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i The single—equation linear regression model is conventionall
t y

written in the form

y = le + u, (1.1)

the "dependent" veriable y bYéing segregeted on the left hond side to
emphasize that, under the usuel assumptions, it slone is correlated
with the stochestic term, and Xl ig » matrix of non-stochastic variables.
The usual interpretation of the disturbance uw in (l.1) is as on aggr—
egate of minor.unobservable variables — errors in the svecification
of the equation — which are distributed independently of =21l variables
except y . Suvuch errors are observetionslly indistinguishable fraom,
and may include without violeting the assumptions, measurement errors
in y .

In the presence of measurement errors in the independent variables
the usual assumutions do not hold, and any number of the variables mnay

be stochastic. 1t is then more appropriate to write the model in the

form
Xa = u (l.2)

which can when necessary be partitioned under the conventionsl normal-—

ization as

X=[y: 4]
R
It will be helpful for expository purposes to postulate the exist-
ence of an exsct lineor relationship between k theoretical variables,

ét = (Elt’ cers EkT)’ of' the form

a'g, =0 ' (1.3)
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ag errors in the messurement of'glt, provided the independence assumptions
hold.
The error : vector for the redefined model cen then be separasted into

two components,

g ’1 . " )
V1t Vit €
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i . Zt = - 21; + .
‘lvkt Viet O )
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where vft ig the "real" error of measurement in Ve The definitions are

summarized in tho equelities,
= = = »*
vp = Epp v g = Sy t i ey = BY 4 VY

Assuming for simplicity ~ and quite plausibly - that the measurement
errors and equation errors are uncorrelated, the covariance matrix ;) can

also be resolved into additive components,
- (1.
a-=0, + Qg (1.4)

‘2v is the coveriance matrix of the measurement errors vroper, and Ile,

#]
which cen be written a‘eﬂg, has the form

( 3
O« o «0

1
00 .
. . . (1'5)
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It may be noted that if, contrary to our present sssumption, the equation
is part of a simulteneous system, the error vector will contain equation—
error components corresponding to the other endogenous varisbles, and

hence Q! will possess more than one non-zero element. The practicsal






Define
x+=E(:IT] (T x (k+T) )
A = [B : C] ()
(k) (T)
a' .o (1)
= ..o: lllll O:QOAO-._; (kx(k+T))
o -5, 5] -1
(1) (k-1) (T)
and V+ = El H Vlj, where V1 = (Xl—il).

Then, (1.6) can be written equivalently as

AX = vV . (1.7)
or

BX' + ¢ = VvV ., (1.8)

Premultiplying (1.8) by B—1 will be found to give

—_ -1 +!
1V

X' - X' = B = v

) +1 +

. .
'so that V = BV', and it follows that, where E(v:vt ) = Q,

Y] =  BQB' (1.9)

. + .
Now assuming that the Vs and hence the v, are normally and independently

distributed, the log-likelihood of the sample is

L(a, 0, 5|0 = - %5 log2m
T + 1 +'-1 +' _+
-5 log (det @) - 5 tr Q AX X A") (1.10)

(note that [det B] = 1)






But it will be seen that substituting the solution into (1,12) causes the term
to vanish identically. This is, of course, the consequence of there being no
degrees of freedom for the estimation of the T(k-1) elements of CX. However,

the solution for the original unknown _£ may be written

= -1
!' = NS rxt .
X] =¥ r Hyhoa'x | (1.14)

f 1.1; ing th #= _g X! * = . -} @t
rom (1.13), using that 02 H,X), and that B3 [h2 P -hBt o+ H2].

Thus, the likelihood concentrated with respect to Cg is simply (1a1l) less the

last term, or,

ty?
L* = — 2% log 2n —-g log (a'@a) + T log |det H| - % (ég¥§§2) (1.15)

The next step should be to concentrate (1.15) again with respect to Bg - or,
which is the same thing, with respect to H. But it is clear that (1.15) has
no maximum with respect to H. Referring to (1.1%2), we see that il = Xl at
the points on the likelihood surface where |det X] approaches infinity.

It must be concluded that no

ML estimate of Q - and hence, of a - can be obtained from the sample X alone.
To proceed further, it will be necessary to assume that Q is known, and
this we will now do, postponing the question of feasible methods until later.

It will, in fact, only be necessary to assume that  is known up to a scalar

. 2 a0 . .
multiple. We write 1 = 0, ond treat 2 as a mitrix of known constants.,

Note that

T log |det H| = T log |det HB|

L}

T
T/2 log|det HBQB'H'| - 5 log det @

T/2 log(a'fa) —-g log det Q.

Hence, (1.15) can be written

1 [a'X'Xa

2| .o Tk ) 7
L*(a, O ]Q,X) = =3 log z2m - = log det L — 5 ':.—ﬁ;)
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But by Slutsky's Theorem it follows from (1.20) and (1.17) that this

eigenvalue is the probability limit of A/T » Hence,

1 [y A0 . — R
plim & [(x'x - AQO)S,] = (M - 02ﬂ°)p1im(a) = M plim(8) = 0

which implies that nlim(a) = a.
However, it is apperent from (1.19) that
plim (&%) =% &,
so the ML estimator of 02 is not consistent - althougi a consistent
estimate ig provided by 39& .

Differentiating (1.17) a second time with res ect to a and toking

the probability limit {after dividing by T) yields

)2
. 1/ d°L -1 =
. plim = k/aaaa'> = U (1.21)

Partitioning this matrix by

m m! (1
- Ty Myl (1)
M= - ’
- -
yl My J (k-1)
(1) (k=1)

and discording the first row and column which corrcspond to the restricted

element of a gives the ssymptotic verionce metrix oif the unrestricted

elements as

” 1l 2 0 o= -1
— - 1
V(g) =5 o (a'La) K ] (1.22)
Kstimates of Zl can also be obtained by substitution in (1.14), but

note that these are not consistent. The number of unknowns of course

tends to infinity with the sample size.

(iii)The assumption that {2 is of full renk has been mode only for convenience
of exvosition, and is not restrictive; consider the case where some of

the varisbles are measured without error — dummy veriasbles, for exomple.
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Substituting for ay in the likelihood function snd maximizing with

respect to a, leads finally to

A
1 I
e (XK = a, =0 _ o
e it T AR (-26)
ATATA
where Gy = I - Xp(AéXB)—lXﬁ, as the equation comparable to (1.17).

The estimates of ay can then be obtained from (l.24).
A very obvious specisl case of 01.26) is where kA = 1, so that i’

has only a single non-zero element, SaY Gy = 1l with no loss of general-—

ity. a, is then 2 scalar with fixed value, and (1.26) reduces to ordinary

A
leost squeres. The condition thet (1 must be known up to a scaler multiple
clearly ceases 1o be restrictive in this case, and OL3 requires no inform-

ation extraneous to the samule - beyond the very importent knowledge that

Xl is measured without error.

(iv) At this point we reintroduce the distinction referred to earlier
between errors of measurement proper, md errors in the equation, and
make use of the corresponding dis-aggregation of the covariesnce matri.

From (1.20), (1.21) and (led) we moy write
M-0q - = 0. (1.2
( Q Qe)a 0 (1.27)

When Lk has the form (1.5), defining the partition

wyy 9'1 (1)
Q =
v
w _ Q {1r~1)
Lyl 11 R
(1) (k-1)

enables us to write (1.27) in vertitioned form as

(m - - 02 m! ' ' 1
yy vy & yl wyl
=0 (1.28)
moq = Wy My = {2, -p

;
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14.
(1) Obtaining suitable extraneous information about measurement
errors 1s a notoriously intractable problem. A widely advocated approach
to consistent information is the use of instrumental variables (IV). If

there exists a matrix of instruments 2, uncorrelated with V but related

to X by the linear stochastic system

il = ZI'' + W (2.1)
then ,
= 1

X1 Z'' + W + V1 (2.2)

and ii can be estimated by X1 = IT' = Z(Z'Z)—IZ'X1 = Qxl,
Then, (I - Q)X1 = (W+ Vl)' We may show that the IV estimator
" = xox) 'xiq (2.3)

1+ MY .

has the same probability limit as (1.29). In effect, Qll is estimated
1 orpr 1y .

by T (Xl(I Q)Xl) and wyl by T (Xl(I Qy). These estimates are

inconsistent - since, for instance, plim %-(Xi(l - Q)Xl) =

plim % W+ Vl)'(W + Vl) # 911 - but knowing by the standard result that

IV is consistent, we may obtain from the probability limit of (2.3),

. _1_ v o 1 T | - T 1 * =
plim T (X1Xl V1 V1 Xl(I Q)Xl) plim (B )

plim %—(Xiy - Vivy -X! (I-Qy
t
(using plim (%—‘1) = 0)
and hence,
. * = : 1 - gt -1 Ty — V!
plim (B8) = plim (XX, V1V1) Xy Vlvy)

since X, 8= y.
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A more sophisticated variant of the dummy-instrument approach
would be to fit the columns of X to simple sinusoidal functions of t,
and use the latter with the estimated parameters as instruments. The
basic difficulty with all these methods is that when the instruments are
chosen on the basis of observed good correlation with the empirical variables
- rather than on theoretical grounds — then the better the correlation,
the greater the likelihood that the instruments are correlated with the

errors as well as the true variables.

These difficulties imply that IV cannot be a generally satisfactory
solution to the measurement error problem. The alternative approach which
is open to us is to seek methods of estimating @ directly. There are
two cases to be considered. If it is known that the model is of the pure
errors—in-variables type, or at least that errors in the equation represent
a sufficiently small proportion of the residual variance, then it is
sufficient to know £ up to a factor of proportionality, and (1.17) with
estimated §° is the appropriate estimator. If on the other hand the
errors in the equation are not thought to be negligible, then it will be
necessary to estimate the absolute values of the elements of L, to obtain
a feasible analogue of (1.29). In the former case, it may be thought
sufficient to employ a plausible subjective estimate of the relative
precision of measurement of the variables, for example =1

(see, e.g. Casson |2 ; but for the general error model, quantitative
g g q

estimates are necessarily required.

(ii) There can be no generally applicable approach to this problem,
and in many cases it is probable that suitable information aboﬁt the way
in which the data is collected simply does not exist. The remainder of
this paper is concerned with a method which may sometimes prove feasible,

and it will be convenient to describe it in the context of the specific
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be noted that the success of this explanatory variable in level formul-
ations is largely due to its role as a proxy for the trendvin the
variables. In the difference formulatioh, the rete of linear trend is
measured by the constant term bo.

The parameter of principle interest is bf = bl + b2, which cen be
interpreted as the 'medium run' marginal propensity to consume; (2.4)

can be written in a more illuminating form as

= * »*
A4Ct by + b A4Yt + b2131A4Yt + et (2.5)

where bg = -b2. The equation is then interpreted as a linear relationship

between snnusl increments in consumption and income, modified by a penalty

term related to the rate at which income is changing. Incidentally, a

log-linear version of (2.4) has been tried, eand found to give almost

equivalent results as regards goodness of fit and residual autocorrelation.
Phe feature of particular interest in relation to the messurement

error problem is the use of differenced variables. The ordinary least

squares estimates of (2.4) (see Pable I1) were found to be lower than

expected, and the possibility of measurement error bias could not be

ignored. (It is important to distinguish this problemn from the

"mensurement error" interpretation of the Permanent lncome model.

In Friedman's [6] terminology, the "transitory" components of income are

the deviations of actual current income from permanent incom: — whereas

we are concerned with deviations of measured income from asctusl income -

measurement errors proper.) The variance of the differences of a smoothly

trending time series is characteristically much smaller than the varience of

the original series; differencing has the advantageous effect of tending to

cancel out relatively constant errors of measurement - omission of some

little—changing component of the aggregate for example. But the relative

gize of random (sewrially independent) measurement errors will gemerally be
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error in the absolute figures, whatever it may be, is likely to be in the
same direction in all years. The deviations between the estimates and
the facts are likely to consist in part of a bias which is more or less
constant from year to year, and partly of a more random element."
(page 40)
By this account, the differencing process will remove some proportion of the
error, a matter of importance if the "mére or less constant bias" is of very
different proportionate magnitudes in income and in consumption. It is of
course the "more random element' we are concerned about, and although
encouraging, the remarks quoted still leave us with a very vague idea about
actual reliability, and still less of what we should really like to have, a
quantitative estimate of the covariance matrix of the measurement errors.
(Qv in the notation of section I).
But there is one source of quantitative information to which we have

direct access. The October issues of Economic Trends contain each year

quarterly series of the principal macro-variables about twelve years in

length. This means that each item of data eventually appears about twelve

times in succeeding October issues. The first appearances of an item are
generally provisional estimates, and are likely to be revised quite substantially
as time goes on. What is perhaps rather surprising is the extent to which the
figures are being revised continually over the period of their publication, even
ten or more years after their first appearance. These revisions are explained
in the handbook partly in terms of redefinitions and reassignments of various
components of the aggregates - for instance, the quarter to which an item is

assigned - and partly in terms of new information and the correction of errors.
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for 1958 through to 1973, and yielded between twelve estimates of the earlier
figures in the series down to five for the more recent. To obtein this number
of estimates, it was necessary to use current price data, since the constant
price data used in the actual estimation of the consumption function is subject
to changes of the base year, and the number of comparable estimates is much smaller.
The current price estimates were deflated using the retail price index - this
being applied to total consumption, before subtraction of expenditure on durables
deflated by the appropriate sectoral indicéé. For tﬁs reasons, thiéwiéi
a somewhat rough and ready procedurue First, constant price estimates
are revalued prior to agpregation; but since it is intended to compare
not different time periods, but different estimates of the seme time period,
it is suffioient just to scale the estimates appropriately. Second, and
perhaps more serious, is that by using the current price data the influence
of errors in the rice indices is eliminated. This is unfortvnate, but is
s deficiency which can be remedied only at a much increased cost in data
collection and computation: e.ge, by deflating each years current price
estimates by the corresponding years priée indices. In view of the limit-
stions slready inherent in this method of investigation, such a refinemcnt
was felt to be not worthwhile at this stage, although there is clearly
scope for further examinetion of the problem.

The figures obtained in this way for C and Y as defined can each
be assembled into 3 46x16 matrix, the rows corresponding to the time-
period of the observations, and the columms to the "vintages" of the
estimates; likewise, the differences A4C and A4Y yield a 42x15 matrix.

The matrices have & roughly upper-triangular form:
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Iable I o
(i) Revision Covariances (Levels)
o 1753.Th4
Y 590.69 1729.78
Y, 698.54 558,88 1729.78

(ii) Revision Covariances (differences)

-
AC 21k . Lk
L
AhY 126.20 678.70
A4Y_1 136.50 81.74 678.70

(iii) E%K (differences)
AhC 2249.91
AhY k656.32 16877.66

Bg¥_y 4525.91 10158.71 17444.51

A point to be noted is that the covariaﬂces between C and Y and Y—l will be
large in part because of the common upward trend in the estimates according to
vintage, and may therefore be interpreted as artefacts. In the differences,
however, such trends are much less in evidence, and the size of the covariances
may be judged more interesting.

As merely descriptive statistics, (2.6) and (2.7) may be judged on their
merits; but we must be extremely careful in relating, say, (2.6 ) to the
theoretical measurement error variance, E(vi), where vy is the undetected error.
(2.6) would be an unbiassed estimator of E(vi)if the various estimates of the
variables were random drawings from a single population of possible observations,

with mean equal to the true value of the variable - which is obviously not the

case, In fact, each estimate represents a drawing from a population of estimates






The estimated signal-noise ratios of 93 : 1 for consumption, and 2k : 1
foriincome are smaller than expected from the first inspection of the data,
in éarticular for income, which is the variable we are worried about. Measure-
ment errors in A)C are not a problem (as regards bias) except in lagged-
dependent variable specifications. However, what is clear from a study of the
plotted values is that data for estimation and testing purposes' should not,
if possible, be of too young a vintage. It takes the compllers three or four
years on average to produce estimates which remain stable thereafter, and
hence contain most of the available information. The sample graphs of Figure

II are typical of the series as a whole in this respect.

A slightly delicate question which one should nevertheless not ignore is
whether the good behaviour of the revisions of the differences is not in part
due to "fudging"; — for example, an error detected and corrected in a given
estimate might lead to the adjacent figures in the series being éorrected by
s similar amount for no better reason than the belief of the compilers that
their original estimates of the changes were correct. The passage from "Sources
and Methods" quoted above is a little ambiguous on this point. But it does
seem reasonable to accept, in the present state of data collection technique,
that the C.S.0. know all that there is to be known about their figures, and
any "fuaging" that occurs represents the best available, albeit subjective
knowledge about the data; in short, if "fudging" improves the accuracy of the
estimates, then any corresponding reduction in the revision variance is, at the

least, not inappropriate.

(ii) The next step is to find out what measurement errors of the estimated

magnitude would imply in terms of least squares bias, and to do this we compute

Weighted Regression estimates, as described in section I. We shall not,
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properties. Note that «° is computed in each case as (5:%:I)§'X'X§,
end is therefore not an estimate of 02 as defined in (1.16) for the rBV
estimator, but of V(u) = oi = OQaﬁffﬁa’ For the BVE estimates, sg was
also computed as 82 - gﬂfié, which is an estimate of af ss defined in
(1.28).

As well as two estimation methods, two alternative formulations were
adopted regarding the error covariance matrix. In (a), we use the matrix
just as given in Table 1(ii), but in (b), we assume that the estimated
covariances of the errors in A4Y and A4C are spurious, and set them
(the off-diagonal elements of the first row and column) to zero. Since
it is difficult to gauge the amount of confidence that can be wlaced in
these covarisnce estimates in particular, it is as well to know their
importance for the outcome.

sguation (2.4) was estimated using all four methods, as well as by
ordinary least squares, and the results are shown in Table II. The
gtandard errors (in parentheses) and other test statistics given by the
OLS regression programme are shown. The varisble D is\a dummy variable
for the effects of the 1968 Budget announéement of tax increases, defined

by "1 in 1968(i)
~1 in 1968(ii)

_O elsewhere.

<
it

The ssmple moments were then computed from the deviations [rom the
corrected means, so that the moment matrix corresponds 10 XAQBXA in
(1.26), where XB has the form (1 : D), a Tx2 matrix where 1 is the congtant

dummy. Note thet this is the matrix given in Table I1(iii), divided through

* - . .
$ince the estimators have only asymptotic validity, the bias correction
for s2 has no precise justification. It is employed to facilitate

comparison with the OLS estimate.
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The most notable feature of these results is how little

the various weighted regression estimates differ overall
from the ordinary least squares estimates; and it is even

*
more striking if we compare the estimates of b1 = b1 + b2,

which are shown in Table III:

Table III1:

OLS PEV (a) EVE (a) PEV(b) EVE (b)

*
b .3364 | .3355 .3361 .3638 .3463

In particular, the results for specification (a) change hardly
at all.

The fact that the estimated signal-noise ratios are quite
large can be held to account for this in the case of the EVE
estimates. Note that in (a), the equation errors are
estimated to account for almost 80% of the residual variance.
However, the similar results given by the PEV method indicate
that the small absolute magnitudes of the variance estimates
are not the only factor involved.

It will aid the interpretation if we derive the general
expression for the asymptotic least squares bias. From the

least squares formula,
é = (X'X')_l)('y
11 1

we obtain, assuming that measurement and equation errors

are uncorrelated,
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of the errors, do as expected show somewhat larger

changes in the coefficients, but in neither cdse of an

order which suggests that measurement errors are a serious
problem. The PEV estimator here weights the income variable
to account for about three times as much of the residual
variance as the consumption variable, which ignores equation
errors and almost certainly overstates the problem. One
explanation of the stability of these estimates can be given
by reference to the lag structure of the model.

The bias expression (2.10) specialities in the present case,

assuming Woy = 0, to
" -1
b, = b w w b

ouim (L1001 - - Tyy mYY_l v M) (1) )
by ™ by vy, vy “vy_y vy by

where My = aYY +ogy is the asymptotic second moment

of observed income, stationarity being assumed, and

Mgy = aYY * Ugy 1 is the first-order autocovariance.

-1 -1 -
If we make the further simplification of assuming w =0 -

YY 5

it is in any case estimated to be relatively small - then we

obtain

= Uyy (7 bymyy + bymey )
3 7
"y "~ Myy

plim (b1 - b1)

= T by *hyy (2.12)

d+c) (1 —YZ)

where Yy 1is the autocorrelation coefficient of observed

income, and C = EYY/w is the signal-noise ratio. A
YY

similar expression can be derived for b2-
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performed on a similar model exhibit similar off-setting
effects in quite small samples. [4i}

It can be expected that these properties gene;alize to

more complex distributed lag formulations, and provide the
underlying justification for the time series specification

of nermanent income models. It is evident that even the simple
model employed here is likely to be quite robust against the
effects of measurement errors.

We have taken care to distinguish errors of measurement in
current income from Friedman/iransitory components of income,
since naturally the data revisions contain no information
regarding the transitory components. But it is also clear
that both types of "error" will bias least squares estimates
away from the population values of the theoretical parameters
of interest —~ in this case, the marginal propensity to consume
out of annual increments of permanent income, defined for an
appropriate horizon. Both transitory components and measure-
ment errors are characterised by a lower degree of auto-~
correlation relative to the.permanent component, and when the
model is written in the form (2.5) it will be seen that the
role of the second order difference term A1A4Yt is to partial

out these relatively random influences, which cannot in general

be distinguished.
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