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1. Introduction

As a natural consequence of the development of a long series

of theorems concerning the existence of equilibrium, in the general equilibrium

process, with the property that the prices determined by this process

eventually converge to the equilibrium price. In other words, the problem
posed was to describe a reasonable adjustment process with respect to which
the price equilibrium is stable. The problem was first approached by Walras,
who formulated the so-called tatonnement process. Since this process was first
proposed a considerable literature discussing the problems raised by it has

developed, see e.g. Negishi's (1962) survey article.

The basic idea of the tatonnement process is that, given a price
system, each agent informs an auctioneer of his demand and sﬁpply of . each
commodity. Having computed the total excess demand for each commodity the
auctioneer then announces a new price vector which is obtained from the
previous one by increasing (decreasing) the price of commodities with
positive (negative) excess demand. This process is repeated until equilibrium
is reached. A fundamental feature is that no agent is allowed to trade any

commodity until equilibrium is achieved.

The question now arises. Given this assumption of "no trade out
of equilibrium", if the tatonnement process does converge to an equilibrium,
can we then say anything about the speed of adjustment? For the no trade
assumption to make any sense the convergence should be "fast", that is the
organisation of the market prior to trade should not take long. This question
has been posed several times in the literature (see Negishi (1962)), but to

the best of our knowledge no answer has been offered.



The purpose of this paper is to provide a partial answer to
this question by showing how a well-known result in the theory of ordinary
differential equations gives, directly, an estimate of the speed of adjustment

of the tatonnement process in the limit, (i.e. as the price approaches

equilibrium).



2. The basic Model

In this section we shall present the basic model. As our
result is closely related to the "neo-classical" stability theorems, we
shall here adopt the model which has been used throughout the vast majority

of papers concerning price adjustment processes by a tatonnement procedure.

We consider a pure exchange economy with m consumers
(1=1, ... ,m and £ commodities (h=1 , ... 5 %J). The commodity space
is described by le. P is defined by P: = { x ¢ Rzl x »>> 0} and P is the
closure of P. Each agent is assumed to have some initial resources

wt = (w%, 300 B w;) belonging to P and w, defined as the total initial

1. . .
resources w: = L @ 5 18 assumed to lie in P,

) 1
m =m . ‘- . . .
A state (x , ... , x ) € P is a specification of a. commodity

bundle for each agent, and a state is said to be attainable if & x° e

i
A price system is a linear map p: IRZ + R which to each
commodity bundle y = (y1, «.. , yz) assigns its value, p.y . We shall only
consider price vectors p >> 0, where we have used the canonical isomorphisﬁ
between !RZ and (AR&)* . Each agent has a preference - indifference relation

Zq (reflexive, transitive, complete), defined on P, and it is assumed monotomne.

The i'th agent's demand set at the price system p is defined as
the maximal elements w.r.t. > in the budget set yi :={ xeP l pP.X < p.wi}.
If we impose the strong convexity assumption on 3E(Xf; y, X ¥y
X < tx + (1-t)y, O<t<l) the demand set will consist of exactly one point,so the
i'th agent's demand is a function Ei.s is called an equilibrium price vector,
if supply equals demand at the price system p , i.e. & Ei(S) = w.
E: = gi is the total demand function and Z: = £-w is called the total

i
excess demand function.



This model has the following two features:

1° ¥i : El is a positive homogeneous function of degree O in p
. i i )
i.e. E (ap) = (P),¥a>0

o -

2 Walras' law ,i.e. p. ¢(p) = 0 , ¥p.

Next we want to describe the dynamical feature of the model.

This is given by the following differential equation

(1) d -
EE' = £(p)

where f = (fl’ 50 [ f&) is a map defined on P with values in -R&g such -

that sign fh = gign Ch s h=1,2, ... , .

This process describes the adjustment in the prices through time

with the interpretation of a tatonnement process as given above in the
introduction.,

C .. o, . . . . e
Definition. ¥(t; p ) is said to be a solution to, (1) with initial

value po, if for h =1, ..., &

. o
oy, (t5 p) £, (c5 7)) , ¥ 20
5t

(o] [o]
Wh(os P) "ph'

-

p is an equilibrium for (1) if and only if p is an equilibrium price vector,

ie. T, () =0, h=1, .., L,



Definition An equilibrium E is called globally stable, if for every po
and every solution ¥ (t; po) to (1)
. o n
lim¥ (¢; p) =p
t > o

The adjustment process (1) is called globally stable if for every po there

exists an equilibrium p such that

lim ¥ (t; po) = 5

t >

An equilibrium p is called locally stable if there exists a neighbourhood
U of 5 such that for every po el we have

lim ¥ (t; p°) = P

t > w

for every solution to (1).

The literature concerning tatonnement processes presents a variety
of theorems giving more or less similar conditions for which (global or local)
stability is present. Here we shall state only one such theorem. This theorem
is representative of the existing stability theory and so reasonable to accept

as the basic result for the following section.

In order to formulate the theorem we have tc define the notion

of commodities, which are strongly gross substitutes.

Definition The commodities h =1, ... , % are said to be strongly gross
substitutes if the total excess demand function Z(p) = @G oo Ez(p)) is

differentiable at all price vectors p >> O and

o
s 0 for n #k, p> 0
e pk



Stability Theorem (Uzawa (1961)),

Suppose
1°  TFor any initial price vector po >> 0 the process (1) has
. 0 . . . .
a solution ¥ (t; p ) which is uniquely determined by po and
. 0

continuous w.r.t. p
2°  There exists a strictly positive equilibrium price vector.
3°  All commodities are gross substitutes.

Then the equilibrium price vector is uniquely (up to scalar multiplication)

determined and the adjustment process (1) is globally stable.



3. The Speed of adjustment in the limit

If the assumptions of the above theorem are satisfied, then

it follows that given € > O there exists a t such that for t > go

ly &5 2% - 3l} < «.

This formulation immediately leads to one possible way of
describing the speed of adjustment, namely by expressing t0 as a function of
€ and the functioens fh. How this should be carried out precisely does not-
seem quite clear. Another approach to the problem would be to compare the

convergence of the solution with the convergence of a well-known function,

and this is exactly the task of this paper.

Let us start by considering the problem locally in -a meighbourhood

of an equilibrium. Let p be a locally stable equilibrium price vecfo;a

associated with the tatonnement process

d . . ,
E%-= f(p) , sign fh = sign z,, h=1, ... , &.

Making the substitution q: = p - 5 we may instead consider the process

@) 4 L), 2: £(P), q: =p - p

dt

where a = 0 is a locally stable point.

In order to get an idea of the kind of result we can obtain, let
us first look at a linear adjustment process which has O as a stable equilibrium.

This process has the form

dq _
at A . q

where A is a £ x £ - matrix .



For this differential equation we can explicitly state the solution, which
has the form

a(t) =K. etA

where K ¢ Rz is a constant determined by an initial value condition.

For a linear process local stability is equal to global
stability. Because the real parts Ai of the eigenvalues of A are negative,

we get the existence of a positive constant C such that

¥t IﬂiEll < C, where max X.<a<0,
eat i 1

lae)| = = g @)+ ... +[q, (8)]

Since eat + 0, ]q(t)l + 0 for t + =, it is reasonable to say that the speed of

adjustment of the q- vector is, in the limit, as least as fast as the convergence

i at
of the exponential map e .

The result is not astonishing, because of the form of the
solution of the linear differential equation. However, this estimate of the

speed of adjustment (in the limit) extends to the general case.

Theorem Suppose the map £ ¢ P + m& is of class C2 and 10, 2° and 3° of

the stability theorem are satisfied.

Then the solutions p(t) to the tatonnement process

dp _
It f(p)

fulfill the following :

1° HRSEl;%Jﬂ‘+~O as t » « with Ai < a<0, ¥i.
R :



© log flpct) - Bl _

t

Ai for some i ,

where p is the equilibrium price vector and the Ai's are the negative real

parts of the eigenvalues of Df(p).

Proof The theorem is a straight forward application of theorem 6.1,
Chapter IX in Hartman (1961):
Using the Taylor expansion around a = 0 we have the tatonnement

process written in the form

%3 = DZ(0). q + R(q)

where R'(q) is of class C1 and R(?) >0 as g >0 (i.e. R(0) = 0 and

- "
DqR(O) =0), as q = 0 is a sink.

S s ] , S o
This implies that the conditions in Hartman's theorem are satisfied, so 1~ and

2° follow immediately.

Remark The following example shows that we cannot generally obtain a

better estimate of the speed of adjustment, i.e. choose a = max Ai
i

Suppose £(p) = D£(p) (p=p) + R(p=p) with DE(p) =(‘ }_‘1’) ’

R(p—S) = ((p2—52)2k+1,0) (k large) and E >> 0 the equilibgium

price vector.

In a small neighbourhood of 5, the solution to the adjustmeﬁt process

dp _
= = £

will behave as the solution to the process

R - G (b



10

As Df(p) has -1 as an eigenvalue with multiplicity 2, the solution to
this process is of the form

R -t - -t -t
(p1(t), pp(t)) = (py + Ke ", p, +Kee " +Kjte ); K, K, eR o

Finally we notice that the theorem extends to cover the case with a
globally stable system without any further restrictions, as the'proof
only uses the behaviour of the adjustment process in a neighbourhood of

the equilibrium.
References:

Hartman, P., 1964, Ordinary Differential Equations
(John Wiley and Sons Inc.)

Negishi, T., 1962, The Stability of a Competitive Economy: A
Survey Article, Econometrica 30.

Uzawa, H.,1961, The Stability of Dynamic Processes,
Econometrica 29.



