphic to a linear one at the
origin, and can therefore be linearised locally. This requires not simply
diffefentiability, but also that the origin be a nondegenerate critical
peint: that the Jacobian of the flow be nonsingular there. The reason

is simple: every linearisation is justified, explictly or otherwise, by
recourse to the implicit function theorem, whose applicability must
therefore be checked first. T shall leave this for an appendix, and

proceed now with our main argument, assuming qualitatively linear

behaviour near the origin, as described above.

The conventional way to identify a saddle point would be to
linearise the equations of motion at equilibrium and show the corresponding
Jacobian matrix to have the right numbers of eigen_values with negative
and positive real parts. The method is, however, untidy and hard to apply
in most cases, which explains why one is usually content to establish
stability alone even if only for some cases (sufficient conditions), for
which alternative methods are available, without seeking to establish
where exactly instability starts (necessary conditions for stability)
or the precise nature of the unstable equilibria involved. We shall here
take an alternative tack, instead of the 'eigenvalues' approach, proving
directly the existence and dimensionality of the constituent stable and

unstable manifolds of the total flow.



Consider
I; K, z, = 0, (10)

with (Ki) as defined in (3). Since (Ki) >> 0, (10) is thLe equation of
a hyper-plane coming onto the origin from all orthants in R? other than
n n

R, and R_. On‘ (10), sign z; = - sign zj#i Kj zj. Now,

recalling that

and that, under B2, (qi)<< 0 (eqn. (9)), it follows that, for all points

on (10),
sign z, = - sign z, . (11)
i i

Hence all zi's in (10) strictly fall in absolute value if this is not zero,
or remain zero otherwise. Clearly, convergence of these points does not
follow directly from here, for (10) will generally not remain holding along
the ensuing path. We have not found, that is, a convergent (n-1)-manifold
explicitly, but we shall be able to deduce its existence based on this

"local convergence" of points (10).

From T1l, it follows that the flow has at least one divergent
component: an unstable manifold of dimension 3 1. 1In the proof of
Tl it was shown, moreover, that every point in R: or RE (including
the walls of these orthants, but of course not the origin) moves strictly

into the interior of these orthants and remains there. This by itself



(10) Figure 1

suggests the divergent attractor to be one-dimensional: an unstable
"45° - 1ine" in R®. Fig. 1. illustrates the situation as we so far

know it.

This figure may, however, be deceptive: the saddle-point
structure is now obvious for R?, but must be checked carefully for
bigger spaces which, besides, contain different kinds of saddle points.
Suppose, then, the divergent manifold to have dimemsion m > 2. This
"surface" will necessarily intersect the plane (10) at points other than
the origin and in every neighbourhood of the origin.éj A contradiction
is now immediate : these points will have to move both closer to the
origin according to Euclidean norm, as implied by (11), and away from
the origin according to the same norm, as trajectories on the unstable
manifold of a linearized flow not only do "eventually' diverge from

the origin but do so everywhere (in this norm) near enough the origin.éj

We conclude that the divergent manifold is one-dimensional, a line.

A similar argumentzj can be shown to exclude purely-cyclical
components (i.e. purely imaginary eigenvalues), and it follows that the
convergent manifold has dimension (n - 1). We can therefore state the

following result.

Theorem 2.  Under B2 the dynamical structure of Cournot equilibria

in R® (n firms) is the direct-sum composition of an unstable flow on a

10..



11.

line U (a l-manifold) and a stable flow on a hyper-surface S (a

(n - 1)-manifold). Moreover, U is entirely contained in R:+ U RE_

(J 0), and S has empty intersection with Ri U RE N\ 0.

Notice that, since the attractor (the unstable manifold) is a
line through the positive and negative orthants, the specific way in which
Cournot equilibria under B2 will explode, is either an expansive run by
all firms, or a depressive one leading to the closure of some (or all)
firms and the formulation of an entirely fresh oligopoly problem. The
situation is as shown in figures 2 and 3, the first of which is a filled-
in version of figure 1, showing the relation of the plane (10) to the
convergent manifold S, while the second illustrates the nature of the

dynamics in higher dimensionseg

)

(10)

Figure 2
It is in the light of this result that we can best give an
economic interpretation to condition B2. Suppose that, starting from
equilibrium, all firms were to expand output by one unit. Bl not holding

means, as we saw (p.4and fn. 3), that the effect on firm i's marginal

that is, anl/ayi ayj = H;j > 0, whereas its own expansion lowers the

firm's marginal profit, by concavity. ‘If the former effect dominates the

latter, marginal profit will have turned positive for each firm (it was



12.

zero at equilibrium) and a self-sustaining expansive run will follow.

This will happen if

L, M, >0 ¥i. (12)
J 13
But H; = p(Y) + yip'(Y) - ci (yi), and it is easy to check that (12)
is, or corresponds precisely to, B2, This gives us an interpretation

for B2 as well as a rationale for the instability result under B2.

One would expect, on the face of the previous argument, the
converse often to be true too: that { Zj H;j < 0 ¥i==» stability }.
This turns out to be correct in most interesting cases,not generally.

Local instability follows (i) wunder Bl (Hahn), which amounts to the

strong requirement that H;j <0 ¥i, j, or under (ii)

(p'-c; ) <p' + yip" < %-lp' - cg | #%i, which overlaps with Bl

n-2
[p' + yi_p" <0 ] and covers the range of cases in between Bl and B2.
The converse (of the closure) of B2 = (12) thus emerges, from among the
class of cases where one of these conditioms holds for all i 2/, as the
necessary and sufficient condition for stability of Cournot equilibrium.

5)c Quasi-Cournot : positive conjectural variations

It is of some interest, in applications, to allow for a certain
degree of awareness by producers of their interdependence, due to their
reactions to each other's actions. To model this, while still avoiding
game-theoretic difficulties, one may assume that each producer expects the
others to react to his own policy-changes in a well-defined form, so that
in/dyi can be computed. If we furtﬁer treat this expression as a

constant A, - i, which may be a natural simplification in certain contexts



such as local-stability analysis, we get a rather simple, convenient

1), which may naturally be called

extension of Cournot (when Ai

quasi~Cournot behaviour. This is a common way of modelling collusive

behaviour in industrial economics, as increases in the 1's normally have

the same effects as expansions in the number of firms [6].

We now consider the following assumptions, generalising their

earlier counterparts.

sors & g i . 1] L e " 3
Concavity of 1 : Ai(p *A¥5P ) + (Aip ci) <0
Al: (AiP' & C;) <0
%
B1': (p' + Aiyi p") < 0 and
B2' : (' + y* p'")> - Lo -en all ¥i
S i’i n iP ’

These are in a sense the very same assumptions as before, for we notice

that the relevant, perceived demand curve for the individual guasi-Cournot
producer has slope Aip', rather than p' alone, on account of the

fact that a unitary expansion of individual output brings about a fall

in price that corresponds not to a unitary but to a A; change in total
output. Assumptions A' and B2', however, become more, and El' less

likely to be met as the Ai's increase.

We again assume, without further mention, concavity of profits.
It is now routine to check that  A' and ‘Bl' , the modified form of Hahn's
assumptions, are sufficient for stability of this model. Similarly,

theorems 1 and 2 generalise to

130



14.

Theorem 3 : under 'B2' and for the adjustment mechanism (3), the quasi-

Cournot oligopoly solution is unstable: a saddle point with convergence

on a (n-1)-manifold, whose divergent manifold is 2 line contained in the

positive and negative orthants.

6. A final remark

The Cournot behavioural assumption, or its positive-conjectural-

variations extension of section 5, are often taken to give reasonable

be well aware of the difficulties that arise as soon as any dynamics are
put into the problem, when these Cournot-like assumptions are continuously

falsified during adjustment.

I agree with this view, and for this reason, I do not find
discussions of global stability of the Cournot or quasi-Cournot models to
be of any interest, for the models themselves should be given up for markets
well away from equilibrium. Rather, I would regard the present paper as a
study of the local stability properties of Courmot. After all, near
enough equilibrium, the Cournct adjustment mechanism is as believable or
unbelievable as Cournot equilibrium itself, as it approximates locally,
for example, Cournot-like models with a richer kind of consistent-
expectations formation. And whenever local instability prevails, as
we have found to be the case for certain cases, global instability follows
too, whether for the simple Cournot model or for any richer one taking
Cournot behaviour around a given equilibrium. 1In brief, the stability-
analysis of Cournot does not tell us much gbout the dynamics of Cournot,

but rather about the observability of its static solution, or whether

the Cournot assumption is at all sensible on the face of a given demand



configuration.

............

Appendix : 1local uniqueness, linearizability and other stable equilibria

Regularity of equilibrium and non-degeneracy of the flow are
formally similar problems, both requiring some form of invertibility:
of the equilibrium function (forcing Q = zj#i yj on (1)) and of the

linearization (derivative) of the flow, respectively.

L. Set y = (y)) s £; () =p (L y) +y;p (255 = cf (595
and f = (fi)' These fi's are no other
than marginal profits (cf (1)), Hi . A solution y to £(y) =0
will be isolated if the implicit function theorem applies at ;, i.e.

if the Jacobian J = | D f; | is non-vanishing, where D f; is the

derivative of f at ; s

rl 81 --o-fnsl
D f;= 32 r2 -'.noosz ’ (al)
8 1) ssoeeel
| "n n n

= = ) " "
where r, = f’i 2p' + ;P ey

- R | (1] :
; and s, = f,. =p' + y; P ¥ 3).

i ij

Computing the Jacobian of (al) we find, after some manipulations,

: i .
Toe D ) Wy - sy (a2)
1 1 1 1
p' + y.p"
= 14+ ———) MU' -chH, (a3)
A S .

which is non-vanishing if either assumptions A and ‘Bl (Hahn)'gzué and B2



hold ¥ i.

28 The dynamics of the flow are given by (3), which is, in vector

form,
y=Kez=K+(y () -y) = FE, (ab)

N 4
F:R" > R" , with y (y) defined by (1) for each i. Differentiating

(1), dyi/dy; =y.. =0 and 3y:/dy; = yi. = i #3j. Th
) Yi S an ¥; yj—yij = q; ¥1 Je us,

differentiating (a4), the system becomes, to first order,

y = DF; - (y-y) (a5)

where the derivative DF; turns out to have exactly the form (al),

again, but now with r, = - Ki and 8; = - Kiqi . The following is

immediate.

Proposition If - L. q. < L. ¥ i, DF- has a dominant
n-1 i n-1 - y

diagonal, and therefore all its eigenvalues have negative real parts,

equilibrium is stable.lg/

This covers the gap of values for a; assumptions Bl and B2

leave, i.e. - E%T <q; < 0, but allowing some qi's to fall in the

0 <gq; <E%T interval of the Bl range. This adds to Hahn's class of

stable Cournot equilibria, considerably so if n is low.

The Jacobian (a2), is, in this case,

q.
I= DT as : o) TE, (- qp). (6)

16.



It is easy to check that if q; < - 1/(m-1) ¥i (B2), or if
-1/(n-1) < q; < 1 ¥ i (extended Bl, with A holding), J does not
vanish - it takes the sign of (—1)n+1 in the former case, the opposite
sign in the latter. Cournot dynamics has in all these cases a modicum

of good behaviour.
Footnotes:

* I have benefitted from interesting conversations with Avinash Dixit
and from a referee's comments. A version of this paper was presented

at the 1978 European Meeting of the Econometric Society (Geneva).

1/ see [13717.8],

2/ Write £(y), £:R" » R® for LHS of (1) in vector form. If 0 is a
regular value of f (non-vanishing Jacobian), which happens generically
[2; p.35 ,Stability Theorem], then f—l(o) is an n-codimensional

submanifold of R s i.e. the set of equilibria consists of isolated

points [2 ip.28].

3/ Marginal Revenue = MR(y,,Q;) =p (y; +Q) +y; p' (5 + Q)

Hence MRQ =p' + s p's which Bl requires to be negative.
i

Also, MRy = 2p' + ¥; p" < p' (steeper than p(Y)) iff- Bl holds.
i

4/ Notation : for a vector x = (xi), we write x > 0 iff X 2 0
¥i and x # 0.

5/ (10) 1is a separating hyper-plane for R2+ and RE_ » both of
which contain (uncountably many) points of the unstable manifold.
The latter and (10) therefore intersect transversally in a manifold,
or have intersection which contains a manifold, whose codimension

is the sum of their codimensions, [p-nﬂ + En - (n—l)] , L.e. of

dimension m - 1 > 1. See [2; p.30] .



10/

See [ 4]:T7.1.2 and, reversing time, the discussion on p.149.
The composition of a 2-dimensional closed-cyclical flow with the
unstable l-manifcld would be a flow on a cylindroid intersecting
(10). A1l points.on this intersection would then have to remain
'on the average' the same distance from the origin (the integral
of distance-changes all along the intersection be zero), again
contradicting (11).

It is of interest to contrast the dynamical structure we have
found with the well-known saddle point characteristi¢ of optimal
accumulation problems. The latter has convergence on a single
line and a divergent hyper-surface, that is, the exact converse
of the present picture: a reverse-time version of fig. 3.

We have not allowed for those cases where, say, B2 holds for some

i and Bl for others, & situation that may well arise if differences

across firms (esp. in their market shares) are large at the
equilibrium point. Little can be said in general for these
'mixed' cases.Heuristic arguments can be given to show that (i)
the flow is never cyclical whenever for all firms either Bl, B2,
or neither of these (i.e. the intermediate range) holds, whereas
(ii) both cycles and convergence may or may not obtain in mixed
cases, depending on factors like 'how strongly' a given condition
holds for each firm and their relative adjustment speeds.

See, e.g., [5:T2].

18
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