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Abstract

While there has been a great deal of interest in the modelling of non-linearities in economic time
series, there is no clear consensus regarding the forecasting abilities of non-linear time series models.
We evaluate the performance of two leading non-linear models in forecasting post-war US GNP, the
self-exciting threshold autoregressive model and the Markov-switching autoregressive model. Two
methods of analysis are employed: an empirical forecast accuracy comparison of the two models,
and a Monte Carlo study. The latter allows us to control for factors that may otherwise undermine
the performance of the non-linear models.

1 Introduction

In recent years there has been a great deal of interest in the modelling of non-linearities in economic
time series. While the usefulness of linear time-series models in the tradition of Box and Jenkins (1970)
is usually gauged by their predictive ability, there does not appear to be a clear consensus as to whether
allowing for non-linearities has led to an improved forecast performance!. Much of this activity has fo-
cused on modelling either financial time series or output series such as GNP and industrial production.

In this paper we evaluate the forecast performance of two leading non-linear models that have
been proposed for US GNP, the self-exciting threshold autoregressive (SETAR) model and the Markov-
switching autoregressive model (MS-AR). These two models have been used in contemporary empirical
macroeconomics to characterize certain features of the business cycle, such as asymmetries between the
expansionary and contractionary phases. The question we address is whether in addition these models
offer a much improved forecast performance.

Two methods of analysis are presented: an empirical forecast accuracy comparison of the two mod-
els, and a Monte Carlo study. For the empirical study, each model is formulated and estimated on a sub-
sample of the historical data, and its forecasts of the observations held back at the model specification

*Financial support from the UK Economic and Social Research Council under grant 1116251015 is gratefully acknow-
ledged by both authors. Helpful comments were received from conference participants at EC?, Florence, the Royal Economic
Society Annual Meeting, University of Staffordshire, Stoke-on-Trent, the 5" Conference CEMAPRE, Lisbon, the 1997 Meet-
ing of the Society of Economic Control, Oxford, the Econometric Society European Meeting, Toulouse, and seminar audiences
at Nuffield College and Warwick. All the computations reported in this paper were carried out in Ox: see Doornik (1996).

! See, for example, the review of non-linear time series models by De Gooijer and Kumar (1992), especially p.151-152, and
Diebold and Nason (1990) who in the context of exchange rate prediction proffer four reasons why non-linear models may fail
to forecast better than simple linear models, even when linearity is rejected statistically. Clements and Hendry (1996, 1997)
argue that a satisfactory in-sample fit is no guarantee of out-of-sample forecast performance even for linear models, a view
echoed in a different context by Fildes and Makridakis (1995).



stage are then evaluated. The MS-AR model that we consider is based on the model of Hamilton (1989),
which has been extensively discussed in the literature, and has been tested against a linear autoregressive
model (AR model) by e.g., Hansen (1992, 1996a). The SETAR model of US GNP is similar to the mod-
els of Tiao and Tsay (1994) and Potter (1995) which have been formally tested by Hansen (1996b). The
methods of model specification, estimation and forecasting for SETAR and MS-AR models are briefly
described in sections 3 and 4. For completeness, we begin in section 2 by briefly reviewing model selec-
tion, estimation and forecasting for AR models.

To assess whether the results are unduly sensitive to a particular sample period and data vintage, we
carry out the empirical forecast comparison on two data sets: the original Potter (1995) data set, which
contains real seasonally-adjusted quarterly GNP measured at 1982 prices for the period 1948:1 to 1990:4,
and on a recent vintage of data from 1959:1 to 1996:2 at 1992 prices. A longer series could be obtained
by splicing the two series together, but we prefer to have the two separate sample realizations to provide
an indication of the robustness of our findings.

It has often been argued (e.g., Granger and Terdsvirta, 1993, ch. 9 and Ter#isvirta and Anderson,
1992) that the superior in-sample performance of non-linear models will only be matched out-of-sample
if the ‘non-linear features’ also characterize the later period. Thus, we relate the discussion of the empir-
ical forecast accuracy results to the Business Cycle characteristics realized over the forecast period (sec-
tion 5). For example, as we discuss in section 3, a prominent non-linear feature of US GNP highlighted
by the SETAR model is the robustness of the economy to negative shocks, so that once in recession the
economy tends to return quickly to trend. Hence the SETAR model might be expected to perform well re-
lative to linear models if the forecast period is characterized by a number of recessionary regimes. Some
authors such as Tiao and Tsay (1994) then go on to evaluate forecast performance conditional on the state
at the time the forecasts were made: for US GNP this entails evaluating forecasts made in the contrac-
tionary phase of the business cycle separately from those made during an expansion. Alternatively, since
non-linear models typically contain many more parameters than linear models, a case can be made for
requiring that the greater model complexity yields improved forecast performance ‘on average’ across
states of nature, and this is the view we take in this paper.

The Monte Cario study takes each of the estimated non-linear models in turn as the data generating
process (DGP), to ensure that the non-linearities captured in the model on the past data do indeed persist
in to the future, and we assess the gains relative to a linear model, as well as the costs to using the ‘wrong’
non-linear model: that is, how much less accurate our forecasts would be if we used a SETAR model
when the process generating the data is an MS-AR, and vice versa. Put bluntly, does the choice of non-
linearity matter in this instance? In the Monte Carlo we also consider a small number of variants on
the estimated models as the DGP, to assess the sensitivity of the costs/benefits to certain features of the
design. Section 6 reports the Monte Carlo study, and section 7 offers explanations of some of the key
findings of the simulation study. Finally, section 8 summarizes and concludes.

2 Linear autoregressive models

The linear model class we consider are in the Box and Jenkins (1970) time-series modelling tradition.
Since the US GNP series appears to be integrated of order 1, we consider autoregressive-moving average
(ARMA) models for Ay;. Following other researchers, we further restrict the model class to AR models.
Without loss of generality, we report results for models in the mean-adjusted form:

D
Ay —p= Z o (Ays—; — 1) + € 1)
i=1



The AR lag order, p, is selected to minimize the AIC (see, Akaike, 1973):

AIC(p) =1n (6%(p)) +2(p +2)/T

where &2

= @'0/T, and # denotes the vector of estimated error terms.
Estimation and forecasting are straightforward. Once the parameters of the model have been estim-

ated by OLS, the forecasts can be calculated recursively from:

Ayriyr — b= &1 (AyT+h~1|T - ﬂ) +.o.+ & (AyT—}-h—p[T - ﬂ) 2)

where a * * denotes both a parameter estimate and a forecast value. T is the origin and h the forecast
lead. The Ay _ji7, 0 < j < p, are forecasts for j < h, and otherwise are known values. The forecast
function (2) is the conditional expectation of Ayr.} given information at period 7" and the form of the
model (1).
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Figure 1 Full-sample AR model fitted values.

Table 1 reports the results of estimating models of this form on the two vintages of US GNP data.
Notice that the AIC selects a different lag order for each of the 4 estimation periods. Figure 1 provides
a graphical illustration of how well the selected linear models fit the data within sample.

3 Self-exciting threshold autoregressive models

Threshold autoregressive (TAR) models were first proposed by Tong (1978), Tong and Lim (1980) and
Tong (1983) (and see also Tong, 1995a for a detailed account). The idea is that the evolution of a process
is govermed by a series of distinct linear autoregressions, where the linear autoregression that generates
the values of the time series at any instant depends upon the value taken by a ‘threshold variable’. When
the threshold variable is the value of the process in a previous period the process is described as being



Table 1 AR(p)-Models.

Sample 47:2-84:4 | 47:2-90:4 | 59:2-90:4 | 59:2-96:2
1 0.7958 0.7775 0.7350 0.7106
a1 0.3331 0.3472 0.3343 0.3039
Qg 0.1947 0.1780 0.1241
a3 -0.1052 -0.1439

o4 -0.1198

o? 1.0631 0.9635 |  0.6651 0.5767
AlIC 0.1434 0.0217 -0.3586 -0.4950
Observations 146 170 122 144

‘self-exciting’, hence the acronym SETAR. Thus for a SETAR model of z; the threshold variable would
be a lag of z;, say, z;—q, where d is known as the length of the delay.

Formally, ;4 is continuous on ¥, so that partitioning the real line defines the number of distinct
regimes, say N, where the process is in the ith regime when r;_1 < z;_g4 < 73, and in that case the pth
order linear AR is defined by:

Ty = Qg; + X1i%T¢e—1 + - .- + QpiTr—p + €15, € ™~ 1D (0, 0’3) , 1=12,...,N, 3

where the parameters sub-scripted by ¢ may vary across regimes. This model is sometimes written as a
by defining p as the maximum lag order across the regimes, and noting that some of the o;; may be zero.
The model may be non-stationary within a regime, in the sense that some of the roots of:

a;(L)y=1—-ai—...—ap

may lie on the unit circle, but nevertheless stationary overall due to the alternation of ‘explosive’ and
‘contractionary’ regimes, generating limit cycle behaviour.

For modelling US GNP, z; above is usually taken to be Ay;, where Ay, is 100 times the first differ-
ence of the log of real GNP.

3.1 Estimation

Conditional on the number of regimes, the regime r (assuming N, = 2), and the delay, d, the sample
can simply be split into 2 and an OLS regression can be run on the observations belonging to each re-
gime separately, or indicator functions can be used in a single regression, constraining the residual error
variance to be constant across regimes (see, for example, Potter, 1995, p.113.)

In practice r is unknown, and the model is estimated by searching over r and d: r is allowed to take
on each of the sample period values of z;_g in turn?, and d typically takes on the values 0,1, 2, ... up to
the maximum lag length allowed. For a known lag order, the selected model is that for which the pair (r,
d) minimize the overall residual sum of squares (RSS, equal to the sum of the RSS in each regime).

When p is unknown, fit is usually traded against parsimony. A search is made over all values of p
less than some maximum, and the preferred order is often taken to be that which minimizes AIC.

2The range of values of z:_g4 is restricted to those between the 15" and 85%%

lowing Andrews (1993) and Hansen (1996b).

percentile of the empirical distribution, fol-



In sections 5 and 6 we set the maximum lag length at 5, require the lag orders to be the same across
regimes, and do not allow ‘holes’ in the lag distributions. The selected model is the combination of p, d
and r which minimizes :

Npxlné2 + Ny xhnot+2x(p+1)+2x(p+1)

where &1, and g7 are the standard errors of the ‘lower’ (z) and ‘upper’ (i) regimes, and Ny, and Ny are
the number of observations in each.

3.2 Forecasting

Constructing multi-period forecasts is considerably more difficult than for linear models, and exact ana-
lytical solutions are not available.?> Exact numerical solutions require sequences of numerical integ-
rations (see, e.g., Tong, 1995a sections 4.2.4 and 6.2) based on the Chapman-Kolmogorov relation.
Clements and Smith (1997) compare a number of alternative methods of obtaining multi-period fore-
casts, including the Normal Forecast Error method (NFE) suggested by Al-Qassam and Lane (1989) for
the exponential-autoregressive model, and adapted by De Gooijer and De Bruin (1997) to forecasting
SETAR models. They conclude that the Monte Carlo method performs reasonably well. In this paper
SETAR forecasts are generated by Monte Carlo.*

3.3 SETAR models of US GNP

A number of authors have estimated SETAR models of US GNP. Tiao and Tsay (1994) consider a
two-regime SETAR model and a four-regime refinement, where p = 2. Potter (1995) estimates a
SETAR(2; 5, 5) but with the third and fourth lags restricted to zero under both regimes, and d = 2 and
r = (. The model selection procedure in Potter (1995) is fairly ad hoc, but the selected model is similar
to that of Tiao and Tsay (1994) except for the lag 5 terms. The estimation period in both instances is
1947 — 1990. A noteworthy feature of SETAR models of US GNP over this period is a large negative
coefficient on the second lag in the lower regime, indicating that the US economy moves swiftly out of
recession.

Tiao and Tsay (1994) find that the empirical performance of the SETAR model relative to a linear
AR model is markedly improved when the comparison is made in terms of how well they forecast when
the economy is in recession. The reason is easily understood. Since a clear majority of the sample data
points (approximately 78%) fall in the upper regime, the linear AR(2) model will be largely determined
by these points and will closely match the upper-regime SETAR model. Thus the forecast performance of
the two models will be broadly similar when the economy is in the expansionary phase of the business
cycle. To the extent that the data points in the lower regime are characterized by a different process,
there should be gains to the SETAR model during the contractionary phase. Clements and Smith (1996,
1997) find evidence for this effect in empirical and Monte Carlo analyses of the forecast performance of
SETAR and linear models. If we do not evaluate forecasts conditional upon regimes, then the gains in
the minority regime need to be sufficiently large for the SETAR to perform well on average.

Clements and Smith (1997) argue that the empirical forecasting exercise results of Tiao and Tsay
(1994) may be misleading as an indication of the out-of-sample forecast performance of the SETAR
model, since their specification utilizes information that would not have been known when the forecasts

3See Granger and Terdsvirta (1993) for an introductory account and a discussion of a number of methods of obtaining fore-
casts for a general non-linear model.
“Tiao and Tsay (1994) use this method for their SETAR model of US GNP.



Table 2 SETAR-Models.

Sample 47:2-84:4 | 47:2-90:4 | 59:2-90:4 | 59:2-96:2
Lower regime

o -0.4996 -0.4693 0.2099 0.2528
air 0.3976 0.3936 0.1374 0.1687
Qar, -0.8676 -0.8520 -0.2345 -0.1482
or, 1.2844 1.2684 1.2393 1.1027
Upper regime

ooy 0.4573 0.4016 0.5530 0.5405
o1y 0.3223 0.3160 0.3337 0.3338
1%} 0.1541 0.1863 0.0225 0.0234
ou 0.9333 0.8775 0.6408 0.6126
Threshold -0.0580 -0.0580 0.3189 0.3189
Delay 2 2 2 2
Ny, 34 35 30 39
Ny 115 138 95 108
AIC 0.0882 -0.0429 -0.4773 -0.5867

were made. However, rectifying this shortcoming still yields gains conditional on being in the lower
regime.

To summarize: areading of the literature suggests SETAR model forecasts of US GNP are superior to
forecasts from linear models, particularly when the forecasts are made during a recession (more precisely,
when growth is negative). In section 3.4 we review the evidence for the statistical significance of more
than 1 regime in threshold-autoregressive models of US GNP.

As shown in Table 2 a SETAR(2; 2, 2) minimizes AIC for each of the four model estimation periods.
The estimates for the sub- and full-sample periods are similar for a given data vintage, indicating para-
meter constancy, but differ markedly between vintages. The models for the more recent vintage indicate
a threshold at a quarterly growth rate of 0.32%, so that there is a distinction between low growth and high
growth rather than between absolute declines and increases in the level of GNP, as for the earlier vintage
analysed by Tiao and Tsay (1994), Potter (1995) and Hansen (1996b). Figure 2 depicts the in-sample fit
of the SETAR models for the two full-sample periods, and in conjunction with figure 1 for the preferred
linear model, illustrates the improvement in fit from allowing for threshold-autoregressive non-linearity.

3.4 Testing for more than 1 regime: the SETAR model

Hansen (1996b) presents a general framework for testing the null of linearity against the alternative of
threshold autoregression, that delivers valid inference when the threshold value r and delay d are un-
known a priori, in the sense that they have to be learnt from the data (either by a formal estimation pro-
cedure or by casual inspection, as in Potter, 1995). r and d are nuisance parameters that are unidentified
under the null hypothesis so that the testing procedure is non-standard. Hansen (1996b) finds only weak
evidence for rejecting the linear model in favour of the Potter (1995) SETAR model of US GNP.

The testing approach and an explanation of the test statistics is outlined in Appendix 1. Here we
record the results of calculating those statistics for our two data samples (1947 — 90 and 1959 — 96) for
two SETAR model specifications. The SETAR(2;5,5) is the fifth-order model of Potter (1995) with the



Table 3 Asymptotic p-values of linear null versus SETAR model.

SETAR model (2;2,2) (2;5,5) (2;2,2) (2;5,5)
1947-90 1959-96
Robust LM Statistics
SupTr 0.653 0.191 0.263 0.473
ExpTr 0.529 0.182 0.556 0.305
Avelr 0.477 0.265 0.698 0.208
Standard LM Statistics
SupTr 0.094 0.054 0.860 0.125
ExpTr 0.183 0.100 0.860 0.113
AveTr 0.322 0.278 0.855 0.176

The results were obtained using Bruce Hansen’s Gauss code tar.prg.

third and fourth lags excluded. From table 3, which records the p-values for the supT’r, aveTr and expTT
statistics of the null of linearity, it is apparent that the fifth-order model appears to obtain more support
from the data than the second-order model.

Nonetheless, the evidence for the SETAR model is weak — on any test and for either sample period
the null of linearity is not rejected at the 5% level. The results for the fifth-order model and the earlier
sample period are similar to those reported by Potter (1995), Table IV, p.115. However, Potter (1995)
(same table) also records Monte Carlo evidence indicating that the tests are too conservative, particularly
the heteroscedasticity-robust versions, and that the power at the nominal 5% level is low. Correcting for
size, he finds evidence in favour of non-linearity at the 10% level. The supT’r and expT’r tests of the
fifth-order model on the later sample have p-values only just over 10%, so a size correction here might
suggest a similar outcome.

Recent research by Diebold and Chen (1996) on the tests of structural change of Andrews (1993) and
Andrews and Ploberger (1994) suggests that bootstrapping the distributions of the test statistics results in
much smaller size distortions in some cases than using the asymptotic distributions. Given the similarities
between the testing procedures for structural change and SETAR non-linearities, estimating the finite
sample distribution via the bootstrap may also improve the size of tests in the current context, but that is
beyond the scope of this paper.

4 Markov-switching autoregressive models

The Hamilton (1989) model of the US business cycle fostered a great deal of interest in the MS-AR model
as an empirical vehicle for characterizing macroeconomic fluctuations, and there have been a number of
subsequent extensions and refinements.> Contractions and expansions are modeled as switching regimes
of the stochastic process generating the growth rate of real GNP. The regimes are associated with different
conditional distributions of the growth rate of real GNP, where, for example, the mean is positive in the
first regime (‘expansion’) and negative in the second regime (‘contraction’).

The Hamilton (1989) model of the US business cycle fits a fourth-order autoregression (p = 4) to

5See inter alia Albert and Chib (1993), Diebold, Lee and Weinbach (1994), Ghysels (1994), Goodwin (1993), Hamilton
(1994), Kahler and Marnet (1994), Kim (1994), Krolzig and Liitkepohl (1995), Krolzig (1997b), Lam (1990), McCulloch and
Tsay (1994), Phillips (1991) and Sensier (1996).



~ Actual and fitted values from a SETAR(2;2,2), 1947:4 - 1990:4
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Figure 2 Full-sample SETAR model fitted values.
the quarterly percentage change in US real GNP from 1953 to 1984:
Ayy — p(se) = a1 (Aye—1 — p(se—1)) + ... + aa (AYs—p — pu(st-4)) + €1, C)]

where €; ~ NID(0, 0?) and the conditional mean y(s;) switches between two states (M = 2):

(s¢) = p1 >0 if s = 1 (‘expansion’ or ‘boom’),
N o < 0 if sy = 2 (‘contraction’ or ‘recession’).

The variance of the disturbance term, o2, is assumed to be the same in both regimes.

The general idea behind the class of regime-switching models is that the parameters of an autore-
gressive process depend upon an unobservable regime variable s; € {1,..., M}, which represents the
probability of being in a particular state of the world. In this case, only the mean switches, and hence the
model is referred to as a MSMean(2)-AR(4), to denote 2 regimes (M = 2) and four lags (p = 4). In more
general specifications the autoregressive parameters and the variance could depend on the state s; of the
Markov chain. A major advantage of the MS-AR model is its flexibility in modelling time series subject
to regime shifts. It can also be readily extended to multivariate settings, and to integrated-cointegrated
processes (see Krolzig, 1997b for an overview).

A complete description of the MS-AR model requires the formulation of a mechanism that governs
the evolution of the stochastic and unobservable regimes on which the parameters of the antoregression
depend. Once a law has been specified for the states s, the evolution of regimes can be inferred from the
data. In MS-AR models the regime-generating process is an ergodic Markov chain with a finite number
of states s; = 1,..., M (in (4), M = 2) defined by the transition probabilities:

M
pij =Pr(serr =jlse =1), » py=1 ¥i,je{l,...,M}. (5)
j=1



There is evidence that in some instances the assumption of fixed transition probabilities p;; should
be relaxed, and models with time-varying and duration-dependent transition probabilities have been con-
sidered (see, for example, Diebold, Rudebusch and Sichel, 1993, Diebold et al., 1994, Filardo, 1994,
Lahiri and Wang, 1994, and Durland and McCurdy, 1994). The former are modelled as logistic func-
tions (to bound the probabilities between 0 and 1) of economic variables. When applied to modelling
US GNP, the latter indicate that the probability of transition out of recession is increasing in the duration
of the recession (see Filardo, 1994). We do not consider these extensions here.

4.1 Estimation

The maximization of the likelihood function of an MS-AR model entails an iterative estimation technique
to obtain estimates of the parameters of the autoregression and the transition probabilities governing the
Markov chain of the unobserved states. Denote this parameter vector by A, so that for the MSM(2)-AR(4)

model A = (,u 5, Oty nn -y 04, 02, p11,p22) . Ais chosen to maximize the likelihood for given observations
!

Yr=(yr,---»¥1-p)"

Maximum likelihood (ML) estimation of the model is based on a version of the Expectation-
Maximization (EM) algorithm proposed by Hamilton (1990) (an overview on alternative numerical
techniques for the maximum likelihood estimation of AR(M)-MS(p) models is given in Krolzig,
1997b). The EM algorithm introduced by Dempster, Laird and Rubin (1977) is designed for a general
class of models where the observed time series depends on some unobservable stochastic variables - for
MS-AR models these are the regime variable s;. Each iteration of the EM algorithm consists of two
steps. The expectation step involves a pass through the filtering and smoothing algorithms, using the
estimated parameter vector AU—1) of the last maximization step in place of the unknown true parameter
vector. This delivers an estimate of the smoothed probabilities Pr(S|Y, Y —1)) of the unobserved states
st (where S records the history of the Markov chain). In the maximization step, an estimate of the
parameter vector ) is derived as a solution X of the first-order conditions associated with the likelihood
function, where the conditional regime probabilities Pr(S|Y, A) are replaced with the smoothed prob-
abilities Pr(S|Y, AU—1)) derived in the last expectation step. Equipped with the new parameter vector A
the filtered and smoothed probabilities are updated in the next expectation step, and so on, guaranteeing
an increase in the value of the likelihood function.

Regimes constructed in this way are an important instrument for interpreting business cycles using
MS-AR models. The constitute an optimal inference on the latent state of the economy, whereby probab-
ilities are assigned to the unobserved regimes ‘expansion’ and ‘contraction’ conditional on the available
information set.

4.2 Forecasting

The derivation of an optimal predictor can often be quite complicated in empirical work for non-linear
time series models. As highlighted in Krolzig (1996), an attractive feature of MS-AR models is the ease
with which forecasts can be obtained.

For the mean squared prediction error criterion, the optimal predictor &;t +h|t 18 given by the condi-
tional mean:

Ayinp = E[Ayesn|Vi] (6)

for a given information set Y;. In contrast to linear models, the MSE optimal predictor //A\yt +n|t does not
usually have the property of being a linear predictor. For MS-AR models with regime-invariant autore-
gressive parameters, however, the conditional mean can easily be derived analytically, unlike for many
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non-linear models (see the discussion of forecasting the SETAR model, section 3).
In MSM(M)-AR(p) models with a regime-dependent mean 1 (s:), the conditional expectation
Ayp w7 is given by

M M
ElAyr4alYrl = D -+ Y ElAyralYr, s74hs -5 ST4h—p] PX(ST4hs -, 5Thp|¥T),
sT+p=1  Spyp—p=1
)]

where Y7 is the full-sample information.
For the Hamilton model this amounts to:

E[Ayrin|YT] =
2

2 4
oo Y. {M (s71h) + D o (Ayrpn—i — M(ST+h—k))} Pr(s74h, - -, s7+h-4|YT)

sp+p=1 Sr4p—a=1 k=1
(®
which leads to the recursion:
4
Aypynr = branr + > ox (AyT+h—le - ﬂT+h—k|T) )

k=1

with initial values A\yT +h|T = Ay, for b < 0 and where the predicted mean is given by:

2
frinr = ) #iPr(srin = §|¥7).
=1

The predicted regime probabilities:

2
Pr(spin = j|Yr) = _ Pr(spqn = jlsr = i)Pr(sy = i|Yr)
i1

only depend on the transition probabilities Pr(s; = j|s;—1 = 1) = psj, ¢, j = 1,2 and the filtered regime
probability Pr(sr = i|YT).

The optimal predictor of the MS-AR model is linear in the last p observations and the last regime
inference, but there exists no purely linear representation of the optimal predictor in the information set.
This is discussed in more detail in Krolzig, 1997b, ch.4. Note, however, that the optimal forecasting rule
becomes linear in the limit as the regimes become completely unpredictable, defined by, Pr(s:|s;—1) =
Pr(s¢) for s¢, 8;—1 = 1,2, since then fip1p = [i, the unconditional mean of y;.

4.3 MS-AR models of US GNP

4.3.1 Hamilton’s MSM(2)-AR(4) Model

Figure 3 presents the time paths of smoothed full-sample probabilities (line) and filtered probabilities
(bars) for the contractionary regime (L) for the MSM(2)-AR(4) model, for the two data vintages we con-
sider. These are the probabilities of being in a recession at time .5 Figure 3 along with table 4 suggests

5The filtered regime probabilities Pr(s; = m|Y:) = Pr(s: = m|ys, Ys—1,- - ., yo) are based on information up to time
t, while the smoothed probabilities Pr(s; = m|Yr) = Pr(sc = ml|yr, ..., Yt+1, ¥, Yt—1, . - . , Yo are calculated from full-
sample information, employing observations known only after period ¢. Each constitutes optimal inference on the state of nature
given the information set.
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Figure 3 MSM(2)-AR models’ smoothed and filtered probabilities of the lower regime, L.

that the statistical characterization of the US business cycle afforded by the MSM(2)-AR(4) model is
inadequate. The MSM(2)-AR(4) model estimated over both our sample periods (1947-90 and 1959-96,
and sub-samples thereof) does not exhibit business cycle features. Our findings are in line with Hess and
Iwata (1995), but in contrast to those of Hamilton (1989) (sample period: 1953-84) and Krolzig (1997a)
(sample period: 1960-91), suggesting that the business-cycle interpretation of the model becomes rather
laboured when the estimation period includes the end of World War II, the Korean War, and the most
recent (nineties) data. The average duration of regime L is only a little over 1 for the sub-sample of the
earlier data vintage, with a probability of staying in regime L (pr 1) of only 15%. Thus for this period, at
least, the MSM(2)-AR(4) model often attributes single, isolated observations to regime L, and is more a
‘model of outliers’ than a business cycle model. For the other three periods the duration of regime L is
never much over 2 periods.

In line with our results with the SETAR model, we find that the contractionary regime L picks up the
negative shocks in 1970, 1974/75, 1980-82. Nevertheless, the parameter estimates in table 4 are reas-
onably constant between the sub-sample and full-sample periods for both data vintages. The structural
stability of the MSM(2)-AR(4) model suggests its potential relevance for forecasting US GNP growth.

Table 6 reports the results of estimating the MSM(2)-AR(p) for p = 1,...,7, for the 1947 — 90
sample period. On the basis of minimizing AIC, the model with four lags appears over-parameterized,
since p = 2 is optimal. Nevertheless, the two models offer a similar characterization of the business
cycle, and little turns on whether the third and fourth lag terms are included: see figure 3. An informal
check on the stability of the MSM(2)-AR(2) model is provided by the ‘closeness’ of the estimates for the
full and sub-sample periods recorded in table 5.



Table 4 MSM(2)-AR(4) Models.

. Sample 47:2-84:4 | 47:2-90:4 | 59:2-90:4 | 59:2-96:2
Mean iy, -1.2297 -0.9919 -1.0268 -1.1467
Mean pgr 0.9014 0.9607 0.8924 0.8369
o 0.3712 0.3210 0.3109 0.3541
o) 0.2355 0.2629 0.1087 0.1372
a3 -0.0958 -0.0458 -0.1063 -0.0846
oy -0.1930 -0.0975 0.0415 0.0176
o? 0.8198 0.7307 0.4143 0.3728
Trans.prob prr, 0.1543 0.6163 0.4905 0.4359
Trans.prob pg g 0.9569 0.9616 0.9537 0.9626
Uncond.prob.L 0.0485 0.0909 0.0832 0.0622
Uncond.prob. H 0.9515 0.9091 0.9168 0.9378
Duration L 1.18 2.61 1.96 1.77
Duration H 23.21 26.07 21.62 26.74
Observations 147 168 123 145
LogLikelihood -210.31 -232.52 -142.76 -158.48

Table 5 MSM(2)-AR(2) Models.
Sample 47:2-84:4 | 47:2-90:4 | 59:2-90:4 | 59:2-96:2
Mean 7, -0.5923 -0.9159 -1.1557 -1.2562
Mean p g 1.1310 1.002 0.8529 0.8100
o 0.2717 0.2943 0.2921 0.3302
o) 0.2017 0.2228 0.0362 0.0519
o? 0.7402 | 0.72173 0.4704 0.4213
Trans.prob pr, 0.6287 | 0.69325 0.3826 0.3302
Trans.prob pg g 0.9117 0.9568 0.9603 0.9681
Uncond.prob.L 0.1921 0.1233 0.0604 0.0455
Uncond.prob. H 0.8079 0.8767 0.9396 0.9545
Duration L 2.69 3.26 1.62 1.49
Duration H 11.33 23.17 25.18 31.30
Observations 147 170 125 147
LogLikelihood -215.55 -236.75 -147.94 -164.00

12



Table 6 MSM(2)-AR(p)-Models for 47:2-90:4.

13

AR order p 0 1 2 3 4 5 6 7
Mean pur, -0.2011 | -1.0804 | -1.1246 | -1.0657 | -0.9919 | -1.0209 | -1.1154 | -1.3190
Mean pg 1.1961 | 0.9660 | 0.9634 | 0.9573 | 0.9607 | 0.9635 | 0.9432 | 0.9432
o 0.3938 | 0.2893 | 0.3117 | 0.3210 | 0.3377 | 0.3364 | 0.3217
oy 0.2271 | 0.2338 | 0.2629 | 0.2584 | 0.2623 | 0.3253
o3 -0.0538 | -0.0458 | -0.0654 | -0.0534 | -0.0229
oy -0.0975 | -0.1133 | -0.1235 | -0.0955
Qs 0.0583 | 0.0385 | -0.1045
ag | 0.0496 | -0.0378
ay 0.2011
o? 0.7702 | 0.7352 | 0.7327 | 0.7404 | 0.7307 | 0.7248 | 0.7366 | 0.6792
Trans.prob pr.r, 0.7747 | 0.5514 | 0.6493 | 0.6403 | 0.6163 | 0.6229 | 0.6291 | 0.5977
Trans.prob prp | 0.9039 | 0.9539 | 0.9647 | 0.9646 | 0.9616 | 0.9614 | 0.9671 | 0.9636
Uncond.prob.L 0.2992 | 0.0933 | 0.0915 | 0.0896 | 0.0909 | 0.0929 | 0.0815 | 0.0829
Uncond.prob.H | 0.7008 | 0.9067 | 0.9085 | 0.9105 | 0.9091 | 0.9071 | 0.9185 | 0.9171
Duration L 4.44 2.23 2.85 2.78 2.61 2.65 2.70 2.49
Duration H 10.39 21.67 28.33 28.26 26.07 25.90 30.40 27.51
Obs. in L 50.41 16.54 16.81 16.42 16.47 16.84 15.02 15.14
Obs. in H 117.59 | 15146 | 151.19 | 151.58 | 151.53 | 151.16 | 152.99 | 152.86
AIC criterion 49521 | 484.22 | 480.53 | 482.28 | 483.04 | 484.70 | 486.33 | 485.26
LogLikelihood | -242.61 | -236.11 | -233.27 | -233.14 | -232.52 | -232.35 | -232.17 | -230.63
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Figure 4 MSIH(3)-AR(4) model smoothed and filtered probabilities of the ‘extreme’ regimes, H, L.

4.3.2 MSTH(3)-AR(4) Model

We found that an adequate ‘business-cycle’ model of US GNP required the introduction of a third regime
and a regime-dependent error variance:

4

Yo = ulse) + D yek + €, (10)
k=1

where ¢; ~ NID(02(s;)) and s; € {1,2,3} is generated by a Markov chain. The specification has a
shifting intercept term (MSIntercept, rather than MSMean-adjusted) and in the following will be denoted
as an MSIH(3)-AR(4) model (where the H flags the heteroskedastic error term). The lag order is 4.

Figure 4 and table 7 summarize the business-cycle characteristics of this model. The figure depicts
the filtered and smoothed probabilities of the ‘high growth’ regime H and the contractionary regime L
(the middle regime M probabilities are not shown). The expansion and contraction episodes produced by
the three-regime model correspond fairly closely to the NBER classifications of business-cycle turning
points. In contrast to the two-regime model, all three regimes are reasonably persistent. We include this
model in the empirical forecast comparison.

4.4 Testing for more than 1 regime: the MS-AR model

Results of formal tests of the MS-AR model against AR models have been at best mixed. Hansen (1992,
1996a) is unable to reject an AR(4) in favour of Hamilton’s model (on the Hamilton data) using a stand-
ardized LR test designed to deliver (asymptotically) valid inference. Conventional testing approaches are
not applicable due to the presence of unidentified nuisance parameters under the null of linearity (that
is, the transition probabilities) and because the scores associated with parameters of interest under the



Table 7 MSIH(3)-AR(4) Models.

Sample 47:2-84:4 | 47:2-90:4 | 59:2-90:4 | 59:2-96:2
Mean pg 3.0677 2.9844 1.6230 1.4435
Mean par 1.2833 1.1911 0.8171 0.8659
Mean pur, -0.0894 -0.0251 -0.0953 -0.0625
o 0.0455 0.0680 -0.0467 0.0130
oy 0.0762 0.0877 -0.0198 -0.0228
o3 -0.1463 -0.1522 -0.0955 -0.1283
ol -0.1627 -0.1456 -0.0153 -0.0559
o 0.1149 | 0.1478 | 0.3245 | 0.4050
o, 05117 | 04683 | 0.1013 | 0.1175
a% 0.9429 0.9123 0.8055 0.7724
Trans.prob pgm 0.8388 0.8164 | 0.7434 | 0.9096 |
Trans.prob pg s 0.1612 0.1836 0.2566 0.0904
Trans.prob prr, 0.0000 0.0000 0.0000 0.0000
Trans.prob parm 0.0000 0.0000 0.1320 0.0000
Trans.prob pas 0.8955 0.8981 0.7754 0.9245
Trans.prob psr, 0.1045 0.1019 0.0926 0.0755 -
Trans.prob pr.u 0.0255 0.0261 0.1472 0.1305
Trans.prob pry 0.1937 0.1800 0.0000 0.0216
Trans.prob pry, 0.7808 0.7938 0.8528 0.8479
Uncond.prob. H 0.0486 0.0450 0.3495 0.3240
Uncond.prob. M 0.6442 0.6392 0.3993 0.4517
Uncond.prob.L 0.3072 0.3158 0.2512 0.2243
Duration H 6.2041 5.4477 3.8968 11.0656
Duration M 9.5659 9.8162 4.4524 13.2391
Duration L 4.5612 4.8502 6.7918 6.5751
Observations 147 171 123 145
LoglLikelihood -201.06 -226.10 -132.38 -145.65

15
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Table 8 Standardized LR statistics for MS-AR model.

p-value
p | LR test M
0 1 2 3 4 5
1952-84 | 4 | 1.546 | 0.713 0.713 0.622 0.658 0.650 0.652
1952-84 1 2| 2.305 | 0.311 0.311 0295 0.295 0.259 0.243
194790 | 4| 1.255 | 0.856 0.817 0.803 0.795 0.768 0.745
1947-90 | 2| 2.153 | 0.368 0.362 0.352 0.337 0.336 0.327
1959-96 | 4 | 2.410 | 0.254 0.237 0.264 0260 0.244 0.246

1959-96 | 2 | 2.152 | 0.364 0.386 0.370 0.388 0.371 0.375

See Hansen (1996a) for details of the test statistic, such as the definition of M. The results were obtained using

Bruce Hansen’s Gauss code markovm. prg with the ‘Grid 3’ option of Hansen (1996a).

alternative may be identically zero under the null. Since Hansen’s approach delivers only a bound on the
asymptotic distribution of the standardized LR test, the test may be conservative, tending to be under-
sized in practice and of low power’.

Table 8 reports the p-values of the standardized LR test of a linear AR model against the MS-AR
model for our two sample sizes, and, given the results on selecting the lag order of the model, for second-
order models as well as the more popular fourth-order model. For comparison, the first two rows of the
table record the tests of the Hamilton model for 1952-84, and for p = 2 as well as p = 4 (the latter
approximately reproduces part of Hansen, 1996a, Table III, p.196). In no case do we reject the nulil of
1-state at even the 20% level.

Hansen (1992) warns against using Monte Carlo based tests of the Hamilton model (as in e.g., Lam,
1990 and Cecchetti, Lam and Mark, 1990) because the empirical null distribution obtained by repeated
fitting of the MS-AR model to an autoregressive process is likely to be a lower bound for the true dis-
tribution, since the likelihood of the MS-AR model may frequently attain only a local maximum. Con-
sequently inferences may be too liberal.

Despite the somewhat mixed evidence for non-linearities in US GNP from the formal testing pro-
cedures reviewed here, and in section 3.4 for the SETAR model, the success of the non-linear models
in characterising important aspects of the Business Cycle, and the forecast successes claimed for such
models in earlier studies, motivates the systematic appraisal of the forecast performance of such models.

"Hansen argues that this is not in fact the case, based on Monte Carlo calculations of the finite-sample size and power of the
standardized LR test.
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_ RMSE of different time series models, US GNP 1985:1 - 1990:4
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Figure 5 Empirical Forecasting Performance of the SETAR, MS-AR and AR models: 85:1 — 90:4.

5 Comparison of empirical forecast accuracy

The empirical forecast accuracy comparison is based on series of ‘rolling’ forecasts. For example, for
the 1947-90 data vintage, the models are estimated once and for all on the sub-sample 1947:2 - 1984:4
(less observations lost at the beginning of the sample from taking lags). A sequence of 1 to 16-step ahead
forecasts are then generated (as described in sections 2, 3 and 4 using 1984:4 as the forecast origin. The
forecast origin is then rolled forward one period to 1985:1, and another sequence of 1 to 16-step ahead
forecasts is generated. The procedure is then repeated until we have 24x 1-step forecasts, down to 8x
16-step forecasts. This enables root mean squared forecast errors (RMSEs) to be calculated for each
forecast horizon. For long horizons the smaller number of forecasts mean that the RMSE calculations
are less reliable.

For the 1959-96 data sample the estimation period is 1959:2 - 1990:4, so that 22 observations are
held back for out-of-sample forecasting.

The results of the exercise are illustrated in figures 5 and 6. On the earlier data vintage (1947-90)
the 2-regime MS-AR models (the p = 2,4 models are visually indistinguishable) are to be preferred,
and record gains of up to 5% on horizons up to 6. The SETAR and MS(3)-AR(4) are as good as the
AR model for these horizons, and except at 1 and 2-steps ahead the SETAR is better. Clearly, the MS-
AR 3-regime model’s ability to better characterise the business-cycle features of the data (relative to the
original Hamilton 2-regime model) does not directly translate in to an improved forecast performance.

For the later data vintage, the AR and 2-state MS models are very similar, but the former has the edge
at short horizons, while the SETAR and 3-state MS models are rather inaccurate at short horizon. Notice
however the much smaller vertical scale of the graph, reflecting the greater tranquility of the nineties.

The lesson we draw from these empirical comparisons is that the non-linear models do not always
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_ RMSE of different time series models, US GNP 1991:1 - 1996:2
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Figure 6 Empirical Forecasting Performance of the SETAR, MS-AR and AR Models: 91:1 - 96:2.

forecast better. This is perhaps unsurprising given that it is now reasonably well understood that for non-
linear models ‘how well we can predict depends on where we are’ (Tong, 1995b p.410). Neither forecast
period contains negative output growth of the severity witnessed historically, and it is precisely these
episodes which should favour the non-linear models.

6 Monte Carlo study

The Monte Carlo study allows us to evaluate the costs (in terms of forecast performance, as measured
by RMSE) to using the ‘wrong’ non-linear model (or a linear model as an approximation to a non-linear
model) when we abstract from the vagaries of the models only poorly representing the DGP, or of the non-
linearities present in the past not persisting in the future. By simulating the future to mimic the past, the
‘non-linear features’ occur in the forecast period, even if the non-linear structure captured in the empirical
model was primarily due to ‘outliers’ and unhelpful for improving empirical forecasts.

Since the DGP is taken in turn to be each of the non-linear empirical models estimated over the full-
sample of the earlier data vintage (1947-90), we are open to the charge of the specificity of our results to
the particular design. While fully exploring the parameter space that might be of interest would require a
very extensive set of simulations, with computational requirements that might be prohibitive given some
of the necessary calculations (such as estimating the MS-AR, and forecasting the SETAR model), we
have selected a few interesting departures from the estimated non-linear models to explore, and we elab-
orate upon these in section 7. It seems preferable to use empirical models as the DGP, rather than an
artificial DGP whose relevance for actual economics data may be questionable. It may of course be the
case that although non-linearities are a feature of the DGP they are not large enough to yield much of an
improvement to forecasting (see Diebold and Nason, 1990).
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Figure 7 Monte Carlo. Forecast Errors when the DGP is an AR(3) Process.
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Figure 9 Monte Carlo. Forecast Errors when the DGP is a SETAR(2; 2, 2) Process.
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Figure 11 Monte Carlo. Forecast Errors when the DGP is an MS(2)-AR(2) Process.
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Figure 13 Monte Carlo comparison of the models on RMSE.

Results are presented for the AR(3) DGP, the SETAR(2; 2, 2) DGP, and the MSM{(2)-AR(2) DGP,
respectively. For each, there are two figures. The first of each pair reports RMSEs and mean absolute
error (MAE) measures, as well as selected quantiles of the distribution of absolute forecast errors. In
each case, the legend is as follows: the solid line refers to the DGP, and the other lines are as in figures 5
and 6 for the empirical analysis, i.e., the circles are the AR, the solid boxes the MS-AR, and the pluses the
SETAR. The second figure in each pair plots the estimated forecast error densities with super-imposed
gaussian densities, for selected horizons. The MS-AR and SETAR are restricted to be two- regime model,
but are otherwise unrestricted, so that p (and d, r for the SETAR) are chosen on each iteration of the
Monte Carlo to minimize AIC. As in the empirical exercise, the SETAR forecasts are calculated by Monte
Carlo using 500 iterations. On a small number of iterations the SETAR model forecasts explode for both
the SETAR and MS-AR DGPs. This only affects longer horizons, and we report RMSEs for the full 1000
iterations, but also consider quantiles of the probability distribution of the absolute forecast errors that
exclude the errant ones.

Consider firstly the AR DGP, and figures 7 and 8. The impact on forecast accuracy of selecting the
order of the AR model and estimating its parameters is given by the heights of the lines with circles
above the solid lines. There appears to be little additional cost in terms of forecast accuracy to using one
of the non-linear models. The SETAR method of generating forecasts tends to produce a slightly more
dispersed forecast density — see the 95" percentile at short horizons, as well as a few explosive forecasts
at longer horizons (see the RMSE, and the density in figure 8).

Next, consider the SETAR DGP and figures 9 and 10. Firstly, the SETAR model is only better than
the AR model at 1 and 2-step horizons on RMSE. This is most clearly seen from figure 13. The maximum
cost to using the wrong non-linear model (the MS-AR model) occurs at these horizons, and is less than
2%. Thereafter, the AR outperforms both non-linear models.

Surprisingly, when the MS-AR is the DGP (figures 11 and 12) the AR is best at short horizons on
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RMSE. The cost to using the SETAR is generally greater than when the roles are reversed. The explan-
ation has little to do with the initialization of the EM algorithm. Using the true parameter values as
starting points for the EM algorithm instead of the data-based initial values ago) = hao = ago) = 0,
2D = p) = 075,02V = 715, (Ay - By, ¥ = Aylo.25)> = Ayjo.75), which might
be fairly far away from the true parameter vector, has little effect on the forecasting performance of the
estimated MS-AR model. It might however be worth noting that the use of the true lag length p = 2
leads to forecasts which are slightly better than the linear ones.

Nevertheless, the failure to improve on the forecast performance of linear models is the finding that
warrants further investigation, and we take this up in section 7, where we isolate the factors on which the
performance of the MS-AR model turns.

7 Post-simulation analysis

The Monte Carlo results employing empirical business cycle models for the DGP have shown that linear

models are relatively robust forecasting devices even when the DGP is non-linear. In this section we de-

rive some theoretical explanations for this surprising outcome, and modify the Monte Carlo to illustrate.

‘We focus on the MS-AR model since it allows an explicit analytical expression for the optimal predictor.
For the sake of simplicity consider an MSM(2)-AR(1):

Ayy — p(se) = a(Aye— — p(se-1)) + &, (11
which can be rewritten as the sum of two independent processes:
Ayt — phy = g + 2,

where /1, is the unconditional mean of Ay, such that E[u] = E[2;] = 0. While the process z; is Gaus-
sian:

2z =021 +e, €~ NID(0,0?),
the other component, (¢, represents the contribution of the Markov chain:

pt = (p2 — p1)¢s

where (; = 1 — Pr(s; = 2) if s; = 2 and — Pr(s; = 2) otherwise. Pr(s; = 2) = p1o/(p12 + p21) is
the unconditional probability of regime 2. Invoking the unrestricted VAR(1) representation of a Markov
chain (see Krolzig, 1997b, p.40):

Gt = (p11 + p22 — 1)Ce—1 + vy,
then predictions of the hidden Markov chain are given by:
ét+h|t = (p11 + P22 — 1)hé\t|t

where éﬂt = E(¢|Y:) = Pr(s: = 2|Y:) — Pr(s; = 2) is the filtered probability Pr(s; = 2|Y;) of being
in regime 2 corrected for the unconditional one.
Thus the conditional mean of Ay, is given by:

Aysipis — by = fernje + Zipnp
= (p2 — p1)(p11 + p22 — 1)hét|t +a” [Ayt =y — (p2 — ﬂ1)§t|t]

= o (Ays— uy) + (12 — pa) [(pn +p22 —1)" - ah] ft[t- (12)
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Figure 14 Post-simulation analysis I. RMSE when the DGP is an MS(2)-AR(2).

The first term in (12) is the optimal prediction rule for a linear model (c.f. (2)) and the contribution
of the Markov regime-switching structure is given by the term multiplied by (,“t]t, where Ct|t contains
the information about the most recent regime at the time the forecast is made. Thus the contribution of
the non-linear part of (12) to the overall forecast depends on both the magnitude of the regime shifts,
|12 — p1|, and on the persistence of regime shifts p1; + pag — 1 relative to the persistence of the Gaussian
process, given by «.

In the empirical DGP, p1; 4 p22 — 1 = 0.65, and the largest root of the AR polynomial is 0.64, so
that the second reason explains the success of the linear AR model in forecasting the MS-AR process.
Since the predictive power of detected regime shifts is extremely small, p13 + pa2 — 1 = « in (12), the
conditional expectation collapses to a linear prediction rule.

In figures 14 and 15 we explore the potential for outperforming linear forecasts by simulating vari-
ants of the empirical MS-AR process, where the directions of change are motivated by the discussion
surrounding (12). Figure 14 gives the results for an increased persistence of recessions (prr). The left
graph replicates the RMSEs for the empirical MS-AR process, for ease of comparison, and the middle
and right graphs report results for increasing values of prr. Figure 15 depicts a 50% increase in the dif-
ference of the regime-dependent means p g — pr, (middle graph), and the right graph couples this with a
higher persistence of recessions (prr = pgy = 0.9568). Compared to the results for the empirical DGP
given in the left graphs, we see improvements in the relative forecasting performance of MS-AR model
(the effects are more dramatic if the lag length is constrained to 2 as in the DGP). The performance of
the SETAR improves relative to the linear AR model, but is still dominated by it at all horizons.
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Figure 15 Post-simulation analysis II. RMSE when the DGP is an MS(2)-AR(2).

8 Conclusion

In this paper we have evaluated the forecast performance of two popular non-linear extensions of the
Box and Jenkins (1970) time-series modelling tradition, applied to modelling US GNP. By allowing for
changes in regime in the process generating the time series, the models are proposed as contenders to the
constant-parameter, linear time-series models of the earlier tradition. The SETAR and MS-AR models
differ as to how they model the movement between regimes, and thus the changes in the parameter values
of the difference equations that govern the series. The SETAR model moves between regimes depending
on the past realizations of the process. For the MS-AR model the movements between regimes are un-
related to the past realizations of the process, and result from the unfolding of an unobserved stochastic
process, modelled as a Markov chain.

While both the MS-AR and SETAR models are superior to linear models in capturing certain features
of the business cycle, their superiority from a forecasting perspective is less convincing. In the empirical
forecast accuracy comparison exercise one of our sample periods suggests allowing for non-linearity may
be beneficial, while the other suggests the opposite. The outcome is sensitive to the extent to which the
future is characterised by ‘non-linear features’.

The simulation-based comparison controls for certain of these factors, and further analysis uncovered
characteristics of the models that contribute to a more favourable forecast performance. Our study indic-
ates that the linear AR model is a relatively robust forecasting device, even when the data is generated
by one of the non-linear models.

As noted in the introduction, the non-linear models would almost undoubtedly fare better if the eval-
uation exercises were made conditional upon the regime. Moreover, it is not clear that lag-order selection
by AIC is optimal for non-linear models, especially from a forecasting perspective.
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9 Appendix 1

In this appendix we outline the Hansen (1996b) test statistics reported in section 3.4.
We begin by writing (3) as:

xr =% 181 +xi1(7)Ba+ & (13)

where x;_; (7) = Ig4 (7"));2_1, xg_.l = [1xz41 ... 24|, Ig(r) = 1 whenz, g < 7, and 0
otherwise, and 3! = [a({,z} ozj{f}] ,i = 1,2. Denote estimates under Hy by a~; so that 3y =
(E xt_lxg_l)_l (3>_ x¢—12¢), for example. Under Hy, ,@ = [,@1 : ﬁz} are estimated conditional on 7,
denoted 3 (), and + is then estimated as:
R ~\2
5 = argmin6? = arg min (Z (e~ x-181 — %1y (7) ) )

and B = B (%). The scores are defined by s; (7) = x—1 (7) &, where x;_1 (7) = [xi_1 %1 (7)] ',
and §; (v) = x¢—1 (7) & and 8¢ (7) = x4—1 (77) & (7y) give the sample estimates under Hy and H;.
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A heteroskedastic robust LM test takes the form:
. N S
Tr (v) =T () (RV: (DR) B2 ()

where R = [0p41 i), VA (7) = Mz ()7 Ve () Mz (7)™, Ve = T2 8 (7) 5: (v)', and
Mr (7) = T71 S %41 (7) %¢—1 (7). Under homoscedastic errors, the LM statistic simplifies to:

Tr () = T628, () (R'Mr (1) ' R) " B2 ()

where 52 = (T — (p+1))~* S_L | &, the estimated error variance under the null.

Tr(y) has an approximate x? distribution with p + 1 degrees of freedom under the null when - is
known. When + is unknown, Hansen (1996b) shows how asymptotic p-values can be simulated for func-
tions of T’ (7y), denoted g7 (T'r (7)), that map from I" to R. The supremum, supTr = sup.,cr Tr(7y) was
considered by Davies (1977, 1987) as a way of testing Hy, and avel7r (the average of T over all val-
ues of I') and expT’r (In of the average of exp(T7r(+y)/2) over v € T', have recently been considered by
Andrews and Ploberger (1994).

Whatever the functional, p-values can be obtained by simulating the conditional distribution function
of the functional, denoted Fi, where by conditional is meant conditional on the data [x; : x;—3 (v)]. For
j=1,...,J (J = 1000, say), generate a sample of NID(0, 1) variables, {v;; }Z;l. Then calculate:

T
] 1
S5 (1) = = 3 x-1 (7) vy (14)
T \/T; t tVtj
and then: . ' / B . = e
T = S5 (v Mr (v) 'R (R'V5 (1) R) R'Mr ()7 5 (7). (15)

Finally, calculate 7 =g (T2). The p-value is then the percentage of the random sample (g4, . .., g
3/ gr =9 \ir T T

that exceeds the actual test statistic g7, o7 = J ! Z]J:I 1 (g% > gT).



