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Consistent estimation of linear relationships when 
I 

there are errors 

of-measurement in the independent variables is not generally Possible 

without further information extraneous to the sample. 	In Part I of,  

this paper we review the theory of Maximum Likelihood (ML) estimation 

when this information takes the form of knowledge of the variances and 

cova-riances of the measurement errors. While there are some good text—

book amounts of the method of Weighted Regression, e.g. 1t9_ 11 Chapter 29, 

1101 Chapter 10, we wish to consider the consequences of more general 

assumptions about the model than usually made, specifically, that 

(i) the error covariance matrix is unrestricted, (ii) only a subset of 

the regressors are measured with error, and (iii) both errors in the 

variables and errors in. the equation ("shocks") a-re present. 

In Part II we investigate the possibility of obtaining information 

about error variances from the patterns of revisions to the published 

data. over time p  with an applica-tion to the consumption function. 

4eig ,hted Regression estimates obtained using estimated revision variances 

a,s Proxy for measurement error variances provide suP- ,orting evidence -,) 

on the magnitude of measurement error bias in the least squares estimates. 

1. 



I 

(i) The single-equation linear regression model is conventionally 

written in the form 

y = XlP + u, 

the "dependent" variable y being segregated on the left hand side to 

emphasize that, under the usual assumptions, it alone is correlated 

with the stochastic term, and X1  is a matrix of non-stochastic variables. 

The usual interpretation of the disturbance u i.h (1.1) is as an atrgr- 

egote of minor unobservable variables - errors in the sf:ecification 

of the equation - which are distributed independently of all variables 

except y. Such errors are observationally indistin;uishable from, 

and may include without violating the assumptions, measurement errors 

in y . 

In. the presence of measurement errors in the inde~;endent variables 

the usual a._,sumi)tions do not hold, and any number of the variables may 

be stochastic. It is then more appropriate to V.,rite the model in the 

f orm 

Xa. = u 	 (1.2) 

which can when necessary be partitioned under the conventional normal-

ization Ds 

X Cy  Xlj 

It will be helpful for exuository purposes to postulate the exist-

ence of on exact linear relationship between k theoretical variables, 

~t = (E it' ' 	kT)  , of the form 

af t  = 0 	 (1.3) 

2. 



and we wish to consider quite generally the problem of estimating the 

parameters a, of (1.3) from the set of observations 

X  = (xlt,...., xkt) 	t = 1,...1  T 

(We shall hereafter refer to x1t  as yt, conventionally identifying; the 

va.ria.ble corresponding to the restricted coefficient.) 

The xt  will in general be imperfect proxies for the true variables 

t, subject to measurement and definitional errors of various kinds, so 

that 

x 	= IFt , vt 	t = 1, ... , T. 

It will be assumed at this point that the errors vt  ha,ve the properties 

F(vt) = 0 

P(vtVI) = Al, a positive definite matrix. 

The latter assumption will be relaxed in due course. It is true that 

the assumption of zero mean may be unrealistic, since due to errors of 

definition, a variable can be consistently over- or under-est-imated. 

:But it is clear that if F(xt) ~ Ct, there is very little that can be sadd 

a.bou.t consistent estimation. 

This is an appropriate formulation for the pure "errors-in-variables" 

regression problem, and is the most convenient for our purpose. A model 

of the form (1.3) is not, of course, , enera.11y af)~)ropria.te in the context 

of economics, where relationships can never be so exactly specified; 

but when necessary, we may employ the simple device of redefining the 

dependent variable to include the unobservables. Thus, su.pi,)ose we have 

the stochastic relationship between true va.ria,bles gt - ( it, f2t 
	''Vkt)' 

a, * = E t 	t 

This equality can be written in the form (1.3) by defining 1glt = f*  - fit t' 
We can then without any ambiguity treat the errors in the equation, 	, 

t 

3• 
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as errors in the measurement of lit, ~)rovided the independence assl?mptions 

hold. 

The error vector for the redefined model can then be separated into 

two components, 

r̀  ~c vit 
	vlt 	~t 

v2t 	v2t 	0  

°tJ 	°kt 	° 

where v
t 
 is the "real" error of measurement in yt. The definitions are 

summarized in the equalities, 

yt fit + vlt fit + vlt + Et 	~'lt + vlt 

Assuming for simplicity — and quite Plausibly — that the measurement 

errors and equation errors are uncorrelated, the covariance matrix,CZ can 

also be resolved into additive components, 

n = nv  + De 	 ~1.4) 

12
v 
 is the covariance matrix of the measurement errors proper, and 1Zit , 

which ca 	 ofn be written 	fV:, has the form 

1 0 . . . 0 

f 0 0 	 (1.5) 

0.0 

It may be noted that if, contrary to our present assumption, the equation 

is },art of a simultaneous system, the error vector will contain equation—

error components corresponding to the other endogenous variables, and 

hence 
11~ 

 will possess more than one non—zero element. The practical 
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irnPortPnce of the distinction we have elaborated is, ~+s will become clear, 

that f
l   is independent of the equation Parameters, in. t'he sense that 

it can in princir>le be estimated. (if at all) strictly prior to the est—

imation of a.. But this is not true of D. It tai11 be convenient to 

ne,llect the distinction for the time being, and treat the model as in 

effect a cure "errors—in—voria.bles91  model, but we shall i,rish to return 

to it a.t a. later stage. 

(ii) The model (1.3) can now be written 

	

a.'(xt  — v t ) = 0 	t = 1,..., `1', 

or in matrix form, where RitI, the matrix of true variables, is repres—

ented by X, and. fvit3, the matrix of errors, by V, 

Xa=0 

X = X + V 	
(1.6) 

Which implies 

Xa= Va. =u 

The matrices X, V can be partitioned conformably with X as 

	

X = [y : Xll = 	
1 

V = 	[ V : V1l . 

The unknown -parameters of the model consist of the k-1 unrestricted. 

elements of a, the 2k(k+l) distinct elements ofS , and the T(k-1) 

independent true variables X1. It is well known that none of these 

unknowns can be consistently estimated from the information contained 

in the observations X alone. To illustrate the problem, it will be 

helpful to write the structural form of (1.6) in the conventional 

simultaneous equritions notation. ('ee 12 for a similar 

a;p~eroa.ch. ) 



X+ = IX 
	

ITJ 

	
(T x (k+T) ) 

A = [B 	] (k) 

(k) 	(T) 

21 

Def ine 

at 	0' 	(1) 

0 	Ik-1 	
- X1 	(k-1) 

(k x (k+T) ) 

(1) (k-1) (T) 

and V = [ . V11, where V1  = (xi  - 71). 

Then, (1.6) can be written equivalently as 

+ 1 	 +1 

AX = V , 

or 

r 

BX' + C = V+  

premultiplying (1.8) by B-1  will be found to give 

_ 

X' - X' = B-1V+
1 

= V' 

(1.7) 

(1.8) 

so that V 	= BV, and it follows that, where E(vty+  ) 	2 , 

Q+  = BQB' 	 (1.9) 

Now assuming that the vt, and hence the vt  are normally and independently 

distributed, the log-likelihood of the sample is 

L(a, 0, X1  IX) _ - zk log27r 

-1 
- 2 	log (det Q+) - 2 tr (2+  AX+  X+A' ) 	(1.10) 

(note that Idet BI = 1) 
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Consider first the consequences of trying to maximize(1.10) with respect 

to all the unknown parameters. It is convenient to folloV a procedure analogous 

to Limited Information Maximum Likelihood. (See Koopmans & flood., 
[8 j, Chap. VI) 

1 	0' 

	

Choose the matrix H = 	
(1) 

 

[h2 H2  (k-1) 

(1)(k-1) 

so that 	 HP+H~= W 1 O  

0 Ik_1 

where w11  is the (1~1) element of n , and is unchanged by the transformation. 

Observe that by (1.9), 

Wil  = a'Qa. 

Also, 

a' : 0' (1) 
HA = A* _ 	....2... 

A* 	(k-1) 

In terms of A* it is then possible to write (1.10) a.s 

L = - Tk  2 log 2w --I log (a'Qa) + T logIdet HI 

1 (a'X'Xa'  _ 1 	+' + ' 2 tr (A2  X X A2 ) 

Partitioning A2 as 
[B2 : C21, the last term in (1.1,I)can also be written 

rX 

X 	X' 	B*~
tr 	(B2 : C2) 	

(1.12)  
IT 
	

C2' 

The maximum of (1,11;)with respect to C2 is found by differentiation of (1.12) 

which yields the solution 

C* = - B*X' 
2 	2  
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But it will be seen that substituting the solution into (1.12) causes the term 

to vanish identically. This is, of course, the consequence of there being no 

degrees of freedom for the estimation of the T(k-1) elements of C2. However, 

the solution for the original unknown Xi may be written 

X1 = x1 H2 -1 h2a ► X'  

from (1.13), using that C
2
= -H2X1, and that B2  = Ch 2  : -h2~' + H21' 

Thus, the likelihood concentrated with respect to C2 is simply (•1,11)less the 

last term, or, 

L* _ - 
T2  log 2n - 2 log (a'S2a) + T log Idet HI - 2 (a'X'~Qa / (1.15) 

The next step should be to concentrate (1.15) again with respect to B2 - or, 

which is the same thing, with respect to H. But it is clear that (1-15) has 

no maximum with respect to H. Referring to (1.14), we see that X1  = X1  at 

the points on the likelihood surface where Idet HI approaches infinity. 

It must be concluded that no 

ML estimate of 0 - and hence, of a - can be obtained from the sample X alone. 

To proceed further, it will be necessary to assume that 0 is known, and 

this we will now do, postponing the question of feasible methods until later. 

It will, in fact, only be necessary to assume that 52 is known up to a scalar 

multiple. de write 11 = Q"~)n°t  and treat I2°  as a, mr+trix of known constants. 

2:-ote that 

T log Idet HI = T log Idet HBI 

= T/2 logldet HBQB'H'I - 2 log det S2 

= T/2 log(a'Sla) - 
2  log det 0. 

Hence, (1.15) can be written 

2 	0 	Tk 	T 	 1 l a.'X L (a, O' {2 	2 lob 2rr - . log det Ja - 1   L 



TIC 	2 	T- 2 log  21x0 - 7  log det & - 1 (C13- 1XIxa, -- 

.Differentiating with respect to a gives the ML estimate of a as the 

solution to 

l 	X,X r Q o n 

	

2 (e.'A°a,) ( 	n~ )a  - 0  ~ 	 (1.17) 

where ~ = a'~a A 
,28, 

1 is an eiFmenvalue of 0 X'X, and a the corresponding eigenvector. 

Since h is a minimand, the smallest eigenva.lue is a,p,FroE,riate. The 

conventional normalization of a, is obtained by dividing through by the 

first element of the solution eigenvector, giving 

	

' 	, ) 

Differentiating ,nrith respect to cr 2  gives 

Tk + 1  

	

- ? a 2 	2Q4 ,~o a 	- o  

or 

	

2 	1 !'aIX,Xa 

a _I1 a / 

The consistency of a can be shown as follows.*  Define 

M 	

T

lim (XTX), 	NI = Li~ (XTX), so that PI = M + 0-2,.,o or, 

	

°° 	 r 
-1 

f2° 	M =If 
_1

m + 02z 
(1.20) 

die assume that (1.6) holds in the limit, so Ra, = 0, and also that Nl has 

rank k-1, so that a. is unique up to a, scalar multiple. So, since M is 

a. positive semi-definite kxk matrix, and 17.°-1  has rank k, the smallest 

	

-1 	
-1 

eigenva.lue of fP T equals 0, and hence, that of -f2°  Pl + o-2I equals a-2. 

9» 

Essentially as in [10), l,. 387 	 "- 
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But by Slutsk,y's Theorem it follows from (1.20) and (1.1'7) that this 

eigenva.lue is the probability limit of AST 	Hence, 

plim T  [('X — ~(2°)aj _ (1~1 — ~2n°)plm(a) = M plim(a) = 0 

which implies that r:)lim(a) = a. 

however, it is a..j,)parent from (1.19) that 

plim ( Lr = k 6  , 

so the IVIL estimator of or2  is not consistent — a.lthougii a, consistent 

estimate is provided by A/T  

Diffcrentiatin~; (1.17) a second time with res ect to a. and taping 

the prob<)bility limit (after dividing-; by T) yields 

2 	 _ 
rv,1 i rn l 	

aL r 	_ 	— 1 ° ICI . (1.21) 
(l ~a, r.  a) 

Partitioning this rnatrix by 

_ 	rnyy myl 	t ) 

myl Nlll  (k-1) 

M 	(]1-1) 

and discarding; the first row and column which corresC)on.d. to the restricted 

element of a. . ives, tiro asymptotic variance rn 3trix of the -unre tricte;d 

elements as 

V(-) = T  O2(.,12°a.) 1il-1 
	

(1.22) 

{ sti msn+o.Q ni' X nnn n  an 'ho nh+ai ricA 'htr Q-I,. +i +-+i nv, 	1 l l A 1 	I ..+ 

note that these are not consistent. 	The number of unknowns of course 

tends to infinity with the sample size. 

(iii)The assumption that R is of full rank has been made only for convenience 

of exoosition, and is not restrictive; consider the case where some of 

the variables are measi.zred without error — du.mmy variables, for example. 



When, 

(kA ) (k  B ) 

V = IVA 	01 1 

rA 	0 (kl~ ) 
S2 = 

0 	0 (IcB) 

The last k  equations of (1.7) a.re now identities, and can be eliminated 

in the usual way. The observation matrix X is,  partitioned, 

(kA) (kB) 	(1) (kA-1) (k B) 
X 	

`XA . XB] = [y  : XlA : XB J 

and the matrix of true variables X parrtitionod conformably, 

X = Py 7 1 . XBJ 

such that X  = XB. Similarly, we have al = Lat : aB ' 

Solving the second set of k  equations for X  and substituting in 

the first kA  equations is found to give 

a.A 	ajXB 	XA 	+ .. 	= VIl  
 ' 	 (1.''3) 

0 Z —X1A  IT  

(1) (kA 1) (T) 

for the equality comparable to (1.7). Setting up the likelihood function 

for this system a.s before leads to 

h*(a" ('2~ 1 0 , X) _ — 'IlkA  log 2nd — 2 log det C1A 

1 ((a!XA' + a.'XL)(XAaA  + X

L

aB) 

20' 	a.Al2A°  a.A  

which is concentrated unrestrictedly with res;)ect to aB, yielding the 

solution 

a.B  = ()( ~
X 	

1. 
BB 	~LBVA -% 	 (1-25 ) 

11. 



12. 

Substituting; for aB  in the likelihood function and maximizing with 

res~>ect to a  .leads finally to 

2 . „1  0 	(XA"BXA - ~A)aA = 0 
	 (1.26) 

La. ) 

Where 14 = I - Xi_, (n"XB) 1  XB, as the equation comparable to (1-17). 

The estimates of a  can then be obtained from (1.24)• 

A very obvious special case of (1.26) is where kA  = 1, so that 1l°  

has only a. single non-zero element, say W11 = 1 with no loss of genera.l-

ity. a  is then a scalar with fixed value, and (1.26) reduces to ordinary 

leI)st squares. The condition that d2 must be known up to a scalar multiple 

clearly ceases to be restrictive in this case, and OLD requires no inform-

ation. extraneous to the samz;le - beyond the very important knowledge that 

X1  is measured without error. 

(iv) At this point we reintroduce the distinction referred to earlier 

between errors of measurement proper,. <nd errors in the equation, and 

make use of the corresponding dis-aggregation of the covariance watrix. 

From (1.20), (1.21) and (1.4) we may write 

(M - S2 	
e V 

- S2 )a = 0. 	 (1.27) 

When f2
F 
 has the form (1.5), defining the partition 

wyy wyl (1) 

S2 = V 
L  w

yl 
	SZ11 J 	

f k-1) 

(1) 	(k-1) 

enables us to write (1.2'T) in partitioned form as 

2 

myy - ~yy - 
	

myl - 4'yl 	l 

myl - ~Jyl 	DI 11 nll 	t 



If nv i-s--a known matrix? the estimator 

(XlXl — T11ll)-1  (Xiy — TW
yl ) 

clearly converges in probability to the solution of (1.28), and is 

hence by previous arguments the maximum likelihood estimator, 

a is estimated consistently by 

`
I
1 

E 	T 	(y"y 	l c~ yy) 	(y'Xl 	
,Yl)J 	 (1.30) 

The case of i,ractical interest here is that where there exists an 

extraneous estimate Il v  of tv. Substituting 12 v, into 1.2 ( 	9) gives an 
estimate of ~3, say, which will be asymptotically equivalent to ML 

whenever i~
v  is consistent for.Q

v. We must be cautious in considering 

the roperties of q since such a "two stage" estimator will be a, function 

of two sets of sample observations, xt, t = 1,...,`I' and r
s
, s  

say, where the r
s"s are observations of an a.s yet uns ,ecified kind from 

which an estimate of fj
v  can be comijuted. While the r

s"s may include the 
xti

s, the two sets of observations cannot be identica.i, since extraneous 

informa.tioZii is known to be required; it is also quite possible that 

T / V. When we speak of the consistency of ~, we refer to it's behaviour 

as both T and TI tend to infinity. 

13. 



II 	
14. 

(i) 	Obtaining suitable extraneous information about measurement 

errors is a notoriously intractable problem. 	A widely advocated approach 

to consistent information is the use of instrumental variables (IV). 	If 

there exists a matrix of instruments Z, uncorrelated with V but related 

to X by the linear stochastic system 

X1  = Zr + W 	 (2.1) 

then 

X1  = Zr' + W + V1 	 (2.2) 

and X1  can be estimated by X1  = Zr' = Z(Z'Z)-1Z'X1  = QXl. 

Then, (I - Q))X1  = (W + V1). 	We may show that the IV estimator 

S* - (X'QXl)
-1X T

QY 
	

(2.3) 

has the same probability limit as (1.29). 	In effect, 5211 
 is estimated 

by T (Xi(I - Q)X1) and wyl 
 by  T (Xi(I - Q)y). 	These estimates are 

inconsistent - since, for instance, plim T 
 (X'(I - Q)X1) _ 

plim T (W + V1  )'(W + V1) 	5211  - but knowing by the standard result that 

IV is consistent, we may obtain from the probability limit of (2.3), 

plim T (XiXl V1 V1  - X'(I - Q)X1) plim 

plim T (Xiy - Vivy 
 - X,  (I - Q)Y) 

(using plim 	ZTV 	= 0) 

and hence, 

plim (S ) = plim (X'Xl  - V1V1)-  Mly - Viv
y
> 

since 	X1  S = Y. 
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If W = 0, so that the covariance estimates are consistent 

(1.29) and (2.3) are asymptotically equivalent. 	But in general, the 

asymptotic variance matrix of g 	where a* = V(u) = 02(a'Q a), is 

-1 
* 	 X

1

'QX 
V(~ ) = o*  plim 	T 1 

Q* 	plim (jTj)) 

1 
where W = (I - Q)X, and plim (WTW J 	is non-negative definite. 
So IV is always, as we should expect,/less efficient asymptotically than 

ML with known Q 

The practical difficulty with IV lies with the existence of 

suitable instruments. 	When the equation forms part of a simultaneous 

system, two stage least squares will give consistent estimates even though 

there are errors of measurement in the endogenous variables; but problems 

arise when there are measurement errors in the pre-determined variables, 

i.e., in the instrumenrs themselves. 	Consistent estimation then .require 

a further set of instruments, which cannot exist if the model is already 

correctly specified. 	The problem extends a fortiori to the single equation 

model. 	Lagged values of the regressors are a popular choice of instrument, 

but will only be suitable if it is known that the measurement errors are 

serially independent, a condition which will often be found to be unduly 

strong. 

Grouping methods such as those proposed by Wald [15 1 and 

Bartlett L  11 	are simply instrumental variable methods employing various 

kinds of dummy variables as instruments. 	It will be likely in these cases 

that the errors of W of (2.1) will be large, and the efficiency of these 

methods correspondingly poor. 
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A more sophisticated variant of the dummy-instrument approach 

would be to fit the columns of X to simple sinusoidal functions of t, 

and use the latter with the estimated parameters as instruments. 	The 

basic difficulty with all these methods is that when the instruments are 

chosen on the basis of observed good correlation with the empirical variables 

- rather than on theoretical grounds - then the better the correlation, 

the greater the likelihood that the instruments are correlated with the 

errors as well as the true variables. 

These difficulties imply that IV cannot be a generally satisfactory 

solution to the measurement error problem. 	The alternative approach which 

is open to us is to seek methods of estimating 0 directly. 	There are 

two cases to be considered. 	If it is known that the model is of the pure 

errors-in-variables type, or at least that errors in the equation represent 

a sufficiently small proportion of the residual variance, then it is 

sufficient to know ~1 up to a factor of proportionality, and (1.17) with 

estimated ~2°  is the appropriate estimator. 	If on the other hand the 

errors in the equation are not thought to be negligible, then it will be 

necessary to estimate the absolute values of the elements of nv
, to obtain 

a feasible analogue of (1.29). 	In the former case, it may be thought 

sufficient to employ a plausible subjective estimate of the relative 

precision of measurement of the variables, for example Q°  = I 

(see, e.g. Casson [2 1 ; but for the general error model, quantitative 

estimates are necessarily required. 

There can be no generally applicable approach to this problem, 

and in many cases it is probable that suitable information about the way 

in which the data i9 collected simply does not exist. 	The remainder of 

this paper is concerned with a method which may sometimes prove feasible, 

and it will be convenient to describe it in the context of the specific 



empirical problem which h,-s been investigated, the estimation of a. 

I 
consumption function for the U.K. using quarterly data ,)ublished by the 

Central Statistical Office. It is hoped that as the discussion proceeds, 

the scope for further applications will become apparent. 

The data series in question are of consumption of non—durables 

(total consumption less expenditure on oars and motor—cycles, furniture,  

and floor—coverings, and radio and electrical goods) and total disposable 

income, both revalued at constant 1963 prices; a total of 58 observations, 

from 1958(iii) to 1972(iv), drawn from the 1970, 1971 and 1'972 October 

issues of Economic Trends. 

The model under consideration has the form 

4 
4 
C
t 
 = b

0 
 + b

1 
 A Y

t 
 + b

2  44 Yt-1 
 + 6

t 	 (2.4) 4  

where A4 is the annual (fou.r—period) difference operator. It goes 

beyond the scope of this paper to do more than justify (2.4) as a 

simple permanent income formulation, but it may be noted that the 

differenoing procedure is a, convenient method for dealing with multi—

plicative seasonality. The differenced series show negligible seasonality 

or trend, and their variances are concentrated at the frequency of the 

business cycle. 

The simple distributed lag 	-4) was chosen largely on ,, (2 	 grounds of  

parsimony, since lon~_,,er logs were found to have g _,enerally small and 

insignificant coefficients. The lagged dependent variable, commonly 

included in such equations a,s approximation to a geometrically declining 

lag structure, was also found insignificant at the 5% level; it should 

* A report on the work on consumption of which this study forms a 

part will, it is hoped, appear in due course. 

17. 
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be noted that the success of this explanatory variable in level lormul-

a.tions is largely due to its role as a proxy for the trend in the 

variables. In the difference formulation, the rate of linear trend is 

measured by the constant term b0. 

The parameter of principle interest is bi = bl  + b?, which can be 

interpreted as the 'medium run' marginal propensity to consume; (2.4) 

can be written in a more illuminating form as 

4A Ct  = b0  + bi 6 Yt  + b2 ~~144Yt  + Et 	 (2-5) 

where b2 = -b2. The equation is then interpreted as a, linear relationship 

between annual increments in consumption and income, modified by a penalty 

term related to tfze rate at which income is changing. Incidentally, a, 

log-linear version of (2.4) has been tried, and found to give almost 

equivalent results as regards goodness of fit and residual a.utocorrelation. 

The feature of particular interest in relation to the measurement 

error problem is the use of differenced variables. The ordinary least 

squares estimates of (2.4) (see Table II) were found to be lower than 

expected, and the possibility of measurement error bias could not be 

ignored. (It is imi,ortant to distinguish this problem from the 

"measurement error" interpretation of the Permanent Income model. 

In Friedman's [6] terminology, the "transit6ry" components of income are 

the deviations of actual current income from permanent incom(.; - whereas 

we are concerned with deviations of measured income from actual income - 

measurement errors proper.) The variance of the differences of a, smoothly 

trending time series is characteristically much smaller than the variance of 

the orij~ina.l series; differencing has the advantageous effect of tendin{; to 

cancel out relatively constant errors of measurement - omission of some 

little-changing; co~rjponent of the aggregate for example. But the relative 

size of random (serria.11y independent) measurement errors will ppenera.11y be 
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amplified by differencing. 	For example, the mean of the disposable income 

series is £5776m., and the mean of the annual differences (which are 

almost all positive) is £161m. 	Taking these figures as representative 

values of the series, a serially independent measurement error of 1% in 

the level implies an error of around 30% in the corresponding difference. 

For information on the reliability of the published series we 

turn first to the C.S.O. handbook, National Accounts Statistics: Sources 

and Methods, in particular to Chapter III. 	The information given there 

is understandably rather vague, and amounts to a categorization of the 

published figures into three reliability classes, 

A 	Margin of error ± 	less than 3% 

B 	IT 	if 
	it ± 	3% to 10% 

C  :  	it 	it 	± 	more than 10%, 

with a subjective confidence level of about .9 for the estimate lying within 

the specified interval. 

Both the income and the consumption series have an A rating, 

but as we have noted, the corresponding margin of error in the differences 

may be quite unacceptable. 	However, we quote the following passage from 

Sources and Methods: 

"The gradings [A. B or C abovel are applied to the absolute values of the 

various components. It is generally true to say that the absolute error 

in the change from year to year is likely to be less than might appear from 

the errors attached to the absolute values. Nearly always, when a figure 

is attributed to an item about which there is much uncertainty, consideration 

is paid to the probable change from the previous year. This implies that the 
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error in the absolute figures, whatever it may be, is likely to be in the 

same direction in all years. 	The deviations between the estimates and 

the facts are likely to consist in part of a bias which is more or less 

constant from year to year, and partly of a more random element." 

(page 40) 

By this account, the differencing process will remove some proportion of the 

error, a matter of importance if the "more or less constant bias" is of very 

different proportionate magnitudes in income and in consumption. 	It is of 

course the "more random element" we are concerned about, and although 

encouraging, the remarks quoted still leave us with a very vague idea about 

actual reliability, and still less of what we should really like to have, a 

quantitative estimate of the covariance matrix of the measurement errors. 

(P
v 
 in the notation of section I). 

But there is one source of quantitative information to which we have 

direct access. 	The October issues of Economic Trends contain each year 

quarterly series of the principal macro-variables about twelve years in 

length. 	This means that each item of data eventually appears about twelve 

times in succeeding October issues. 	The first appearances of an item are 

generally provisional estimates, and are likely to be revised quite substantially 

as time goes on. What is perhaps rather surprising is the extent to which the 

figures are being revised continually over the period of their publication, even 

ten or more years after their first appearance. 	These revisions are explained 

in the handbook partly in terms of redefinitions and reassignments of various 

components of the aggregates - for instance, the quarter to which an item is 

assigned - and partly in terms of new information and the correction of errors. 
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It seems a reasonable supposition that the magnitude and frequency of the 

revisions - i.e., the variance of the published estimates - is a sensible 

measure of reliability. It can be objected, of course, that to study the 

revisions is to use the properties of detected and corrected errors to infer 

the properties of undetected errors - a procedure of rather dubious validity. 

But on the other hand, the revisions are the only source of hard, quantitative 

information that we have. There is a logical problem involved here, since 

when we possess information about undetected errors, they cease to be un-

detected, and at least in principle, we can use it to improve the estimates, 

leaving us in just as much ignorance of the remaining undetected errors, if 

any. In any event, in the absence of any knowledge of the size and direction 

of undetected errors, we cannot do better than to assume them to be of a 

similar order of magnitude to detected ones. 

Apart from the good general discussion by Morgenstern L13a, chapter XIV, 

a number of studies of data errors and revisions have been published. For 

example, McDonald has fitted a Box-Jenkins model to the Residual Error of 

the National Accounts, 1111, and also compared the estimated parameters of 
Box-Jenkins models fitted to revised and unrevised version of the same series, 

[12] , and McDonald, Holden, and Denton & Kuiper [121 , [71 , V]  , have compared 
regression results obtained using revised and unrevised series. As far as is 

known, though, there is no published study of the revisions of differenced 

series, nor any attempt to use all the information contained in the revisions 

to estimate the error variances. 

In this case the following procedure was carried out. As many different 

estimates as possible of the series for disposable income and non-durable 

consumption, for the period 1958(1) to 1969(ii) were obtained and punched onto 

cards. This involved looking in the sixteen October issues of Economic TrPndc 
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for 1958 through to 1973, and yielded between twelve estimates of the earlier 

figures in the series down to five for the more recent. To obtain this number 

of estimates, it was necessary to use current price data, since the constant 

price data used is the actual estimation of the consumption function is subject 

to changes of the base year, and the number of comparable estimates is much smaller. 

The current price estimates were deflated using the retail price index - this 

being applied to total consumption, before subtraction of expenditure on durables 

deflated by the appropriate sectoral indices. For two reasons, this is 

a. somewhat rough and ready procedaoo. First, constant price estimates 

are revalued .prior to a.g,F•regation; but since it is intended to compare 

not different time ,periods, but different estirates of the :game time period, 

it is sufficient just to scale the estimates appropriately. Second, and 

perhaps more serious, is that by usintr, the current price data the influence 

of errors in the rice indices is eliminated. This is unforti)na.te, but is 

a deficiency which can be remedied only at a, much increased cost in data 

collection and computation: e.g., by deflating each years current price 

estimates by the corresponding years price indices. In view of` the limit- 

ations already inherent in this method of investigation, such a refinement 

was felt to be not worthwhile at this stage, although there is clearly 

scope for further examination of the problem. 

The figures obtained in this way for C and ~ as defined can each 

be assembled into a 46x16 matrix, the rows corresponding to the time- 

period of the observations, and the columns to the "vintages" of the 

estimates; likewise, the differences A 4  C and A 4 
 yield a. 42X15 matrix. 

The matrices have a. roughly upper-triangular form: 
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Year of publiention 

'58 '59 . . . . . . . . . ' 73 

. 	~
cols. 

Sample period 

0 
'69(ii) 	 `, cols 

To obtain an idea of the general pattern of the revisions, a simple 

programme was written to graph the rows of these data matrices. Figure 1 and 

Figure 2 show the plots for Y and A 4 Y for four representative periods. In 

Figure 1, the current and four-quarter lagged estimates are plotted together 

- the former by solid lines, the latter by broken lines. In Figure 2, the 

plots for the four-quarter differences for the same four periods are shown; 

i.e., the broken lines subtracted from the solid lines of Figure 1. 

The variety of size and direction of the revisions is considerable, and 

the examples shown should be considered as unexceptional rather than typical. 

However, the earlier revisions tend to be larger than the later ones, as might 

be expected, and also the revisions in the levels tend to be upward, the 

errors in the provisional estimates usually being omissions. What is of 

most interest from our point of view is the high degree of correlation of the 

revisions in successive (i.e. four-quarters-apart) periods, resulting in the 

estimates of the annual differences having a comparatively small dispersion, 

and no discernible tendency for upward rather than downward revision. This 

is the pattern which the account in Sources and Methods has led us to expect, 

but it is of some interest to observe it directly. 
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The next question is that of an appropriate summary statistic. The chosen 

procedure was to compute the ordinary sample variances cf each row of the matrix, 

and then the column mean of these: 

T 	N   
(x it- xt  ) T t=1  Nt-1 i=1 

N  
_ 1 

x  
xt N

t 	it i=1 	 (2.6) 

5; Nt < 12 

and similarly, the means of the covariances of the corresponding rows of the 

matrices for different variables and differences of variables, 

T N  

T tE1 	Nt-1 iZ1 (x it- x
t)(Yit  - Yt) 	 (2.7) 

for x, y = G',, y, Yr 1  and A4C, A4Y, Aj 1. 

The covariance matrices with elements computed by (2.6) and (2.7) are 

shown in Table 1. Part (i) of the table shows the estimates for the levels 

of the variables, part (ii) the estimates for the differences, and part (iii) 

shows the estimated variances and covariances of the (differenced) variables 

themselves, for comparison with (ii);the ratios of the corresponding diagonal 

elements of (iii) and (ii) are approximately the "signal-noise ratios". 

The results show the ektent to which the revisions are serially corr-

elated at the fourth order, bea.rin; in mind. that were they independent, the 

-results for the differences, (ii), would be aboat twice the size of those 

for the levels, Vii). We also have estimates of the first order auto-

covariances of the income revisions, for levels and differences, and in 

the latter case this quantity is quite small relative to the former. 
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Table I 

11GY1o1vai --- --- 

C 1753.74 

Y 590.69 1729.18 

Y 698.54 558.88 1729.78 

(ii) 	Revision Covariances (differences) 

A 4 C 
214.44 

A 4 Y 
126.20 678.70 

A4Y_l  136.50 81.74 678.70 

X'X (differences) 
M 
1 

A 
4 C 

2249.91 

A 
4  Y 4656.32 16877.66 

A4Y_l  4525.91 10158.71 17444.51 

A point to be noted is that the covariances between C and Y and Y_1  will be 

large in part because of the common upward trend in the estimates according to 

vintage, and may therefore be interpreted as artefacts. In the differences, 

however, such trends are much less in evidence, and the size of the covariances 

may be judged more interesting. 

As merely descriptive statistics, (2.6) and (2.7) may be judged on their 

merits; but we must be extremely careful in relating, say, (2.6) to the 

theoretical measurement error variance, E(vt), where vt  is the undetected error. 

(2.6) would be an unbiassed estimator of E(v2)if the various estimates of the 

variables were random drawings from a single population of possible observations, 

with mean equal to the true value of the variable - which is obviously not the 

case. In fact, each estimate represents a drawing from a population of estimates 

(i) 
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of a given "vintage", corresponding to the number of times that the figure has 

been subject to re-examination and correction. 	The uoAulation variances of 

succeeding vintages, though not necessarily the mean squared errors, will be 

in general decreasing, as is suggested by the graphs of Figure II. 	But we 

must be very careful not to interpret the reduced variance of the later 

revisions as an improvement in precision. 	The revisions "home in" on a given 

final estimate as the compilers run out of new information, not necessarily 

because there are no more errors to be found. 	Moreover, x  as defined in (2.6) 

is certainly not an unbiassed estimate of the true value of the variable, since 

for the levels at least, the early vintages are likely to be biassed downward. 

However, it can be argued that (2.6) and (2.7) represent the best use of 

the available information, and the assumptions, although false, are not worse 

than any others that could be made. 	An alternative statistic basarl nn tho 

mean squared deviations about the most recent estimate of the previous estimates, 

T 	 N 
t  -1 

1 	
E 	

1 	
E 	 2 	 (2.8) - x ) 

T 	
(x i 

t=1 	
Nt -1 	i=1 	t 	Ntt 

was rejected because of the increased possibility of upward bias. 	Another 

possibility is an unweighted summation of squared deviations from row means, 

divided by the appropriate number of degrees of freedom : 

T 	N   

T 	l 	E 	E 	(x it- xt)2 	 (2.9) 
E Nt-T 

 

t=1 

The difference between (2.6) and (2.9) is that (2.6) weights the more recent 

observations more heavily, because there are fewer of them. 	In a test, the 

difference between the two was found to be small. 
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The estimated signal-noise ratios of 9n' : 1 for consumption, and 24 : 1 

for income are smaller than expected from the first inspection of the data, 

in particular for income, which is the variable we are worried about. Measure-

ment errors in 04C are not a problem (as regards bias) except in lagged-

dependent variable specifications. However, what is clear from a study of the 

plotted values is that data for estimation and testing purposes should not, 

if possible, be of too young a vintage. It takes the compilers three or four 

years on average to produce estimates which remain stable thereafter, and 

hence contain most of the available information. The sample graphs of Figure 

II are typical of the series as a whole in this respect. 

A slightly delicate question which one should nevertheless not ignore is 

whether the good behaviour of the revisions of the differences is not in part 

due to "fudging"; - for example, an error detected and corrected in a given 

estimate might lead to the adjacent figures in the series being corrected by 

a similar amount for no better reason than the belief of the compilers that 

their original estimates of the changes were correct. The passage from "Sources 

and Methods" quoted above is a little ambiguous on this point. But it does 

seem reasonable to accept, in the present state of data collection technique, 

that the C.S.O. know all that there is to be known about their figures, and 

any "fudging" that occurs represents the best available, albeit subjective 

knowledge about the data; in short, if "fudging" improves the accuracy of the 

estimates, then any corresponding reduction in the revision variance is, at the 

least,.not inappropriate. 

(ii) 	The next step is to find out what measurement errors of the estimated 

magnitude would imply in terms of least squares bias, and to do this we compute 

Weighted Regression estimates, as described in section I. 	We shall not, 
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of course, be able to claim even consistency for the estimator, without 

knowledge even of the asymptotic sampling properties of -the variance 

estimation. Our continuing ignorance of the relationship between detected 

ans undetected errors, to which we drew attention in. the last section., 

implies that the original problem of insufficient information is still 

with us; but it is hopefully reduced., and we can assert with some confidence 

that the estimates will be "better" (in tree mean squared error sense) 

than ordinary least squares estimates, which imply the use of" error variance 

estimates of zero. 

We may use either an approximation to the true Weighted Regression 

estimator, as in (1.17) or (1.26), or the method of fixed weights, an 

approximation to (1.29). The former method being appropriate to the pure 

errors—in—variables model, we shall refer to this as the PEV method. 

The latter we shall call the EVE (errors in variables and equation) 

method. Note that the PEV method makes no use of the absolute estimated 

magnitudes of the error variances and covariances, but depends r.1erely on 

their relative magnitudes. On the other hand, this method assumes that, 

measurement errors are the only significant source of residual variance, 

and the EVE method is' in principle more appropriate to the present model. 

Both estimates were computed, so that the results could be compared. 

The PEV estimates were computed using a, library generalized eigenvector 

routine, N.A.G. subroutine b'02A:N;F ~14] , so that only the input—output, 

computation of sample moments etc. required special programming. The 

EVE estimates could then be computed easily from the sample moments 

already obtained. 

Apart from the residual standard error, s, test statistics were not 

computed, since they would be difficult to interpret and possibly misleading 

when computed using error variance estimates having unknown statistical 
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properties. Note that s2  is computed in each case is (T—k+l)a'X'Xa., 

and is therefore not an estimate of g as defined in (1.16) for the iEV 

estimator, but of V(u) _ J'* = O
2- 8.112a. 	For the WS estimates, se was 

2 	~,' 	 2  as defined in also computed as s — a l2a, which is an estimate of  UE   

(1.28). 

As well a.s two estimation methods, two alternative formulations were 

adopted regarding the error covariance matrix. In (a.), we use -the matrix 

just as given in Table I(ii), but in (b), we assume that the estimated 

covariances of the errors in 64Y and A 4 
 C are spurious, and set them 

(the off—diagonal elements of the first row and column) to zero. Since 

it is difficult to gauge the amount of confidence that can be placed in 

these covariance estimates in ,articular, it is a.s well to know their 

importance for the outcome. 

Equa.tion (2.4) was estimated. using; a.11 four methods, a.s well as by 

ordinary least squares, and the results are shown in Table II. The 

standard errors (in parentheses) and other test statistics given by the 

OLS regression yjro,g•ramme are shown. The variable D is a_ dummy va-riable 

for the effects of the 1968 Budget announcement of tax increases, defined 

by 	 1 in 1968(i) 

D 	—1 in. 1968(ii) 

0 elsewhere. 

The sample moments were then computed from the deviations from the 

corrected means, so that the moment matrix corresponds to XA'B A in 

(1.26), cahere XB 
 has the form (1 : D), a Tx2 matrix where 1 is the constant 

dummy. Note that this is the m,-,trix given in Table I(iii), divided through 

Since the estimators have only asyrnptotic validity, the bias correction 

for s2  has no c,recise justification. It is employed to facilitate 

comparison with -the OLS estimate. 



31. 

by T-1. 

Hegressand is A 4C 

OLS Weighted Repressions 

(a) 

PTV 	Evh; 

(b) 

I?Ev 	EVE Variable 

NY -1643 
(.0396) 

-1973 .1865 .2035 .1910 

A4Y-1 -1521 .1382 .1496 .1603 01553 
(.0389) 

Const 63-72 63.85 63.75 59-31 62.12 
(7.01;<)     

A4D 53.20 51.27 52.86 51.63 52.66 
(14.69) 

s 27-47 27.52 27.47 27.67 27-50 

S
S  24-18 22.26 

R2  -7330 

d 1-728 

Table  II 
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The most notable feature of these results is how little 

the various weighted regression estimates differ overall 

from the ordinary least squares estimates; and it is even 

more striking if we compare the estimates of b  = b  + b2' 

which are shown in Table III: 

Table III: 

OLS PEV (a) EVE (a) PEV (b) EVE (b) 

bl .3364 .3355 .3361 .3638 .3463 

In particular, the results for specification (a) change hardly 

at all. 

The fact that the estimated signal-noise ratios are quite 

large can be held to account for this in the case of the EVE 

estimates. 	Note that in (a), the equation errors are 

estimated to account for almost 807 of the residual variance. 

However, the similar results given by the PEV method indicate 

that the small absolute magnitudes of the variance estimates 

are not the only factor involved. 

It will aid the interpretation if we derive the general 

expression for the asymptotic least squares bias. From the 

least squares formula, 

_ (X1 X1)-iXiy 

we obtain, assuming that measurement and equation errors 

are uncorrelated, 
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plim(S -R) _ (M11 + St ll) -1  (yl  - S211S) 	 (2.10) 

It is clear from (2.10) that the least squares estimator is 

unbiased if 
Q11 Wyl 	S• Now, partitioning the estimated 

variance matrix given in Table I(ii) as 

WCC WCY 	(1) 

WCY 
Q
YY 	(2)  

it is easily checked that 

1 	 .1641 

"YY WCY - •1814 , 

which is quite close to the OLS coefficient vector. More- 

over, the sum of the elements is .3454, which is very close 

to the OLS estimate of bl. 

This result may be mere coincidence; but it seems reasonable 

that since the series for income and consumption are related 

by an accounting identity, the revisions in each would be 

kept approximately in step, so that the books balance. If 

the residual components of disposable income, expenditure on 

durable goods and savings, were never revised then of course 

the correspondence between the revisions in C and Y would be exact. 

What we cannot determine is whether this property of the 

revisions is also a property of the undetected errors, but 

the evidence is at any rate not unfavourable. 

The results for error specification (b), where we set 

WCY - 0 on the assumption that the correlations between the 

revisions in C and Y are spurious as a guide to the behaviour 
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of the errors, do as expected show somewhat larger 

changes in the coefficients, but in neither case of an 

order which suggests that measurement errors are a serious 

problem. The PEV estimator here weights the income variable 

to account for about three times as much of the residual 

variance as the consumption variable, which ignores equation 

errors and almost certainly overstates the problem. One 

explanation of the stability of these estimates can be given 

by reference to the lag structure of the model. 

The bias expression (2.10) specialities in the present case, 

assuming wCY  = 0, to 

-1 

plim bl - bl s  _Y mYY_1 
	(w'YYYwYY-1 bl

A 	
( 	

(2.11) 
b2-b2 Y_1Y 	_1 wYY 	b2 

where mYY = mYY + wYY is the asymptotic second moment 

of observed income, stationarity being assumed, and 

mYY -1 mYY-1 	-1 
If we make the further simplification of assuming wYY -1. = 0 - 

it is in any case estimated to be relatively small - then we 

obtain 

plim (bl  - b1) 	wYY (-  b1myY +  b2mYY-1)  
2 	2 

_ 

MYY mYY--1 

- b  + b 2 Y 	 (2.12) 
(1+C 	1 -Y2) 

where y is the autocorrelation coefficient of observed 

income, and C = myy/wYY is the signal-noise ratio. A 

similar expression can be derived for b2  . 



35. 

it is an interesting and rather unexpected property of 

the model that the role of the lagged variable in damping 

the bias in b1  - an effect which is general for two- 

regressor models provided b1  and b2  have the same (different) 

signs, and y > 0 ( y < 0) - depends upon the fact that the 

lagged variable is also measured with error. 	For suppose 

that we contrive a relationship which is similar to (2.4) 

except that the lagged variable is replaced by a variable 

Zt, say, which for the purposes of exposition is assumed 

to have the same coefficient in the equation, so that 

A4Ct  = b  + b 1  A  4  Y 
 t + b 2  Z 

 t 
+ C 
	 (2.13) 

and also assume that mZZ  = mYY, Corr(04Yt,Zt) = Y. 

The only way in which Z  is to differ from d4Yt_1 
 is that 

it is measured without error. Then, the bias in b1  becomes, 

instead of (2.12), 

plim (b1  - b1) _ 	-  b1 	 (2.14) 

(1 + C) (1 

Substituting in (2.12) the OLS estimates of b1  and b2  as 

approximations to the true values, and the estimate of Y 

obtained from the sample as .603, we obtain a value for 

the bias of - .145(1 +  C). 	
Corresponding substitutions 

in (2.14) yields a bias of - .289(1  +  C). 	So the off- 

setting effect of the errors in the lagged variable reduces 

the bias by almost half, ceteris paribus. Notice that (2.13) 

has been specified so that in the absence of errors in A4Yt, 

least squares estimates of b1  in (2.4) and (2.13) have the 

same probability limit. 

While these results follow from the asymptotic properties of 

least squares, it has been found that Monte Carlo simulations 
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performed on a similar model exhibit similar off-setting 

effects in quite small samples. r 4 

It can be expected that these properties generalize to 

more complex distributed lag formulations, and provide the 

underlying justification for the time series specification 

of permanent income.models. It is evident that even the simple 

model employed here is likely to be quite robust against the 

effects of measurement errors. 

We have taken care to distinguish errors .of measurement in 
i s  

current income from Friedman/transitory components of income, 

since naturally the data revisions contain no information 

regarding the transitory components. But it is also clear 

that both types of "error" will bias least squares estimates 

away from the population values of the theoretical parameters 

of interest - in this case, the marginal propensity to consume 

out of annual increments of permanent income, defined for an 

appropriate horizon. Both transitory components and measure-

ment errors are characterised by a lower degree of auto-

correlation relative to the permanent component, and when the 

model is written in the form (2.5) it will be seen that the 

role of the second order difference term A 1  A  4  Y  t 
 is to partial 

out these relatively random influences, which cannot in general 

be distinguished. 
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