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aroused my -interest in this area, for many valuable
suggestions. All remaining errors are my own.




Introduction

Strotz (6) seems to have been the first to provide a formal
analysis of the problem of inconsistency in intertemporal decision-
making. An individual who plans for the future may find that as time
elapses he wishes to revise his plan. Strotz examined the form of
the discount function as a possible source of inconsistency, when
there was no uncertainty facing ghe individual. His conclusions
have aubsequeqtly been refined in work by Pollak (4), Heal (3) and

Burness (1).

Hammond (2) has examined the problem in a more general
context, and it is essentislly his framework I use in what' ' follows
to characterise consistent planning under uncertainty. I prove .
that under certain assumptions, consistency is equivalent to
maximising expected utility on the set of feasible plans, with a
festricted set of utility functions and a tree of subjective

probability distributions which satisfy a Bayesian updating rule.
The Model

| Time is assumed to be discrete, and in each period, one of a
possible set of states of the world is realised. The state will in
general depend on those states which have preceded it. An event
will be a sequence of states <« Bys 8y sees »> » vpossibly infinite.
§ 1is the set of pcssible events at the initial planning date, t = O,
The choices open to the agent are represented by a decision tree A,

which is a set of branches a =  a(o), a(l), ... > possessing



the requisite tree structure (v, Hammond (3)). For each branch.
a & A, a(t), t =0,1,2 ..., is a node of the tree. I write
n for an arbitrary node, and N for the set of all nodes

beloﬁginé to A.

In reduced form the agent faces a set X of strategies
which map S into Y, the set of outcomes.[lj At each node
n € N the agentrfaces the same sei of outcomes[zj, a set S(n):
of events still possible, and a set X(n) of strategies x(n); which

map S(n) into Y.

If N(n) 1is the set of pdésible nodes following
(including n) then the intertemporal decision problem in extensive
form is described by the collection < X(n), S(n) , N() > . e'N“ with

the following propertiesl:

() K@) =X; S@) =8 ; N@) =N

where n, is the initial node of the tree.
(2) 1If n'€ N(n), then S(n') € S(n), N') & N(n) and
for all x'(n') € X(n'), there exists x(n) € X(n) such that

x(n',s) = x(n,s) : S(n'), where =x(n,s) is the value of the mapping

x(n) at s, and x(n) :'S(n') is its restriction to S(n').
I now make the following assumptions :

A.l. There exists a ﬁfeference ordering R(n) on X(n) for:all

‘0 € N.



A.2, Each R(n) satisfies the conditions necessary for the

Expected Utility theorem to hold.
A.2.1. Each X(n) contains all functions from S(n) to Y.

A.1. 1is only really restrictive in the case of an infinite
horizon. It is known from the literature on optimal capital
accumulation that it is not always possible to construct orderings
on infinite sequences of.outcomes. I rule out such compiications.
A.2. 1is an intratemporal consistency condition which guarantees

that

(3) x;(n) R(n) x,(n) iff U, (x,(n,s)) din) >

S(n)

Un(xz(“’s)) dll (n)
S(n)

where (1) Un () 1is a real-valued function defined on Y, and

unique up to a positive linear transformation.

(ii) T(n) 1is a unique probability measure on gg(n), a

o~algebra for S(n)[31

The assumption A.2.1. is included in A.2. but is stated

explicitly since it is referred to below.

The following definitions will also be necessary.



D.1l. The set < R(n) >n €N will be called a dynamic
ordering.
D.2. The dynamic ordering R(n) n€N is consistent if

whenever n' € N(n) and xl(n,s) = xz(n,s) for all s € S(n) - S(n"),

then
x,(n) R(@) x,(0) iff x,(n) : S(@') R@') x,(n) : S(n")
D. 3. The set of utility functions <Un(-) >n enN is consistent

if whenever n'€ N(n)

%) Ud(y-) = a+b Un(y) b> 0

or Un' is equivalent to Un’ (Un, - Un).
D.4. If < (S(), Sg(n), I(n)) >n€N are a set of probability

spaces, then the set of probability measures (H(n))neN is Bayesian

if wherever n'€N(n)

(i) Sare Sm

I(n)(A)

(ii) I(n') (A) BTOIECY)

for all A € _18(11')

In order to provide some justification for using the term Bayesian,

I could write, somewhat less precisely



G  I@aH@ = IEGA N S@))  for all A€ S
T(n) (S(n'"))

0f course 1N(n')(A) 1is not strictly speaking defined unless
A ng(n'). But it then becomes clearer that II(no) is to be

regarded as the prior measure, and N(n) the posterior measure at n.
Result

T shall now state and prove the following result :
If A.l1. - 2.1. hold, a dynamic ordering < R(n) >n€N is consistent
if and only if there exists some consistent set <Un(-),>neN
and a unique set of Bayesian probability measures € I(n) >neN
which satisfy the Expected Utility theorm for each n€NL41

Proof

(a) Assume that < R(n) >neN is consistent. Then in order

to demonstrate the existence of a consistent set < U >n€N and

unique Bayesian < II(n) >n€N I need to show that for any arbitrary n,

and n'éN(n)
(i) Un' ~ Un
(1) T@H@ = 1@ QA A€ @)

T G@'))

Select an arbitrary N and n'€N(n). For any strategies
x'l(n'), x'z(n') € X(n') it is possible to construct strategies

xl(n), x2(n) € X(n) such that



(5 x,(m,s) =x'.(n',s)
1 ) s € S(n")

X, (n,s) = x'z(n',s)

(6) xl(n,s) = xz(n,s) s € S(n) - Sn")

A.2.1. is required here to emsure that such strategies

can be constructed.
A.2, guarantees that

¢)) X, (n) R(n) X, (n) iff Un (x1 (n,8)) dli(n) >
S(n)

Un(x2 (p, 8)) dl(n)

S(n)

(8 x';(aIR@Dx', @")iff { U . (x'58)) di(m') >
S(n")

Un' (x'z(n', g)) dii(n")

§(n")
Since the dynamic ordering is comsistent

9) Un(xl(n,s)) din(n) > Un(zz(n, g)) dii(n) iff

S(n) S(n)



J Un'(x'l(n',S)) di(n') > J Un.(X'z(n',S)) dii(n')
s(n') s@')
Using (5) and (6)
(10) {Un(x'l(n'?s)) dll (n) > JUn(x'z(n',s)) dii(n) 1iff
Sm') S(n')
Un.(x'l(n','s)) dii(n') > Un'(X'Z(n',S)) dll(n')
S(n'")
But
D |y @ @he) @ 2 | U G,@e) di@)  iff
S(n') S(n'")

L

1
T (@) | U &';@',8)) di@)> 0@ E@") | U &')@s) diln)

S(n") S(n")

and it is clear that 1I(n)/N(n)(S(n')) 1is a probability measure on

‘(n'). In other words, strategies in X(n) are ordered equivalently

by U () du(n') and Un(-) dil (n) . But the Expected
r T{m) (St"))
S(n') S(n')
Utility theorem states that :
(i) M(n) is unique

(ii) U is unique up to a positive linear transformation.



Neay o I (A) s e
Therefore M(n') (A) 1 (m) (SN")
and Un' ~ Un. ‘This completes the proof of necessity.

To demonstrate sufficiency, one need note only that
(10) will hold if < U >neN is consistent and <£1(n) >n€,N
Bayesian. (9) then follows given (5) and (6), and consistency

follows from A.2,



Footnotes

[1]

[4]

These may be infinite sequences of single period consequences.
This is not in reality true, but since at each node n the
set of single period consequences which have already occurred
is uniquely determined, there is no loss of generality and
notation is simplified by representing the problem in this way.
In the original Savage theorem (5), NI was a finitely additive
measure. To avoid certain technical complications which do not
affect the results, I assume that I  is countably additive
and use Iebesgue integrationm.

A Bayesian set of measures < II(n) >n€N is unique if there
exists no other Bayesian set defined on the same '<:4§n) >n€N

also satisfying the Expected Utility theorem for each né€N



10.
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