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A NOTE ON TESTING THE ERROR SPECIFICATION IN NONLINEAR REGRESSION 1

In typical economic applications of nonlinear regression
methods the "systematic part” of the equation is specified with
reference to theoretical considerations. The error term however, is
usually introduced at the estimation stage in a manner most appropriate
to the use of linear regression methods. A common example is the
case of a Cobb-Douglas type function which is typically estimated in
a form which is linear in the logarithms. The conveniernt assumption
implicit in this procedure is that the error term is multiplicative
with a lognormal distribution. While this assumption.confers the
practical advantage of allowing linear methods to be used it may not
be the most realistic. It may well be more appropriate to introduce
the error term additively and normally distributed. Ideally, of course,
the form of the distribution of the error term would emerge in the
derivation of the estimating equation from an undeflying stochastic
hypothesis. The most appropriate estimation technique could then be
applied and the ﬁroperties of the estimator derived. In many cases,
however, the underlying theory is nonstochastic and nothing a priori
is known about the form of the error distribution. In these circumstances
if the disturbance term is incorrectly introduced into the model, then
a misspecification arises. This misspecification has been referred to
by Kmenta {5}, Maiinvaud {6}, Goldfeld and Quandt {4} and Bodkin and
Klein {1}. It is not the purpose of this note to analyse this misspecification
further, but to suggeét a procedure which can be followed to choose the
form of the error distribution on statistical grounds in circumstances

where the form of the nonstochastic part of the model .can be taken as

given.



Consider a nonlinear relation which we assume can be specified
in either of two ways depending on whether the error term is additive

or multiplicative.

Either

(1) y. = g(X,, B) + €., E(c.) = 0, E(c2) = 0% , Ee.e.) = 0,ifj .
i i?* i i » i e ? ij ’ '
or

(2) = gX., Be™, E(m.) =0, E(D) = 0%, E(.n.) = 0,if]
Yi g i ’ i ’ i n’ i3 217]

In both cases v is the dependent variable, Xi is a vector

of independent variables, B8 1is a vector of parameters, g (*) 1is a given

function, e; and n; are error terms and n 1is the sample size.

In both cases parameter estimation is straightforward using

either least squares or maximum likelihood.

If model (1) 1is assumed to hold, then least squares estimates

of B are obtained by minimising the residual sum of squares

(3) 5, (8) [y, - s, ©]

]
L e B e

i=1

with respect to B . If it can be further assumed that the error term €;
is normally distributed then B is also a maximum likelihood
estimator and therefore has the properties of consistency, asymptotic

efficiency and has an asymptotic normal distribution. Inferences concerning

B can be made using standard maximum likelihood theory.



If specification (2) is assumed, the standard approach 1is

to find a least squares estimator of 8 in the model.

(4) log y; = log g(Xi, B) + n,

1
by minimising
N n 2 2
(5) S8 =z [logy; - log s, ® ]

~
A

with respect to B8 . In this case B 1is a maximum likelihood estimator

if it can be assumed that ny is normally distributed. - it

In both cases the minimisation can be achieved either by
solving the normal equations or by applying a numeriéal minimisation
algorithm directly to the sum of squared residuals.4 In the general
case the normal equations are nonlinear and estimation can only be

achieved using iterative methods.

In this situation we are faced with two related questions.
First, how do we choose on statistical grounds alone which assumption
about the form of the error distribution is the more appropriate ?
Sécond, if one model is found to be superior, is the difference between

the two significant ?

Goldfeld and Quandt {4} summarise several approaches which
treat the problem as essentially one of discriminating between discrete
families of hypotheses.5 They also put forward an approach in the
specific context of Cobb~D6uglas type functions by which (1) and (2)
are special cases of a more general, mixed model involving both types

of error term in the same equation.



" Writing
B B B n
_ 1 2 k i

the Goldfeld and Quandt approach is to maximise the likelihood of the
sample of observations on the dependent variable under the assumption
that ng and e, are normally distributed with standard errors
respectively of 9 and qg. When o, = 0 the mo@el reduces to

the form of (1) and when o, = 0 it assumes the form of (2) as a
special case. qudfeld and Quahdt therefore suggest that hypotheses
concerning the form of the error distribution might be tested by
1iké1ihood ratio tests on on and o, respectively. This approach
is promising and certainly capable of producing satisfactory results.
One drawback, however, is that the likelihood function involves the
evaluation of a definite integral for which no closed expression can
be found in general. Maximisation of the likelihood function therefore
requires the use of a numerical integration algorithm, in conjunction

with one for maximisation, and consequently significant rounding errors

are likely to appear.

An approach similar in spirit to that of Goldfeld and Quandt,
although easier to follow in practice, is based on the method of trans-
formations of Box and Cox {2}. Using this approach we define a family
of transformations of both the dependent variable and the "syste@atic
part” of the relationship by some parameter A. For particular values
of X this family must give (1) and either (2) or (4) as special cases.

Testing the form of the error specification could then be approached



by testing hypotheses about A.

Consider the simple power transformation for a > O »

W a’- 1 A # 0
A
log a A = 0

which is continuous in A.

Using this transformation we can define a family of models

Q) yM = e, 1M e s,

1

where 6i is an error term with E(Gi) = 0, E(Giz) = 02, E(Gi6j) = 0, ifj-
Equations (1) and (4) are clearly both special cases of (7) corresponding

to A =1 and O respectively.

If it is assumed that for some value 6f A the error term
di has an independent normal distribution, then A and B can be

estimated by maximuﬁ likelihood.

Under the assumption that, for some A,

y. M N[ g, 8 1M, 62

1

its probability density is

a\) ) 2 }
1 exp - 1 (y. - g(X., B) X
Vir o { 252 . ) t ]



The density of the untransformed dependent variable is therefore

y 7 e - L (yim - [eixy, s 2
VI o 20

and hence the log likelihood in retation to the sample observations is

n
L (B,A) = -n log 2m - n log 02 + (A-1) r logy. - 1 S(BsA),
2 2 i=1 T3
. 20
where
n
s, = oz (yWMN - [g(xi, B) ]()‘)_)2 .

Replacing 02 by its maximum likelihood estimator,

o = 1 S(8,\)
n

where B A  are maximum likelihood estimators, gives the condensed log

likelihood function

- - I - n
(8) LB, = -n(l+1log2r) -nlog S, + (O-1) I logy; -
2 n 2 .oi=l

-~

Maximising (8) with respect to B and X produces an estimate

of A on which a test might be based,

A confidence interval for A can be found using the distribution
of the likelihood ratio. In large samples the logarithm of the likelihood
ratio is proportional to a X2 variable. In this case, therefore, we can

construct an asymptotic confidence interval for X wusing the quantity



9) 2L (B,)) - L(B, A)

~

= n log S(B,A) = n log S(B,A) + 2(A~ 1) £ log yi
' i=1

from (8). This statistic is distributed asymptotically as xz with one

-~

degree of freedom if B is the maximum likelihood estimator of BA

conditional upon A. 6

This method was used to test the form of the error specification
in an aggregate CES production function for Soviet industry. The data
used was annual data for the period l§50—69 given by Weitzman {3} who
estimated the fungtion directly assuming constant returns to scale, Hicks
neutral technical change and a multiplicative, serially indeéendent error

term. The "systematic part" of the equation is written

- ——

No- ut -p P
g(+) = vye [ § K, + (1 - 8) L, ] 0

where Kt is aggregate capital and Lt aggregate labour at time . Three
sets of estimates were obtained by maximising (8) with, respectively,
the restrictions A =1, X =0 and also with A unrestricted but nonzero.

Maximising (8) with X # O is equivalent to minimising

A AT - P
log & 1 ( Yo T Y Wt L_cSKt L . - 8) Lﬁ p.j 5 )



In the case A = 1, estimates were found by minimising (10)

subject to this restriction and in the case X =0, by minimising

. .
(11) T (log yt—logy—ut+_1_‘1ogf6 Kt P4 1-9) Lt p] )2 .
t=1 p '

The minimisation algorithm used was a variant of the conjugate gradiaat
method of Powe11.7 The results are shown in theTable. These estimates
are, of course, subject to the caveat that the likelihood function may
have more than one maximum and that the algorithm used is only capable
of finding a local maximum. in general, thercicre, we are unsuve of
whether we have attained the vequired glcbal maximum. In this case we
have re-estimated the parameters a number of times using each time

a different vector of initial approximations and wno improvement in the
likelihood function has been observed. It therefore seems reasonable

to accept these figures as maximum likelihood estimates.

Aggregate CES production function for the USSR:

Maximum likelihood estimates

{a) (b) (el

[ 1.7757 1.43812 1.5314
(0.3558) (0.1665)

8 0.4617 0.6390 0.6775
(0.0785) (0.0628)

Y 0.6803 0.787% 0.8145
(0.0414) (0.042G;

H 0.0340 0.0205 0.0176
{0.0057) {(C.0048)

A 1 9] -0, 4773

log likelihood ~38.689 -32.394 ~30.9194

(apart from constant)

. . . 8
Estimated asymptotic standard errors in brackets.



In the Table, column (a) contains estimates obtained under
the assumption of an additive error term (i.e. model (1) ) by minimising
(10) subject to A = 1. The estimates in column (b) were found under
the hypothesis of a multiplicative error (i.e. model (2)) by minimising
(11) and thosein colﬁmn (¢) by minimising (10) without any restriction
on A except X # 0. The log likelihood is given in each case as the value

of (8) apart from the constant.

It will be seen that the coefficient estimates are quite
gsensitive to the way in which the error term is introduced. The choice
between form (1) and form (4) must be made in favour of (4) since the
likelihood is higher in this case. This conclusion is borne outl by
computing the statistic (9) for » =1 and X = 0. For i =1 its
value is 15.54 and for = O itg value is 2.95. Since xi(O.QS) = 3.84,
we conclude that the 95% confidence interval includes A=0 but not i = l.
We can therefore argue that, in this example, the data tends to support

the hypothesis that the error term is multiplicative rather than additive.



Footnotes

The author acknowledges Graham Pyatt for comments and Diane Ellwood
for computing assistance.

It is assumed that the probability of negative values of ¥5 is negligible.
See, for example, Mood and Graybill {7}.

See Goldfeld and Quandt {4}, Ch. 1.

See Chapter 5.

This is the case provided certain regularity conditions are satisfied.
In particular the likelihood function must be twice continuously
differentiable which it clearly is in this case - if g(-) is. Also

the range of variation of the dependent variable must be independeat of
the parameter values. This is guaranteed by footnote 2.

See Brent {3}.

These were obtained by evaluating the inverse of the relevant information
matrix at the estimated maximum of the likelihood function. They are
consistent estimates of the population standard errors provided a set

of jointly sufficient estimators exist for the parameters.
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