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Abstract

In economics density forecasts are rarely available, and as a result attention has tradi-
tionally focused on point forecasts of the mean and the use of mean square error statistics
to represent the loss function. We extend the methods of forecast density evaluation in
Diebold, Gunther and Tay (1997) to compare linear and non-linear model-based forecasts
of US output growth and changes in the unemployment rate. Of prime concern is whether
concentrating solely on the first moment obscures the potential usefulness of non-linear
models as forecasting devices.

1 Introduction

Traditionally economic forecasting has been primarily concerned with the production and eval-
uation of point forecasts (see, e.g., Wallis, 1995). While the point forecast is the ‘most likely’
outcome, in most practical settings it is hard to imagine that the user of the forecasts will
be indifferent to the likely range of outcomes. Summary information regarding the degree of
uncertainty associated with forecasts, such as standard errors, is sometimes provided. Chatfield
(1993) surveys the large literature on calculating interval forecasts, where an interval forecast
comprises an upper and lower bound to define the interval, together with the probability that
the actual outcome falls within that interval. However, it is only recently that Christoffersen
(1997) has analysed how to evaluate such forecasts. Christoffersen (1997) suggests that a ‘good’
interval forecast should have correct conditional coverage — the interval is wider in volatile peri-
ods than in those of greater tranquility — so that the occurrences of observations outside the
interval are not clustered in the former and completely absent from the latter. Continuing this
trend toward providing a more complete description of the uncertainty surrounding forecasts,
Diebold et al. (1997) propose methods for evaluating density forecasts, and Diebold, Tay and
Wallis (1997) apply these ideas to survey-based inflation forecasts.

Evaluating the complete forecast density function could be particularly relevant for compar-
isons of forecasts from non-linear and linear models since mean squared forecast error (MSFE)
statistics of point forecasts may fail to do the non-linear models justice. Assessed on MSFE, the

*The first author acknowledges financial support under ESRC grant L116251015. We are grateful to
David Cox, Martin Cripps and Ken Wallis for helpful comments. Email: M.P.Clements@warwick.ac.uk and
Jeremy.Smith@warwick.ac.uk, tel.: 01203 523055, FAX: 01203 523032.



forecasting ability of non-linear models is often not clearly better than that of linear alternat-
ives, notwithstanding the apparent ability of such models to characterise business cycle features
of the data. Thus, the survey by De Gooijer and Kumar (1992) concludes that ‘no uniformity
seems to exist in the evidence presented on the forecasting ability of non-linear models’. Diebold
and Nason (1990) give four reasons why non-linear models may fail to forecast better than the
simplest linear model even when linearity is rejected statistically in-sample. First, there may
be non-linearities in the even-ordered conditional moments, which cannot be exploited for im-
proved first-moment prediction. Secondly, non-linearities signalled by statistical testing could
be due to outliers or structural breaks. Thirdly, the conditional-mean non-linearities, while
a feature of the data generating process (DGP), are not ‘large’ enough to yield forecasting
gains. Fourthly, the wrong type of non-linear model is used. Portmanteau tests may reject
linearity but will not suggest the appropriate non-linear alternative, and some tests designed
to have power against a specific non-linear model may reject against other non-linear models
(see Clements and Smith, 1998).

Clements and Smith (1996) control for a number of these factors in a simulation study, and
conclude that the third reason is relevant in a number of cases. That is, if we take the DGP
to be an empirical non-linear model, once the model has to be specified and its parameters
estimated on the data, then the non-linear model rarely performs better (on MSFE) than a
(mis-specified) linear model. However, forecast performance is significantly affected by where
the process is at the time the forecast is made, and such models sometimes fare better on
qualitative, ‘direction-of-change’ statistics.

The aim of this paper is to compare linear and non-linear models in terms of their density
forecasts, using the technology proposed in Diebold et al. (1997). Because economic time series
tend to be inter-related, improved forecasts can often be obtained by modelling systems of
equations. This naturally gives rise to joint forecast densities, and an innovation in this paper
is a proposed method of evaluating such densities, which extends Diebold et al. (1997).

In section 2 we discuss the results in the literature on comparisons based on traditional
MSFE measures, for the series we consider, as well as other ways of evaluating the non-linear
model forecasts. We also formally test for the presence of more than one regime in the series of
interest, to see if we can reject a linear characterization of the series in favour of the type of non-
linear model we are interested in. Section 3 discusses linear and non-linear systems approaches
to modelling. In section 4 we apply and extend the forecast density evaluation approach of
Diebold et al. (1997), the results of which are reported in section 5. Section 6 concludes.

2 Comparing the forecast performance of linear and non-linear
models

In this section we consider various ways of comparing the forecast performance of non-linear
and linear models. We illustrate with reference to the results in the literature for the two series
we consider — the first difference of the logarithm of US GNP, i.e., the growth rate of output
(denoted z), and the change in the US unemployment rate (u). These series are ideal for our
purposes, since they have been modelled using self-exciting threshold autoregressive (SETAR)
models!, and this is the class of non-linear model we focus on in this paper, and because non-

'Such models were first proposed by Tong (1978), Tong and Lim (1980) and Tong (1983) — see also Tong
(1995).



linear system models of the two series have appeared in the literature. Section 2.1 contains
a brief outline of the SETAR class of model. Section 2.2 considers traditional MSFE-based
measures, section 2.3 evaluation in terms of correctly predicting the direction of change of the
variable, or the regime, and section 2.4 reports on impulse response analysis for non-linear
models. Section 2.5 formally tests for a linear model against a two-regime SETAR model.

2.1 SETAR models

Briefly, the SETAR model class supposes the series can be modelled as a number of distinct
regimes, where the regimes are characterised by different conditional distributions of the pro-
cess, each parameterised by an autoregression. For the SETAR model, the regimes depend on
observable lagged values of the process, in contrast to the Hamilton (1989) model, where the
regime-switching process is an unobservable discrete first-order Markov process. The SETAR
assumption greatly facilitates the estimation of the model.

When there are two regimes, then the process is in regime i = 1 at period ¢ when y,_q < 7,
and otherwise (g > r) in regime i = 2:

ve= 98" + ol o bt el N (0,02), =12 ()

where the parameters super-scripted by {i} may vary across regime. The orders of the autore-
gressions may differ across regimes (so that p is the maximum lag order and some of the ¢§i}
may be zero for some 7). We make the assumption that the disturbances are independent nor-
mal. This is stronger than the iid assumption sometimes made. It will allow us to simulate
the model by drawing normal random variates. An assumption of normality is made for the
disturbances of the linear AR model and for the systems models.

Stationarity and ergodicity conditions are discussed in, e.g., Tong (1995). In the following,
y¢ is the first difference of (log) output (z¢), or the change in the unemployment rate (u;)?2.

2.2 MSFE measures and regime-dependence

Tiao and Tsay (1994) consider a two-regime SETAR model and a four-regime refinement, where
p = 2. Potter (1995) estimates a SETAR(2;5,5) but with the third and fourth lags restricted
to zero under both regimes, and d = 2 and r = 0. The estimation period in both instances
is 1947 — 90. A noteworthy feature of SETAR models of US GNP over this period is a large
negative coefficient on the second lag in the lower regime, indicating that the US economy moves
swiftly out of recession. The empirical forecast performance of the SETAR model relative to a
linear AR model is markedly improved when the comparison is made in terms of how well they
forecast when the economy is in recession, illustrating the now well-known path dependence of
the outcome of such comparisons. Clements and Smith (1996, 1997) find evidence for this effect
in empirical and Monte Carlo analyses of the forecast performance of SETAR and linear models.
If forecasts are not evaluated conditional upon the regime, then the gains in the minority regime
need to be sufficiently large to ensure that the SETAR performs well on average.

In the SETAR model switching is exogenous. Following on from the work of Beaudry
and Koop (1993), Pesaran and Potter (1997) develop a three-regime SETAR model with an

®The precise data definitions are as follows: X is seasonally-adjusted real US GNP. We splice together data
for 1947 — 90 at 1982 prices (as used by, e.g., Potter, 1995) with a more recent vintage of data at 1992 prices for
the period 1959 — 96. The US unemployment rate series is the quarterly series used by Montgomery, Zarnowitz,
Tsay and Tiao (1996) for the period 1948 — 93.



endogenously changing floor and ceiling, whereby the ceiling regime is in force when the growth
rate is fast, so that the economy is overheating, and the floor when recent output growth has
been slow or negative. On the RMSFE for mean prediction, their model fares worse than a
random walk with drift. However, as they note, the forecast period of 1993 — 96 was unusually
calm by historical standards and contained no recessions. Moreover, the RMSFE for their model
for predicting the conditional variance of the process was superior to that of linear models.

2.3 Predicting the direction of change

Regime-switching models may be better suited to predicting movements between regimes, rather
than small movements within a regime. Direction of change tests® are one way of capturing
this idea. The tests are closely related to the standard x? test of independence between actual
and predicted directions of change based on the 2 X 2 contingency table. Clements and Smith
(1996) report these tests and related measures for forecasts from linear and non-linear models of
a number of economic and financial variables. Pesaran and Potter (1997) consider the number
of times the ‘floor and ceiling’ and linear models of US GNP correctly predict negative output
growth (loosely, ‘recessions’) in-sample, and find the non-linear model offers an improvement
on this criterion.

Nevertheless, such criteria count one-for-one a forecast of a very small increase, when in
fact a small decline occurred, with a forecast of a large increase when a large decline occurred,
(if the regimes are positive and negative growth, say), so that such measures would appear a
useful complement to, rather than substitute for, MSFE measures.

2.4 Impulse response analysis

Rather than comparing the forecast performance of linear and non-linear models, some authors
have focused on the different implications for the propagation of shocks. Koop, Pesaran and
Potter (1996) develop generalized non-linear impulse response functions (GIs) (see also Gallant,
Rossi and Tauchen, 1993) to analyse the response of non-linear models to shocks. Their analysis
recognises that linear impulse response analysis is inappropriate, since the impact of the shock
is dependent upon the sign and size of the shock, and the position of the process when the
shock hits. The non-linear models of US GNP of Beaudry and Koop (1993), Potter (1995) and
Pesaran and Potter (1997) are shown to imply different degrees of persistence between shocks
occurring in recessions and booms.

2.5 Testing for more than 1 regime

Hansen (1996) presents a framework for testing the null of linearity against the alternative of
threshold autoregression, that delivers valid inference when the nuisance parameters » and d
are unknown. The testing procedure is non-standard because these nuisance parameters are
unidentified under the null (of a single regime — linearity). The full-sample results are recorded
in table 1, where we report the p-values for the supTy, aveTr and expT’r statistics of the null
of linearity (see Hansen, 1996 for details).

#These were developed in the context of predicting rates of return on market investments by Henriksson
and Merton (1981). Schnader and Stekler (1990) and Stekler (1994) applied the approach to macroeconomic
prediction, and Pesaran and Timmermann (1992) suggested a number of refinements and extensions.



Table 1 Asymptotic p-values of linear null versus SETAR model.

Series Output growth — z Unemployment rate changes — u
SETAR model (2;2,2) (2;2,2)
Sample 1947 — 94 1948 - 93
Robust LM Statistics
SupTr 0.616 0.013
ExpTy 0.519 0.007
AveTp 0.506 0.008
Standard LM Statistics
SupTr 0.079 0.001
ExpTiy 0.158 0.001
AveTr 0.321 0.001

The results were obtained using Bruce Hansen’s Gauss code tar.prg. Similar results for the
US unemployment rate were obtained if instead the lag order was set at 4.

The null of a single regime is clearly rejected for u;. But the evidence for SETAR non-
linearities in x; is weak, confirming the finding of Hansen (1996) — on any test the null of linearity
is not rejected at the 5% level. These results are similar to those reported by Potter (1995, Table
IV, p.115.). However, Potter (1995) (same table) also records Monte Carlo evidence indicating
that the tests are too conservative, particularly the heteroscedasticity-robust versions, and that
the power at the nominal 5% level is low. Correcting for size, he finds evidence in favour of
non-linearity at the 10% level. A similar size correction here might suggest the same conclusion.

3 Multivariate Models

Since there are likely to be important interactions between output and unemployment, we ex-
tend the analysis to multivariate models, and consider systems of equations in the change in the
unemployment rate and GNP growth. One of the simplest is a bivariate vector-autoregression
(VAR):

Yt = A(L)Yt_l + & (2)

where Yy = [u;  2¢)/. A third-order model appeared adequate, so A(L) is a second-order matrix
lag polynomial and &; is assumed to be an independently normally distributed error process

with covariance matrix:
2
o J12
E {Etsg] = E :: ' 2 |- (3)
a9 Ty

There are few multivariate threshold autoregressive models, but Koop et al. (1996) suggest
the following model*:

Y =A(L)Yo1 +BZi + Hyey

where A(L) is as before, and B is a (2 x 2) matrix containing the coefficients on the non-
linear terms Z; = [C DR, OH)', which are defined by the following recursions (see Pesaran and
Potter, 1997):

“This model is a multivariate extension of the univariate model of Beaudry and Koop (1993) and Pesaran
and Potter (1997).
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CORt = 1(Ft + Ot - O)

where 1(A4) is an indicator function taking the value unity when the statement in brackets is
true and zero otherwise, r. and ry are the ceiling and floor threshold values. The error process
€ ~ IN(0,I) and the variance-covariance matrix of the error term is such that:

Hy = (HyCOR¢—1 + H1Fy—1 + H3Cy 1)

where:
0412 Ojo9
and:
T
oy = 7 > CORr1(us— A(L) Y1)
=1
O = 1 Z CORy—1(zt — A(L)2Y1-1)?
=1
one = 75 CORp1(us — A(D)Ye1)(@e — A(L)2 Y1)
t=1

T

otn = Y Fea(u — A(L)1 Y — BuCDR;_1)?
=1

0ty = 1t Z Fi_1(xe — A(L)oY—1 — BuCDRy_1)?
=1

ong = 7 Fralw— ALYy — BuCDR1)(ze — A(L)s Y1 — BuCDR;_)
=1
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=1
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=1

A(L)., r = 1,2 is the r-th row of A(L), B;; is the 4jth element of B (i,§ = 1,2), and
To = Z;FZI CORy_1,Th = Z;{;l 1, T = zf;l Cy¢-1. To simplify estimation, we follow Koop
et al. (1996) in taking the floor (r;) and ceiling (r.) threshold values as given, from Pesaran and
Potter (1997), at —0.8755 and 0.5391, respectively. The model can then be estimated using an
iterative GLS procedure, with iterations limited to 10, which appears to be sufficient to ensure



Table 2 NVAR model — full-sample statistics.

Tt Ut
Coeff. t-value Coeff. t-value
Intercept 0.276 1.636 0.097  1.899

Tt 0.199 1.747 -0.041 -1.216
L9 0300 2.798 —0.093 -2.992
T3 0.050  0.513 -0.001 -0.028
Up—1 —1.043 -3.176 0.510  5.413
Up2 0.400 1.188 0.004 0.042
Ug—3 0.248 0.964 —0.209 —2.984

CDR;.y —0.640 -2.614 0.072  0.603

OHy.y  —0.044 -0.993 0.008  0.789
The error variances for the VAR equations for 2 and u were 0.8971 and 0.0883, compared to
error variances of 0.8604, 1.3309 and 0.5639 for z, and 0.0988, 0.2176 and 0.0415, for u, in the
corridor, floor and ceiling regimes, respectively.

convergence of all parameters. This model is referred to as the NVAR, to distinguish it from
the VAR.

Table 2 provides some statistics relating to the estimated NVAR. On the basis of the full-
sample estimates, the non-linear terms are not significant in the u; equation. Even so, there are
clear regime-dependencies in the equation’s error variances, which may play an important role
in constructing the forecast densities. Note also that there are significant interactions between z
and u, in both directions, suggesting the systems approaches (VAR and NVAR) may do better
than the univariate AR and SETAR models.

The MSFE results reported in section 5 do not favour the non-linear models, and in this
respect match those of De Gooijer and Kumar (1992), Pesaran and Potter (1997) and Clements
and Smith (1997), inter alia — allowing for non-linearity yields little or no gains in terms of
MSFE when the implicit aim of the exercise is forecasting the mean of the future distribution
of the variable of interest. However, as presaged in the introduction, such a negative conclusion
may be unwarranted if the non-linear model performs well in terms of predicting the overall
density function, rather than simply the first moment, to which we now turn.

4 Evaluating density forecasts

We evaluate the model-based forecasts using the approach of Diebold et al. (1997). This requires
calculating the probability integral transforms of the actual realizations of the variables (changes
in unemployment or GNP growth) over the forecast period ({y:}7%,, ¢ = 1,...,7n) with respect
to the forecast densities of the SETAR and AR models, denoted by {p:(y:)}7.;. That is, we
evaluate:

(e} = / p(wydu b )
—00 =1

When the model forecast density corresponds to the true predictive density (given by the DGP,
and denoted by fi(y:)), i-e., pe(y:) = fi(ye), then Diebold et al. (1997) show that {z}7.; ~



iidU[0,1]. The result that z ~ UJ0,1] can be found in, e.g., Kendall, Stuart and Ord, 1987,
sections 1.27 and 30.36. Diebold et al. (1997) make the result operational in the time series
context by establishing that the z; sequence are independent when the true densities are used
at each ¢. Hence the idea is to evaluate the forecast density by assessing whether there is
statistically significant evidence that the realizations do not come from that density — this
amounts to testing whether the {2} series depart from the iid uniform assumption.

For the AR univariate model, pf'(y;) (where the h-subscript denotes the h-step ahead fore-
cast density) can be calculated analytically. Ignoring parameter estimation uncertainty and
assuming the AR model disturbances are independently normally distributed, pf(y;) is gaus-
sian with mean and variance given by simple functions of the estimated model parameters and
equation standard error. While the SETAR model pf(y;) cannot be found analytically, it can
be calculated by simulation®. In fact for each t we simulate both univariate model densities
by Monte Carlo (setting the number of replications to 500, and drawing gaussian errors), and
evaluate (4) using these densities.

Joint densities of the change in unemployment and output growth are simulated by Monte
Carlo from the systems models — the VAR and NVAR. We can then calculate the z-values for
2 and u separately, ignoring the joint nature of the forecast density — these are referred to as
‘marginal’ z-values. As an extension to the evaluation framework of Diebold et al. (1997) we
propose the use of conditional z-values, as an additional aid to forecast evaluation. Writing the
conditional forecast density of, say, x given u takes on its realized value as pxiw(z | U =u), we
integrate the realized value of z; against the model forecast density:

Tt n
(top)iy = / pxipw | U = u)dw b (5)
o0 =1

When pxy(z | Uy = w) corresponds to the actual conditional forecast density (fxy(z |
Uy = u)), it follows immediately that {z;:}7, ~ iidU[0,1]. The conditional density is gen-
erated as follows. Under the null that the model (i.e., the VAR or NVAR) is correctly spe-
cified (and ignoring parameter estimation uncertainty), then the 1-step ahead forecast error
vector will be the realized disturbance term. For example, in the VAR given by (2) where
& = [eut €x4]’ ~ IN(0,3") adopt the notation:

2
0L Ouz
E [ee;] = Z — { o U’; } . (6)
Then pxpy(z | Up = ug) can be simulated by drawing random disturbances for €, from:

o
Ext ™ N (Pfu,tf» O}% (1 - p2)> (7)
where p = 0y /04,0,.

For the NVAR, > depends on the regime.

This sampling procedure allows us to calculate sequences for both {z;;} and {z,.} for 1-
step ahead forecasts. Multi-step conditional z’s can be calculated for the linear VAR in this

%See, e.g., Tiao and Tsay (1994) and Clements and Smith (1997). Gallant et al. (1993) and Koop et al. (1996)
provide analyses of the construction of conditional densities for non-linear time series models, in the context of
impulse response analysis.



way. The 2-step ahead forecast error vector (of period ¢ conditional on ¢t — 2) is &; + Ag_1,
with Elewe; |t —2] = 35 = 3> +A Y A’. Hence the conditional 2-step ahead density for z
given Uy = u; can be simulated by drawing e, 4, from a normal distribution with moments as
functions of (g, g2, 25) = ¢.f. (7). The NVAR can not be treated in this way, because even
assuming &; is gaussian the 2-step ahead error distribution will not have a simple form.

As a further extension to the evaluation framework of Diebold et al. (1997) we consider the
use of ‘joint’ z-values. Writing the joint forecast density as p,.(z,u), we integrate the realized
pair {z:, u¢} against the model forecast density:

Ty Ut n
{#jetiey = / /Pm,u(wl,wz)dw2dw2 . (8)

The 1-step forecasts of z and u are normal conditional on period £ —1, given the assumption
of normality of the disturbances. If the covariance matrix of the disturbances is diagonal, then
the 1-step forecasts are independent and the joint can be written as the product of the two
marginals. Then when p;.(,u) corresponds to the actual joint forecast density (fo.(z,u) =
Jz(x) X fu(u)), we can show that:

{2t }ieq ~ iid (- In W) ©)

where W is the distribution function for the product of two independent U[0, 1] uniform random
variables — see Appendix A — which enables a ‘test’ of the joint forecast density. As for the
univariate transforms, the z;; are calculated by integrating the simulated densities for p,, . (, u).

Typically, as is the case here, the forecasts will be correlated, and under the null of correct
specification the marginal z’s will be UI0, 1] but not independent, so (9) is inapplicable. We
use simulation to obtain a reference distribution for the joint z’s under the null of correct
specification, against which the distribution of the empirical joint 2’s can be compared.

Finally, notice that similar problems arise for sequences of multi-step forecasts. For a k-step
ahead forecast horizon there will only be n/k independent forecasts, since optimal forecasts will
exhibit k—1 order dependence. Thus 2-step forecasts of ¢ and ¢+ 1 will not be independent, and
even under correct specification the corresponding z’s, although U0, 1], will not be independent.
We proceed by dividing the z’s for the 2-step forecasts in to two sets, taking the first, third
etc. for the first set, and putting the remainder in the second. When the 2’s are evaluated and
plotted, we therefore proceed as if we have two unrelated sets. To save space, in each instance
we report results for the set which offers the most evidence against the null. Alternatively,
we obtain the theoretical cdf of sequences of 2-step forecasts by simulation, as suggested in
the previous paragraph for the joint z’s. Appendix B details a method of treating sequences
of multi-step forecasts from linear models, by adapting the method of conditioning described
above, but this approach is not pursued in the empirical work.

5 Results

The SETAR model used for US GNP growth is similar to Potter (1995), although the process
is a second-order autoregression in both regimes (the lag 5 terms are excluded). We set d = 2
but 7 and the autoregressive coefficients are determined from the data. The sample period is
1947:1 — 94:4. The model is first estimated on the available sample up to 1977:2, and forecasts
generated for 1 through to 5-steps ahead. The end date is then extended by one observation,
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so the model is estimated up to 1977:3, and 1- through to 5-step ahead forecasts are calculated
taking 1977:3 as the forecast origin. Continuing in this fashion we obtain seventy 1- through to
5-step ahead forecasts, where the final 1-step forecast is of 1992:2 and the final 5-step forecast
is of 1993:2.

Montgomery et al. (1996) estimated SETAR models of US unemployment on monthly and
quarterly data. Their model was a “TAR component’ model, although from a forecasting
perspective the computationally simpler SETAR model fares little worse. Montgomery et al.
(1996) find the model capable of recording gains relative to a linear model when unemployment
is rising rapidly in the contraction phase of the business cycle. We consider a three-regime
model on quarterly data, where the process is assumed to be a second-order autoregression in
each regime, and we set d = 2. The threshold values 71,72 and the autoregressive coefficients
are estimated from the data. The model is estimated and forecast over the same periods as
that for output, described above, as are the VAR and NVAR models.

Table 3 reports the empirical MSFEs for the linear and non-linear univariate models and
systems for 1 to 5-step ahead forecasts. The multivariate approaches fair better than the
univariate at short horizons, while the non-linear models are never much better than their
linear counterparts (and sometimes much worse).

Table 3 MSFE Performance of SETAR and Linear AR Models.

h AR(2) SETAR VAR(2) NVAR
GNP

1 0762 0.827 0.599 0.588
2 0.834 0.890 0.806  0.880
3 0.851  0.902 0.826 1.007
4 0858 0.872 0.846 1.117
5 0.862 0.875 0.881 1.204
Unemployment
1 0071 0.077  0.066 0.064
2 0103 0.109 0.092 0.088
3 0114 0.115 0.104 0.106
4 0116 0.119 0.113 0.122
5 0.114 0.116 0.113 0.129

We now move on to an evaluation of the z-transforms. Tests for the null hypothesis of
iid uniformity is a joint hypothesis. Diebold et al. (1997) argue that tests of iidU|[0, 1], such
as > pq —2logz ~ x%, under the null, may often be of little practical value, since it will
not be apparent which part of the null (iid or uniformity) is at odds with data, and instead
advocate more informal data analysis. We follow their suggestion, and consider each part of
the hypotheses in turn.

5.1 Testing for independence

The iid assumption is tested using LM tests for serial correlation, and since dependence may
occur in higher moments, we also consider (z — %)? for integer § up to 3. Table 4 reports LM
tests for autocorrelation up to fourth and second order for the 1- and 2-step ahead z-values,
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respectively. For both the GNP and unemployment series we are unable to reject the null
hypothesis of no serial correlation in any of the first 3 moments of the marginal or conditional
#’s for any of the models at the conventional 5% level. The iid assumption is rejected for the
VAR joint 2’s. At the 10% significance level there is some evidence of serial correlation in the
third moment of the AR 1-step unemployment 2’s.

Table 4 LM Tests for iid.

AR SETAR VAR NVAR AR SETAR VAR NVAR VAR NVAR

1-step
Moment Unemployment GNP Joint
1 0.434 0.826 0980 0.513 0.991 0.911 0.860 0.963 0.010 0.176
2 0.218 0.859 0.782 0.512 0.928 0.813 0.726 0.944 0.053 0.235
3 0.077 0.838 0431 0.571 0.738 0.622 0.640 0.884 0.133 0244
Unemp.|GNP GNP{Unemp.
1 0.137 0.651 0.513 0519
2 0.429 0.437 0.365 0.349
3 0.5630 0.381 0.292 0.337
2-step
Unemployment GNP

0.349 0.353 0.356 0.504 0.594 0.899 0.808 0.777
0.099 0.173 0.601 0.423 0.986 0.499 0.857 0.839
0.267 0.896 0.553 0.327 0.834 0.632 0.735 0.397
0.137 0.258 0414 0.263 0.954 0.664 0941 0.976
0.285 0.928 0466 0.297 0.853 0.662 0.613 0.330
0.167 0.303 0.364 (.482 0.915 0.756 0.934 0.969

PSRRI VIV

The table records the p-values for x? LM tests of serial corelation up to fourth-order (I-step) and
second-order (2-step).

5.2 Assessing uniformity

We assess the uniformity aspect (conditional on the iid part) by plotting the actual cdfs of the
z's against the theoretical cdfs (the 45° line). The 95% confidence intervals drawn alongside
the 45° lines are based on the critical values tabulated by Miller (1956).6 Figure 1 plots the
cdfs for the univariate models. For 1-step forecasts the AR model empirical cdfs for both z
and v hit the 95% confidence intervals, while the SETAR cdfs are clearly interior. However the
2-step ahead SETAR cdf for z touches the boundary.

Figure 2 plots a selection of cdfs for the VAR. The marginals for z and u at l-step, and
for u at 2-step, are borderline, and the cdf for 2 | u clearly crosses the lower boundary. The
theoretical cdf and confidence intervals for the joint z are obtained by simulation assuming
the model in question is the data generating process.” While there is no evidence against the
distributional assumption, the confidence intervals are invalidated by the rejection of iid for the
empirical 2’s.

SMiiler (1956, Table 1) reports exact critical values of Kolmogorov Statistics for small sample sizes, 7 up to
100. The 95% confidence intervals are the 45° line 4 the relevant values.

71000 sets of 70 1-step joint z’s are simulated. Each set of 70 is sorted separately and cumulated. The
theoretical cdf is traced out by the median across the 1000 sefs for each of the 70 points, and the 95% interval
is the 25" and 975" largest of the 1000 sets at each of the 70 points.
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Figure 3 plots the same selection of cdfs for the NVAR. These suggest fewer violations of
the distributional assumptions. As for the VAR, the cdf for z | u crosses the lower boundary.
The cdf for the joint z signals problems not evident from the marginals and conditionals — there
are too few realized pairs of values with a low probability of occurring under the NVAR. Put
another way, the spread of the NVAR density is too wide.

In general the forecast density evaluation criteria appear to favour the non-linear models,
notwithstanding the poor performance of these models on MSFE comparisons. This finding is
consistent with the results of Pesaran and Potter (1997, p.685), who report that ‘The ‘worst’
model for mean prediction by the RMSFE criterion is the floor and ceiling model’, while ‘The
‘best model’ for predicting the conditional variance of the growth rates is clearly the floor and
ceiling model’.

6 Conclusions

This paper looks at the forecast performance of linear and non-linear, univariate and systems,
models of the change in the US unemployment rate, and the US GNP growth rate, using
quarterly data over the period 1948 —~ 94. On an MSFE evaluation of conditional mean predic-
tions, the non-linear models rarely yield much of an improvement over the linear models. Not
unsurprisingly, the multivariate models are better than the univariate.

However, using the results of Diebold et al. (1997) we found that the non-linear multivariate
model appears to provide a better characterisation of the density of future realizations of the
variables over this period than does the VAR. While there was little evidence against the iid
assumption for the probability integral transforms of the forecasts produced by any of the
models, there appeared to be less evidence against the assumption of uniformity for the NVAR
than for the VAR.

Finally, we extended the approach of Diebold et al. (1997) to the evaluation of conditional
and joint forecast densities, and considered the evaluation of sequences of multi-step forecasts
within this framework.

Our results suggest a narrow focus on MSFE criteria may be misleading, and evaluation
techniques which consider the entire forecast density may discriminate between models which
would otherwise appear very similar. Such an avenue of investigation may be particularly
fruitful when comparing forecasts from linear and non-linear models.

One aspect we have not explored in this paper is the evaluation of forecast densities condi-
tional upon a particular regime. As noted above, such a strategy favours non-linear models on
MSFE comparisons, and might do the same for forecast density comparisons. It would amount
to selecting the subset of 2’s (marginal or conditional) corresponding to, say, = being in a par-
ticular regime at the forecast origin. In the empirical examples considered in this paper we
have relatively few observations on the 2’s, particularly since the subsets of key interest would
probably correspond to regimes with a minority of the data points. Such a strategy may be
worthwhile when the focus is on the larger data sets typical of financial variables.

References

Beaudry, P., and Koop, G. (1993). Do recessions permanently affect output. Journal of Mon-
etary Economics, 31, 149-163.



CDF for Unemp:1 step

CDF for GNP:1 step

0.8 +

0.8 +

0 0.2 0.4 0.6 0.8 1

CDF for Unemp:2 step

CDF for GNP:2 step

CDF for Conditional Unemp

CDF for Conditional GNP

CDF for Joint Density:1-step

Figure 2 CDFs of VAR marginal, conditional and joint z-values.

14



CDF for Unemp:1 step

CDF for GNP:1 step

CDF for GNP:2 step

CDF for Conditional GNP

0.8

08 1

0.4 +

0.2 0.4 0.8 0.8 1

0.2 04 0.8 0.8 1

Figure 2 CDF's of VAR marginal, conditional and joint z-values.

14



CDF for Unemp:1 step

CDF for GNP:1 step

CDF for GNP:2 step

CDF for Conditional Unemp: 1-step

CDF for Conditional GNP: 1-step

CDF for Joint Denslty:1-step

Figure 3 CDF's of NVAR marginal, conditional and joint z-values.

15



16

Chatfield, C. (1993). Calculating interval forecasts. Journal of Business and FEconomic Statist-
tcs, 11, 121-135.

Christoffersen, P. F. (1997). Evaluating interval forecasts. International Economic Review.
Forthcoming.

Clements, M. P., and Smith, J. (1996). A Monte Carlo study of the forecasting performance of
empirical SETAR models. Warwick Economic Research Papers No. 464, Department of
Fconomics, University of Warwick.

Clements, M. P., and Smith, J. (1997). The performance of alternative forecasting methods for
SETAR models. International Journal of Forecasting, 18, 463-475.

Clements, M. P., and Smith, J. (1998). Testing between self-exciting threshold autorogressive
and structural change models. Mimeo, Department of Economics, University of Warwick.

De Gooijer, J. G., and Kumar, K. (1992). Some recent developments in non-linear time series
modelling, testing and forecasting. International Journal of Forecasting, 8, 135-156.

Diebold, I. X., Gunther, T. A., and Tay, A. S. (1997). Evaluating density forecasts. Manuscript,
Department of Economics, University of Pennsylvania.

Diebold, F. X., and Nason, J. A. (1990). Nonparametric exchange rate prediction. Journal of
International Fconomics, 28, 315-332.

Diebold, F. X., Tay, A. S., and Wallis, K. F. (1997). Evaluating density forecasts of inflation:
The survey of professional forecasters. Macromodelling Bureau Discussion Paper No. 38,
University of Warwick.

Foster, D., and Vohra, R. V. (1996). Asymptotic calibration. Manuscript, Department of
Statistics, the Wharton School, University of Pennsylvania.

Gallant, A. R., Rossi, P. E., and Tauchen, G. (1993). Nonlinear dynamic structures. Econo-
metrica, 61, 871-907.

Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series
and the business cycle. FEconometrica, 57, 357-384.

Hansen, B. E. (1996). Inference when a nuisance parameter is not identified under the null
hypothesis. Econometrica, 64, 413-430.

Henriksson, R. D., and Merton, R. C. (1981). On market timing and investment performance.
IT Statistical procedures for evaluating forecast skills. Journal of Business, 54, 513-533.

Kendall, M. G., Stuart, A., and Ord, J. K. (1987). Advanced Theory of Statistics, 5th edn.,
Vol. 1 and 2. London: Charles Grifiin and Co.

Koop, G., Pesaran, M. H., and Potter, S. M. (1996). Impulse response analysis in nonlinear
multivariate models. Journal of Econometrics, T4, 119-147.

Miller, L. H. (1956). Table of percentage points of Kolmogorov statistics. Journal of the
American Statistical Association, 51, 111-121.

Montgomery, A. L., Zarnowitz, V., Tsay, R. 8., and Tiao, G. C. (1996). Nonlinearity in modeling
and forecasting the U.S. unemployment rate. Mimeo, Wharton School, University of
Pennsylvania, Philadelphia.

Pesaran, M. H., and Potter, S. M. (1997). A floor and ceiling model of US Output. Journal of
Economic Dynamics and Control, 21, 661-695.

Pesaran, M., and Timmermann, A. (1992). A simple nonparametric test of predictive perform-
ance. Journal of Business and Econometic Statistics, 10, 461-465.



17

Potter, 5. (1995). A nonlinear approach to U.S. GNP. Journal of Applied Econometrics, 10,
109-125.

Schnader, M. H., and Stekler, H. O. (1990). Evaluating predictions of change. Journal of
Business, 63, 99-107.

Spanos, A. (1986). Statistical Foundations of Econometric Modelling. Cambridge: Cambridge
University Press.

Stekler, H. O. (1994). Are economic forecasts valuable?. Journal of Forecasting, 13, 495-505.

Tiao, G. C., and Tsay, R. S. (1994). Some advances in non-linear and adaptive modelling in
time-series. Journal of Forecasting, 13, 109-131.

Tong, H. (1978). On a threshold model. In Chen, C. H. (ed.), Pattern Recognition and Signal
Processing, pp. 101-141. Amsterdam: Sijhoff and Noordoff.

Tong, H. (1983). Threshold Models in Non-Linear Time Series Analysis: Springer-Verlag, New
York.

Tong, H. (1995). Non-linear Time Series. A Dynamical System Approach. Oxford: Clarendon
Press. First published 1990.

Tong, H., and Lim, K. S. (1980). Threshold autoregression, limit cycles and cyclical data.
Journal of The Royal Statistical Society, B 42, 245-292.

Wallis, K. F. (1995). Large-scale macroeconometric modelling. In Pesaran, M. H., and Wickens,
M. R. (eds.), Handbook of Applied Econometrics: Macroeconomics: Basil Blackwell.



18

7 Appendix A. Independent forecasts

Proof of equation (9)

Let Xy and X3 be the probability integral transforms for 2 and u based on the marginal
densities, obtained from the joint density. Assuming the model density is the actual forecast
density, and the joint is the product of the marginals, then X; ~ U (0,1), Xz ~ U (0,1), and
X7 and Xj are independent. Hence the joint distribution function F, x, is the product of the
marginals, Fx, x, (21,22) = £122.

Using a change of variables (e.g., Spanos, 1986, pp.105-7):

Y1 = XiXo
Yo = Xy

for which the determinant of the Jacobian for the inverse transformation is:

T 11
J = det 9(X1, Xs) — | 2 Y
0 (¥1,Y2) 0 1
then the joint density function of (Y7, Y3) is:
1
fvve = Y (10)

where 0 <Y1 <Yoand 0 < Y7 < 1.
Since Y7 is the random variable of interest, integrating Y5 out of fy,y; over the permissible
range gives:

1
fro= [Ylave = vall, = -y,
Yi

The distribution function is:
Fylzyl—yllnyl, 0<Yi<1

SO:
Fyl = Pr(X1 <zy, Xo < 582).

8 Appendix B. Sequences of multi-step forecasts

Consider an AR(1) with gaussian errors:

Ye = QY1 + & (11)

and g, ~ IN(0,0?).
Consider the 2-step forecast of ¢ given ¢ — 2:

Yelg—2 = Oégyt~2

has forecast error ; + a1 and error variance (1+ a?) o2
For a 2-step forecast of ¢+ 1, the error is e411 -+ e with variance (1 -+ a?) 02, The forecast
errors are correlated as:

E (et +agi—1) (ee1 + agy)] = ao?.
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The forecast density of the 2-step forecast of ¢ is:

Yie—2 ~ N (&®yia, (1 + o?) o?)
and:
Yertj-1 ~ N (@ gy, (1+ a?) o?)
but yg¢—o and Y151 are not independent:
C [yt}t—Za yt+1!t—-1] = ao?,

so that although the corresponding probability integral transforms (pit’s), z and 2.1, are

UJ0, 1], they will not be independent.
Yejg—2 ~ N Yo (1 + 042) o? ao? =N o o019
Yer1jt—1 oY1 | ao? (1+a?)o? 012 0%

So consider the 2-step ahead density of Y, 1,y given that Yy, o = ;.
This can be simulated from:

2
Ye+1 = O Y1 + Vg1

by drawing:

o 1+a?+at
Vep1 ~ N (P(&f -+ a&—l);i‘,ffiq (1 102>) =N (P(Et - Oéé‘t—-l)ao'g'(“‘*l‘:&”z‘—’z> (12)

where p = 012/0101 = a/ (1 + a?).
So:

1+a?+at
Py (Y | Yo =13) ~ N (Otzyt~1 + plet + agi-1), Uzg&&ﬁ-&?—l> : (13)
So the z for the 2-step ahead forecast of y:+1 conditional on the 2-step ahead forecast of y;
being correct, is given by calculating the pit for y¢y1 against (13). This is U[0, 1] under correct
specification.

Note the g; are not observed, but &; + ae—1 is the 2-step ahead error in forecasting period



