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Abstract
The behaviour of difference-stationary and trend-stationary processes has been the subject of con-
siderable analysis in the literature. Nevertheless, there do not seem to be any direct comparisons
of the properties of each for both being potential data-generation processes. We look at the con-
sequences of incorrect choice between these models for forecasting when parameters are known, and

when parameters have to be estimated. The outcomes are surprisingly different from established res-
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1 Introduction

An important aspect of model selection when forecasting concerns the appropriate treatment of non-
stationary variables. The two classes of non-stationary processes that we consider here are difference
stationary (DS) and trend stationary (TS) processes. The former contain stochastic trends, and are integ-
rated of order one, I(1), so that differencing yields a stationary series. The latter are stationary about a
deterministic function of time, here taken to be a simple linear trend. These two forms of non-stationarity
have radically different implications for forecastability when the parameters of the processes are known:
forecast-error variances grow linearly in the forecast horizon for the DS process, but are bounded for the
TS process. This is perhaps an unsurprising conclusion given that the unit-roots indefinitely accumulate
the effects of previous disturbance terms, whereas in the TS process with known parameters, the condi-
tional h-step ahead forecast error is simply the disturbance term in period 7' + h. In brief, uncertainty
plays an add-on role in the TS process, but is integral to DS.

In a recent paper, Sampson (1991) has argued that allowing for parameter uncertainty leads to
forecast-error variances which grow with the square of the forecast horizon for each of the DS and TS
processes, so that asymptotically the two are indistinguishable in terms of their implications for forecasta-
bility. However, this result requires that the estimation sample, 7', remains fixed as the forecast horizon
h goes to infinity. If T increases with h, no matter how slowly, then the forecast-error variance in a DS
process will swamp that of the TS asymptotically, and thus the outcome will be similar to the known
parameter case. This comparison treats DS and TS cases as data-generation processes (DGPs) in turn.

However, it is artificial to compare the predictability of a TS process, as a DGP, with a DS process,
also treated as a DGP. In any particular instance, a process is (at best) produced by either a DS or TS
DGP, so the issue of interest is the relative predictability of the two models when the process is either DS
or TS. This question is of interest because empirically it may be difficult to distinguish between the two
(see, e.g., Perron and Phillips, 1987, Rappoport and Reichlin, 1989, and Rothman, 1998).

In sections 2 and 3, we derive the forecast-error variances for DS and TS models when each in turn
is the DGP, and compare the two, both when parameters are known and have to be estimated, confirming
the results in Sampson (1991). Sections 4.1 and 4.2 then compare the relative predictability of the two
models when the DGP is TS and DS respectively, but with known parameters. Sections 5.1 and 5.2 repeat
the exercise, but allowing for parameter estimation uncertainty.

While the analytical calculations are for a first-order unit root process and a deterministic process
without any autoregressive (or moving-average) terms, the results are unaffected qualitatively by allow-
ing for dynamic generalizations of these processes. The uncertainty surrounding these elements impart
terms of order 1/7 to forecast variability, independently of the forecast horizon. As we note in the con-
clusion, such effects will not qualitatively affect the results. The determining factors for forecast variab-

ility are the slope of the deterministic trend and the drift in the unit-root process.



2 Difference-stationary process
The simplest example of a process integrated of order one is:

Yt = Yp—1 + 4+ €, M
with e; ~ IN[0, 02]. The h-step ahead forecast for known parameters, conditional on information avail-
able at time T is:

Ur4n = B+ yren—1 = ph +yr. )

Thus, the forecast is of a change in the variable from the forecast origin with a local trend, or slope,

function. The conditional multi-period forecast error is:

h—1 h—1
erih = Yrh — Uren = ph+yr+ > erphoi — (ph+yr) = Y eryn—i 3)
1==0 =0

As is well known, the cumulative error has a variance that increases at O(h) in the horizon A:
V[eryn] = hal. (4)

The h-step forecast error for levels using estimated parameter values is:

h—1
€Tt+h = YT4h — Yr4n = ph+yr+ Zo vpyh—i — (fh + P yr)
v= 5)

h—1
= (p—Wh+1-7")yr+ Z()ET+11~1'-
f R

We neglect the coefficient biases, treating such conditional forecasts as unbiased. Note in general,
though, that the drift term g in the 1(1) process becomes the slope of a linear trend, and for any given
realization of the process, 1 # [ induces an error which is increasing in the forecast horizon. The case
of a local-to-unity root (e.g., p = 1 — k/T for small k) when making long-horizon forecasts is analyzed
in Stock (1996), who shows that considerable forecast uncertainty will result.

Generally, for estimated parameters in (1) processes, the variance of the forecast error is hard to
derive due to the non-standard nature of the distribution. However, the limiting distribution is normal
when the unit-root model is estimated unrestrictedly for non-zero p (see West, 1988): the estimate of p
converges at a rate of T3 , S0 its variance can be neglected), whereas V[fi] = o27"~!, emphasizing the
importance of accurately estimating the local trend.

We concentrate on the case in which p is correctly imposed at unity. Then, the forecast-error variance
increases quadratically in the forecast horizon, h, for fixed T':

V{eria] = h (0 + hV [i]) = ho? (1 + %) : 6)
If we control the rate at which T" and & go to infinity by (see Sampson, 1991):

T = Ah® (7)



where xk > 0, then:
V [rin] = ho? (1+ AR ) = Vg, (®)

which is O(h?) for & = 0, O(h?>~*) for 0 < k < 1 and O(h) for k > 1 (see Sampson, 1991, eqn. 12).

We now compare Vg4, With that resulting when the DGP is trend stationary.

3 Trend-stationary process
The trend-stationary DGP is given by:

Y = ¢+t + e )
where we maintain the assumption that u; ~ IN[0, o2].
The h-step ahead forecast for known parameters from (9), conditional on information available at
time 7 is:
yren=9¢+v(T +h), (10)
with multi-period forecast error:
eT+h = YT+h — YT+h = UTh- (1D
The conditional forecast-error variance is the variance of the disturbance term:
Vepyn] = o (12)
When parameters have to be estimated, (10) becomes:
Yren =9 +7 (T +h), (13)
and the multi-period forecast error and error variance are given respectively by:
Zrin = (¢~ &)+ (y=7) (T +h) +urn, (14
with:
VIErsn =V [8] + (T + )’V +2(T+ 1) C[3,5] + o (15)
Thus, we need to evaluate V[6], where 8 = [¢ : 7]':

~ -1

N P T sT(T+1)
V16| =V = o ’
H 5 7 IT(T+1) (IT(T+1)@QT+1)
(16)
2(2T +1) -6

—6 12(T+1)7!



Substituting from (16) into (15), and simplifying by approximating (7" + 1) ~ T, gives:

V[ersn] =~ 40 T 1 —12(T +h) o272 +12(T + h)* o273 + o2 -
= ol (1+4T71 + 12072 + 120*T73%) .
From (17), the forecast-error variance grows with the square of the forecast horizon, for fixed T. We can

again use (7) to determine the behaviour of (17) as h and T" go to infinity:
VErin] = o2 (1+4A7 A" + 12472017 + 124702 73F) = Vi, (18)

Thus, we find that (18) is O(h?) for k = 0, O(R*™3F) for 0 < k < %, and O(1) for k > %— (see
Sampson, 1991, eqn. 18). To more easily compare (17) for the trend-stationary process (T'S) with (6) for
the difference-stationary process (DS), when 7" is not assumed fixed, we calculate the ratio of the two,
and eliminate 7" using (7):

Vasjds h+ A"1p?"

Vislss T 1} 4A-1h—K + 12A42R1-26 194323

19)

From examination of (19), it is apparent that V 454 / Vis|ts — 00 as b — oo (and T" approaches oo at the
rate determined by (7)) for all values of « other than k = 0. Note that x = 0 corresponds to a fixed 7,
and in that case Vgq(as/Viojts — A?/12 as h — oo. When we allow T to grow as h increases, no matter
how slowly (x close to but not equal to zero), then V y,145/Vysies — 00 and the forecast-error variance
of the DS process swamps that of the TS process in the limit, since for 0 < & < 1, Vgggs / Viggs —
A%h?%/12. Thus, only when T is fixed will the DS and TS processes be asymptotically indistinguishable,
even allowing for parameter uncertainty in estimated models thereof.

Sampson (1991) argues that allowing for parameter uncertainty leads to forecast-error variances
which grow with the square of the forecast horizon for both the DS and TS processes, so that asymp-
totically the two are indistinguishable in terms of their implications for forecastability. As shown, this
result requires that the estimation sample 7" remains fixed while the forecast horizon h goes to infinity.

Care is required in using such comparative findings to interpret empirical evidence, since the DGP is
at best one of the two models DS or TS, whereas we have examined the forecast-error variances derived
for each under its own DGP. There are two consequences. First, since computer-reported error-variance
formulae correspond to Vg 45 and Vi, above, one must be incorrectly reported when estimating both
models. Secondly, the actual forecast-error variance ratio of relevance will depend on which process
generated the data. To illustrate, we now derive the forecast-error variance ratios of the two models as-
suming each is the DGP in turn. Initially, we abstract from parameter estimation uncertainty, and then

look at the extent to which the results change when the parameters have to be estimated.



4 Model parameters known

4.1 Trend-stationary model is the DGP

When the TS model is the DGP, its forecast-error variance remains unchanged at (12). Using the incorrect

DS predictor, uh + yr, yields a forecast error:
€ds,T+h = YT+h — Jds,7+h = ¢+ 7 (T + h) + urn — (ph + yr) (20)
with an expectation conditional on yr of:
Eleas,r+n | yr] = (9 + 1) —yr + (y =) h = —ur + (v = p) b,
and an expected squared error:
E [e3srn | yr] = 0 + (Eleas,ran | yr))*. @1

Since Elyr] = ¢+ +T, the value of the parameter £ in the DS model predictor that minimizes in-sample

expected squared error loss is y = «y. Treating p as known at that value, and substituting into (21) gives:
Vasles = 0 + 7, (22)

or unconditionally, E[Vds{ts] = 202, so that the relative loss to using the DS is:

E [Vdﬂ — 9. 23)

Thus, despite their radically different behaviour when each is simultaneously assumed to be its own DGP,
conditionally on a TS DGP, they differ ‘only by the period-7" squared disturbance, independently of h.
Specifically, the DS model forecast-error variance, when the TS model is the DGP, is of the same order
as the TS model variance (O (1) in h).

4.2 Difference-stationary model is the DGP

Suppose now that the DS model is the DGP, so that its MSFE is given by (4). The value of {¢, v} that

minimizes the in-sample prediction error for the TS predictor is {0, 1}, so the forecast error is:

h—1 h—1
€ts,T-+h = Lh+yr + Z erqh—i — (T +h) = yr — pT + Z €T 4h—i (24)
PE=] 7==0
and hence:
Visias = ho? + (yr — uT)? (25)
with:

Visids _ ho? + (yr — pT)?
Vas|ds ho? ’




and:

\
E[ tslds};_h‘i‘T (26)

Vas|ds h
so that the forecast-error variances are of the same order in h (O(h), and hence linear in the horizon), so
the TS model is penalized only when A is small or T" large.

Thus, the two models are indistinguishable in terms of their implications for predictability when we
notice that only one model can be the DGP, and derive the forecast-error variance of the other under this
assumption. When the TS model is the DGP, the forecast-error variances of both models are O (1), and
when the DS model is the DGP, both are O (h). There is qualitatively different behaviour dependent on

which is the DGP, but not between the models of that DGP when parameters are known.

5 Model parameters unknown

Next, we consider the additional impact of parameter estimation uncertainty on predictability.

5.1 Trend-stationary model is the DGP

First, we derive V[ for the DS model given by (1) when (9) is the DGP.

T
A=T7Y Ay = R @)
t=1

since [ is simply the mean of Ay;. Substituting for yp from (9):

Ur — U

= . 28

p=+ T (28)
so that: ,
207

Via] = T (29)

This expression for the variance of the estimated parameter is an order of 7" smaller than that which an
investigator would report on calculating the OLS formula o2E[xx] ™! (where x is a vector of ones), since

in that case, from (1) and (9):

€ =7~ p+ Auy 30)
which implies that:

ol = E[e}] = 202 (31)
and since E[x'x]™! = T~

olE [X’xr1 = g%é (32)

as against (29). Thus, the estimated growth rate would be far more precise than reported, overstating

forecast uncertainties.



The DS model predictor when p is estimated, is given by:

Yar+n = [th +yr (33)
so that:
€as,r+h = ¢ +Y(T +R) +ursn — (Bh+ yr) 34)
= (v = E)h+ (ursn — ur)
The expected squared forecast error is:
E [Vasis] = h2VIA] 4203 - 2E fur(y - )h] )
= 202+ h?202T72 + 2ho2T1
where we have substituted from (29) in deriving the second line.
Controlling the relative rate of increase of h and T by T' = Ah*™:
£ [Vasts] _ 24+ 2A72p2720 4 941 plon 36)
Vigigs | 1+4A7Th™" + 12472172 4 124-3p2-3s"
For k = 0, as h — oo: v
dsits - é (37)
Vts}ts 6

so both forecast-error variances are of the same order in / — they increase in the square of the horizon.
More generally, the dominant term in h (for £ < 1) in the numerator is 2A~?A?~2%_and in the de-
nominator 12473p273% so:
Vdsits A

~ R (38)
Vts}ts 6

which goes to infinity in A for 1 > & > 0, at rate O (h").

For £ > 1, both the DS and TS forecast-error variances increase less rapidly than O (%), and the
ratio converges on 2, as in the ‘known model’ case, eqn. (23).
5.2 Difference-stationary model is the DGP

The next two sub-sections involve calculating the MSE of forecasts from the estimated TS model when
the DGP is DS. Thus, the TS model parameter estimates correspond to ‘spurious detrending’ — see Dur-

lauf and Phillips (1988). Intermediate results used in the calculations are collected in an appendix.

5.2.1 No constant term in the TS model

Suppose first that we estimate the TS model without a constant term, when the DGP is the DS model

with yg = 0.

T T t
;\’7 — Zt::l tyt — Zt:l t(yO + ,L(,t + Ei:l ei) . (39)

T T
Et:l t2 Et:l t2
Setting yo = 0, we obtain:

o~ thpzl t (Z::l Ei)
TR I T TR+ D) “0)




so E[J] = p, and (see appendix):
VAl = — (4D
ignoring terms O(T~2%) or smaller.
If instead, an investigator were to use the formula o2(t't) ™1, since:

t

u=yo+ (n—t+ Y e (42)
1=0

from (1) and (9), and setting yo = 0, then:
O‘i = U?t. (43)
On average over the sample, E[o2] = T~! " o2t = o2 (_7_’%512, and so:
E[02] (¢) 7! = 302771 (2T + 1) (44)

which is a factor of order T too small. Thus, the estimated growth would be far less precise than reported,
by a factor of /T for the standard error, inducing serious under-estimation of the forecast uncertainty.
This is exactly the opposite of the outcome for the DS model when the DGP was TS.

Equations (24) and (25) become:

h—1
Csren = pht+yr+ Y erini—WT+h)
=0
h—1
= —(F—p) (T +h)+@r—uT)+ Y erph (45)
=0
and so unconditionally:
Effsrinl = ho? +VAIR +E[(yr —2T) =T (G - = 2E{(yr =T — (7 = NT) (¥ — wh)]

~ ho? +E[S7] + (h® +T% + 2hT) —g—afT'"l ~2(T + h)E[Sr (5 — 7)]
o~ [g (h+T)T7 = (T + h)} o2,

The result that E[S (¥ — 7)] = o2 is established in the appendix. Hence

e {Vmﬂ _ S(h+T)’T — (T +h) @
Vcls|ds h (1 -+ hTMl)
When T = Ah”: 6 1o . ,
£ {Vtslds} _3ATh ””+1~5Ah"+ In )
Vdsids h + A- h2-—r<,

so for k = 0, the numerator and denominator are O (hz) . For0 < k < 1, the numerator and denominator
term are both O (h?~*). For 1 < «, the numerator is O(h*) and the denominator is O (h), so the overall
term is O (h"71).

(46)
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Suppose 7T is large and h is small, say, h = 1. Then T' = A, and as & — 00, (48) approaches A/5.
For large h, (k = 0), (48) approaches 6/5.

Finally, if V [§] = 0, so that the pseudo-true value of the TS model is used (¥ = ) instead of the
estimated value, the performance of the TS model deteriorates markedly. Taking the expectation of (25)

we have:

E [Visias] = (T + ) ol (49)
Replacing the numerator of (48) by this expression, when b = 1 and £ — oo, the ratio converges (o
A + 1. In this instance, estimating the parameter () is far superior to using the pseudo-true value!
5.2.2 Constant term in the TS model

Equations (24) and (25) become:

h-1
Cwrin = phtyr+ eryni—¢ (T +h)

2==0

N h-1
= yr—AT—¢—F—Wh+Y  erin-i (50)
40
and so:

E[V = hol+V|¢| +VREIRE+E[(yr —4T) =T H 7))
Vesjas] = hol +V [¢| + VAR +E[(yr —+T) =T (7 - )]

~2E|(yr ~ 2T = (7= ) T) (7 - ) W)] + 2hE [$ (5 - w)]
~2E [§(yr — 1T = (G- T

= ho? +V [§] +VEI(T + 1) +Ellyr = 9D = 2T + WE[(yr —1T) (7 - )]
+2(h+T)C [8,7] - 26 [dur — 7D

- —(h+T)o-3+v[$] +V[§](T+h)2+2(T+h)C[$ﬁ]. (51)

Substituting for V [5] = GE%T, V] = azg-T"l and C [&, ﬂ = ~0.102:

Vigas  ~S(h+T)+TE+ ST 1T +h)"  S(h+T)°T7' — & (90 +8T)
Vs|ds - h(1+hT™1) - h(1 + hT-1)
_ $h+ AR jr gif—'fA—l -
h+ A-1p2-+

When « = 0, the numerator and denominator are O (hz).
For 0 < k < 1, the numerator and denominator term are both O (hz_“). For 1 < k, the numerator
is O(h*) and the denominator is O (h), so the overall term is O (h"~*). Hence, estimating the constant

term has no qualitative effect on the results.
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6 Monte Carlo illustrations

Two sets of Monte Carlo simulations illustrate the preceding analysis.! In the first (using PcNaive), ar-
tificial TS and DS DGPs with growth rates of 2.5% per period, and error standard deviations of 5%,
generated data for T' = 100 from which both DS and TS models were estimated. The aim was to show
the biases in estimating the standard errors of the growth coefficient from the conventional formulae, as

shown above in equations (29) versus (32), and (41) versus (44). This yielded table 1.

Table 1 Monte Carlo standard error and standard deviation comparisons.
MCSE MCSD

TS DGP

TS model 0.000172 0.000172

DS model 0.007081 0.000721
DS DGP

DS model 0.004956 0.004678

TS model 0.000430 0.005146

The MCSEs and MCSDs are close when the model coincides with the DGP for both DGPs, and are
out by the factors of /T in opposite directions when the models are inappropriate, as anticipated. The
uncertainty in the DS growth estimate when TS generates the data is genuinely larger than that of the TS
model, but the two models have similar uncertainty when DS is the DGP. Moreover, numerical evaluation

of the theory formulae deliver closely similar results, as table 2 shows.

Table 2 Monte Carlo and theory comparisons.
SD SE MCSD MCSE
TS DGP, DS model  0.000707  0.00707  0.000721 0.007081
DS DGP, TS model  0.00548 0.000611 0.00622  0.000543

In the second set of simulation experiments, (using GAUSS), the DS and TS DGPs were ‘calibrated’
on the log of UK Net National Income series over 1870-1993 (data from Friedman and Schwartz, 1982,
and Attfield, Demery and Duck, 1995). Figure 1 shows 100-, 75-, 50-, and 25-step ahead forecasts from
both models for the actual data, (NI on the graphs). The computed prediction intervals for TS are always
far smaller than those for DS, as anticipated from (29) versus (32), and (41) versus (44); sometimes they
include few of the outcomes, consistent with serious under-estimation of uncertainty. However, TS fore-
casts are more accurate than the DS forecasts for the two longer horizons, but less accurate for the shorter.

Neither model is a congruent representation of that data, but the estimates of the parameters so ob-

1Computations were performed using GiveWin, PcFiml 9, and PcNaive (see Doornik and Hendry, 1996, 1997, 1998) and

the Gauss programming language, Aptech Systems, Inc., Washington.



12

12
e DS ) [~ DS
| —— NI [|—— NI
11H----Ts 10H---T8

2000

i . s | : 1

1 L L
1500 1950 2000 1900 1950 2000

Figure 1 TS and DS forecasts for the historical data.

tained (including the error variances) are taken as ‘typical’ values for the DGPs; the latter are then as-
sumed to have normal, independently-distributed disturbances with the estimated error variances. For
the simulated data for the DS model, the first-period value is always equal to the 1870 historical value.
We consider estimation sample sizes (T') from 20 to 200 in steps of 1: for each of these, we generate
1 to 200 step-ahead forecasts. For the DS model, the single parameter, y, is estimated, and for the TS,
the pair {¢, y}. We also consider two variants: the ‘known model’ case, for which the parameters are
replaced by their pseudo-true values; and secondly, an intermediate case for which ¢ is assumed known
(in fact, ¢ = 0 and the DS model is simulated from an initial value of zero). Variations in the results
across sample sizes due to the Monte Carlo are minimized by using common random numbers. Thus,
for each of the 10, 000 replications, the first n values of the simulated sample of length 7 are identical to
those of a sample of size n + k (k > 0).

The results are summarized in figs. 2 and 3 for the ‘known model’ case, and confirm the formulae

derived in sections 4.1 and 4.2.

6.1 TS DGP results

Figures 4 and 5 report the ratios of MSFEs of the DS to the TS models for TS DGPs, when ¢ = 0 and is
not estimated in the TS model, and when ¢ # 0 and is estimated in the TS model. Since the results are
quite similar, the discussion centres on the more general case.

There is a close correspondence between the theoretical formulae and the simulation results as de-
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MSE Ratio DS to TS for TS DGP

Figure 2 ‘Known model’ case: TS DGP.

picted in fig. 5. First, when x = 0, T' = A is fixed, and from (37) the ratio V445 /V 415 tends to 7/6
as h — oo. This can be seen in fig. 5 for T' = 40, where the ratio is close to 7. Further, when A > 12,
from T" = 40 on, the ratio first increases as T' grows, till around 7' = 120, then tends back down to 2,
with maxima along (12 — k) T° + 16RT? + 6h> = 0 (e.g., T = 70 at h = 200 as seen in fig. 6). This
explains the apparent ‘quadratic’ shape for large h.

Next, from (38), when k = 0.5 (say) (T = A+/h), then V g1 /Visies — /b for A = 6. This relation
holds, e.g., from (T" = 42, h = 49) to (T = 84, h = 196), and explains the less-than-linear increase in
the ratio.

For k = 1, T/h = A is constant, and if we consider A = 1, so h = T, then from (36), the ratio
increases linearly (a diagonal across the surface in the cube) as A increases, according to:

Vdslts _ 6
Vtslts - 1 + 28hm1 )

When k — o0, corresponding to T — oo, the ratio converges on 2, as in the ‘known model’ case.

6.2 DS DGP results

Figure 7 can be explained by the formulae (47) and (48), and the surrounding discussion. For large T" and

h = 1, the surface approaches the theoretical value of A/5 (for 7' = 200, A/5 = 40), and for large A,
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MSE Ratio TS to DS for DS DGP

Figure 3 ‘Known model’ case: DS DGP.

(k£ = 0), asymptotes to 6/5. A comparison of fig. 7 and fig. 3 shows the deterioration in the TS models’
performance when -y is not estimated but replaced by its pseudo-true value (this result does not arise
because the TS model performance improves, but relatively less than the DS model, when pseudo-true
values replace parameter estimates).

Next, when ¢ is estimated, fig. 8 matches (52). Consider, for example, 7' = 200 and h = 1 (as

above), then the formula predicts a ratio of around 28, which is also evident from the figure.

7 Conclusions

DS and TS processes have markedly different implications for forecasting when the properties of the
DS model are derived, assuming it to be the DGP, and are compared to the properties of the TS model,
assuming it also to be the DGP. When we admit parameter estimation uncertainty in the above set up,
forecast-error variances can be shown to grow with the square of the forecast horizon for each model,
assuming that the estimation sample, 7', remains fixed as the forecast horizon h goes to infinity. If 7'
increases with h, no matter how slowly, then the known parameter case prevails, and the forecast-error
variance of a DS process swamps that of the TS asymptotically.

We have argued that a more meaningful approach is to compare the predictability of the two models
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Figure 4 ¢ = 0: TS DGP.

when the DGP is either DS, or TS, so that one model is always mis-specified. In practise, only one model
will (at best) closely approximate the DGP. In this setting, we show that in the absence of parameter es-
timation uncertainty, the two models are indistinguishable in terms of their implications for predictability.
When the TS model is the DGP, the forecast-error variances of both models are O (1), and when the DS
model is the DGP, both are O (h). There is qualitatively different behaviour dependent on which is the
DGP, but not between the models of that DGP when parameters are known. A richer pattern of results
emerges when we allow for parameter estimation uncertainty in this setting. For the TS DGP, both mod-
els’ forecast error variances increase in the square of the horizon for fixed 7' (x = 0), the DS/TS variance
ratio goes to infinity as T" increases but less quickly than h (0 < x < 1), and for faster rates of increase
of T the ratio converges to 2. For the DS DGP, both the TS and DS models’ variances are of the same
order, O(h*=*), for 0 < x < 1. Only when T increases at a faster rate than A does the order of the TS
model variance exceed that of the DS model.

From the analytical calculations it is apparent that allowing for dynamic generalizations of the simple
processes considered will not qualitatively affect the results. Consider (36), which summarizes the rel-
ative forecast performance of the two models for the TS DGP. While the variance of the DS model trend
1 is 1/T?, so that this term is estimated an order 7' more accurately than that of any additional station-

ary variables in the model, it enters the formula for the forecast-error variability multiplied by A2, and
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Figure 5 TS DGP.
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Figure 6 Variance ratio for x = 0, h = 200.
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Figure 7 ¢ not estimated in TS model: DS DGP.

is the dominant parameter estimation uncertainty effect. Estimating more general DS and TS processes
would add order 1/T terms to the numerator and denominator of (36), but the ‘large h’ results would be
unaltered for all k.

Similarly, inspection of (52) for the DS DGP indicates that the qualitative results would be unaltered

by adding order 1/7 stationary regressor parameter estimation effects to either the numerator or denom-
inator.
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8 Appendix

8.1 Pseudo-true values {¢, v} in TS model for DS DGP

The values of {¢, v} that minimize the in-sample prediction error of the TS model are obtained by min-

imizing:
T T
ED (e —vrye-1)® = EY [y~ (¢+70)
t=1 t=1
T T t 2
= EY |ut+> e—(¢+t)
t=1 L s=1

2

r t
= EY |[(n=Mt+) es—¢
L s=x]1

T T
= (u=7)) +Y t+T¢ —26(n—7)

t=1 t=1 t

t

E

1
- (M.-y)zé-T(T+1)(2T+1)+T¢2+ (02 = 26 (1 — 7)) ~12«T(T+1).

1l

The first-order conditions give:

6

= $=3(-7)@T+1),

0 = —2(u—7)lT(T+1)(2T+1)+2¢—§-T(T+1)

and:
0 = 2¢T——2(u-—y)%T(T+1)
= ¢=3(-N(T+D),

with solution {¢ = 0,7 = u}.
The in-sample (1 to T') residual sum of squares of the DS predictor for the TS DGP (known paramet-
ers) is:

T

Z(@/t - yd,t}t——l)2 =

t==1 t

]~

[+t + e — (1 + ye-1)]
1

i

(7 — 1+ Ag)? (53)

I
B

t==1

i

SO
T

EZ [p+vt+e—(n—w1)? =T (y—p)’+2Tc2,
t=1

which is minimized over y by setting p = +.
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8.2 OLS estimates {¢, 5} in TS model for DS DGP

After some straightforward algebra, the OLS estimates of 5 and % in (9), when (1) is the DGP, are:

T T
Fop = I @T+)@ -y 5 6T (T -1y S,
t==1 t==1

T T
~ 12773 ZtSt — 6T 2 Z Sy,
t=1 t==1

and:
_ T T
¢ = 2T+ 1) (T-1)7' S —6T (T-1)7" > LS,
t=1 t=1
T T
jond 4T-1 Z St - 6T~2 ZtSt,
t==1 t=1
corresponding to ‘spurious de-trending’ ~ see Durlauf and Phillips (1988). S; = g':l €5 is the partial

sum, and the approximations are obtained from T = T + 1.

The following derivations evaluate the summations.

2
8.3 Derivation of E [(ngrzl St) }

First:

50!

1
Q

12
Q

2
8.4 Derivation of E [(zle t5,) }

Here:

where:



with:
J—1 1
. B 1 Ll
Z Zt Zt T+ -50-1J
t=j =1
T 2 1 1 1
Dot =TT+ + G- )P - T(T+ )G -1,
t=j
and:

l

|
=
+

8.5 Derivation of E [ (L1, 5) (S0, 5 )]

After some algebra, we have:

where:

s=1 t=1 t==1
T
T T2 8 T g g3

o~ Y B BN

Z(24”2 5t T3¢ 2+2)

s==1

b 24
~ T

9247

8.6 Derivation of V [(ﬂ

Using the above formulae:

VM = (a —E;)—-TE(ﬂO’T = () 2ot

8.7 Derivation of V [7,]

When a constant term is also estimated:

144 (2 36 [ ,T%\ 144 6
\V; ~C ____T5 hadl 27 2T4 ~ QT—l.
bl = 7 (15 ) i (“ 3 ) T5 (24 57

The variance of 7 is invariant to whether or not a constant is estimated.
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8.8 Derivation of E [ST (Y. — 7))

E [ST Zrirzl tst}
YT (T+1)(2T +1)
E [St f:l Z{:s tES]
YT (T+1)(2T +1)

E [ST (A'Ylnc - ’7)} =

T T
— 02 s:lztzst
(T +1)(2T +1)
~ o?
since 37, ST =BT (T+1) = (s — 1) 8] = §T% - § x §T% = §T°.

8.9 Derivation of E [ST cz]

T T
E [STJ] = E[4T7'5r Y 5 - 6T725r S tSt}
t=1 i=1
T
6 T°
—_ —-1,_2 2
= 4T UG;(T—FIMt) s
T2 6 13
~ —1_2 |{m2 2
o 4.-T O'E IVT +T‘—7]“ eﬁ-é—'
~ 22T —2T] =0.
8.9.1 Derivation of E [ST (7. — 7)]
] - ]
1287 ) tS;—6(T+1)Sr Y S,
E[ST(R.-7)] = E = =

T+ 1) (T - 1)

8 T2 s 13
125 - 56T , _ 125 6%

T3 ¢ Ts

This covariance is invariant to whether or not a constant is estimated.

~

m

8.10 Derivation of E [(qg - d)) (Fe — ’Y)}

T
12Zt5t 6(T'+1) Zst ( T

E|Ge-) (6-9)] = E FEIDECD

2 [48 5,4 722 2473 365
T4 24 7515 T3 3  T*24

T - LIy -——-~T4} = ~0.10".



