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1. Introduction

The outcomes of a wide range of economic and social situations are determined by who

interacts with whom. Examples include public good provision, trade, investment decisions,

and information collection among many others. In all these examples, agents’ decisions

are determined and influenced by the choices of their friends and acquaintances. Formally,

these interactions are modeled through a network game, where the nodes of a fixed network

(graph) represent players and the links represent social or economic relationships amongst

players. Linked players interact with other linked players implying that the outcomes of the

game depend on the entire network structure. In this context we would like to understand

how the network structure determines the actions that players take and the payoffs that

they receive. Similarly, we would like to understand the comparative statics of network

games and how local exogenous shocks may propagate to the rest of the network.

Networks are complex objects and even for simple cases the equilibrium analysis and

comparative statics exercises turn out to be a challenging task. Recognizing this complexity,

the theoretical and empirical literature has focused on games with quadratic payoffs and

linear best responses. This approach was introduced by Ballester et al. [2006]. They show in

the context of strategic complements, and exploiting the Perron-Frobenius’ Theorem, that

the largest eigenvalue of the network characterizes the properties of an interior equilibrium.

Based on these findings, Bramoulle et al. [2014] provide a unified framework to analyze

games of strategic complements and strategic substitutes. They show that the class of

network games with linear best responses can be analyzed using tools from the theory

of potential games (Monderer and Shapley [1996]) and convex optimization. Their main

result is that the equilibria of the game and their properties are determined by the sparsity

of the network structure, as measured by its lowest eigenvalue.

However, while tractable, this framework is very particular and little is known beyond

the linear case and games without a potential game structure. In fact, it is easy to find

relevant economic games where players’ best responses are nonlinear, so that Ballester

et al. [2006] and Bramoulle et al. [2014]’s results do not apply.1 From an applied point of

view, this lack of knowledge precludes us to understand the role of the network structure

in determining the equilibria and corresponding comparative statics. Moreover, this limits

empirical applications of network games models.

In this paper we consider an alternative approach to the study of games played on

fixed networks, which does not require specific functional forms on players’ payoffs nor

the existence of a potential function. Formally, we tackle the problem of strategic interac-

tion in networks borrowing tools from the mathematical theory of Variational Inequalities

1For example, Allouch [2015] shows that in the context of public goods in networks players’ best responses

are nonlinear.
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(Facchinei and Pang [2003]). We employ these techniques to characterize the outcomes

and the comparative statics of the game as a function of the network topology.2

We focus on network games of strategic substitutes and strategic complements with con-

tinuous actions sets. We make at least four general contributions. First, we establish the

existence and uniqueness of a Nash equilibrium (NE) for a general class of network games

(Theorem 1). We exploit the fact that finding a NE is equivalent to find a solution to

a Variational Inequality problem (VI). Based on this equivalence, for games of strategic

substitutes (complements) we show that the existence and uniqueness of a NE is deter-

mined by the lowest (largest) eigenvalue of the network, a parameter measuring players’

payoff concavity, and a parameter capturing the strength of the strategic interaction among

players.

Second, we characterize the comparative statics and the effect of local shocks.3 We

show that any locally unique NE is a continuous function of the parameters of the game

(Theorem 2). We fully characterize the effect of a parametric change at the node level

showing how a local shock propagates to the entire network as a function of its topology.

In addition, we show that exogenous changes on the network topology (adding or deleting

links) has a bounded effect on the equilibrium play (Proposition 4). The tightness of our

bound is inversely related with the value of the lowest eigenvalue of the network.4

As a third contribution, we study the notion of approximate NE in networks. Intuitively,

an approximate NE allows for situations in which players may choose an approximate best

response. We show that the precision of an approximation depends on a precise relationship

between a parameter chosen by the researcher and the lowest (or largest) eigenvalue of the

network (Theorem 3). From a practical point of view, our approximation result may be

useful as a stopping criteria when implementing algorithms to compute the equilibrium of

the game.

In our fourth contribution, we apply our framework to the study of Aggregative Network

games, games of mixed interactions, and Bayesian Network games. In economic terms, an

aggregative network game is one in which each player’ payoff is affected by its own action

and the aggregate of the actions taken by his neighbors. A key ingredient in this class

of games is the notion of an aggregator function, which captures how players “aggregate”

their neighbors strategies. Examples in this class of games include models of competition

2We note that the book by Nagurney [1999] discusses the use of variational inequality techniques in the

context of traffic networks, spatial pricing, and general equilibrium. However, Nagurney [1999] does not

discuss games played in fixed networks as here. Thus her results cannot be applied to the problem studied

in this paper.
3Consistent with previous literature, we define a local shock as exogenous parametric change at the node

(player) level.
4In the case of strategic complements the tightness of the bound depends on the largest eigenvalue of

the network.
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(Cournot and Bertrand with and without product differentiation), patent races, models

of contests and fighting, public good provision, congestion games, among many others.

We show that the existence, uniqueness, and the comparative statics of an equilibrium are

determined by the lowest eigenvalue of the network, a measure of players’ payoffs concavity,

and the magnitude of the derivative of the aggregator function. In terms of comparative

statics, we show that the effect of a local shock is amplified by the value of the first

derivative of the aggregator function.

A network game with mixed interactions is a game in which the strategic behavior allows

for complementarity and subtitutibility among players. Formally, the network describing

the connections among players, can be decomposed into two subnetworks; one capturing

strategic subtitubility and another one capturing strategic complementarity. We show

that the existence and uniqueness, the comparative statics, and the approximation of a

NE follows from a simple adaptation of our results. In particular, we derive a precise

relationship between the largest eigenvalue of the subnetwork capturing complementarity

and the lowest eigenvalue of the subnetwork capturing substitubility respectively.

Finally, in applying our framework to network game of incomplete information, we show

how a simple modification of our results allows us to establish the existence and uniqueness

of a Bayesian Nash Equilibrium.

1.1. Related Literature. Our paper belongs to the growing literature of games played

on fixed networks.5 The main line of research has taken a traditional approach looking at

the Nash equilibria of the game, given the network structure and the parameters describing

players’ payoffs.6 In particular, this literature assumes that players’ payoffs are quadratic,

so that their best responses are linear functions. The main advantage of this class of

games is that we may focus on how the direct effects, which are a function of the network

topology, determine the nature and shape of Nash equilibria. This approach was introduced

by Ballester et al. [2006] who study a network game of strategic complements. They show

that for small direct effects, there exists a unique and interior Nash equilibrium.7 The case

of large direct effects has been studied in Bramoulle and Kranton [2007]. They show that

under strategic substitubility, there are generally multiple equilibria.

The closest paper to ours is Bramoulle et al. [2014], which provides a unified treatment

of network games with linear best responses. Their analysis cover the cases of small and

5For a general survey of this literature we refer the reader to Jackson and Zenou [2014] and Bramoullé

and Kranton [2016].
6An alternative line of research has focused on network games under incomplete information. The main

paper in this line is the work by Galeotti et al. [2010], which introduces the idea that players have incomplete

information about about network links.
7Their analysis has been extended by Corbo et al. [2007] and Ballester and Calvo-Armengol [2010], which

consider more general interaction patterns, and applications to the analysis of peer effects may be found in

Calvo-Armengol et al. [2009] and Liu et al. [2014]
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large direct effects, focusing on games of strategic substitutes. Combining the theory of

potential games with spectral analysis, they establish the key result that the uniqueness

of a Nash equilibrium depends on the lowest eigenvalue of the network. In addition, they

provide some comparative statics results, which critically depend on the parametric struc-

ture of the problem. Our analysis differs from theirs in at least four fundamental aspects.

First, Bramoulle et al. [2014]’s approach works only for the class of games with linear best

responses, while our framework does not require any type of parametric assumption on

players’ payoffs. In fact, we show that their uniqueness result is a particular case of our

approach. Second, we fully characterize the local uniqueness of a NE, the comparative

statics, and the effect of local shocks. These two topics are not analyzed by Bramoulle

et al. [2014].

A third important difference is our analysis of approximated equilibrium. Finally, from

a technical point of view our analysis does not require the existence of a potential func-

tion, which is key in Bramoulle et al. [2014]’s framework. In particular, we show that by

employing variational methods, we may disregard the assumption that the network game

has the structure of a potential game. The main implication of this technical difference is

that we are able to analyze a larger class of games than the one considered by Bramoulle

et al. [2014].

A few recent papers have started to look at network games with nonlinear payoffs. Elliot

and Golub [Forthcoming] study Pareto efficiency in the context of public goods. However,

they do not discuss strategic behavior in networks. The work by Belhaj et al. [2014] studies

network games of strategic complements, assuming a particular nonlinear functional form

on players’ best responses. Their analysis can be seen as a particular case of our results.8

The papers by Baetz [2015] and Hiller [2017] study the uniqueness of a NE under the

assumption of concave best responses. However, the focus of both papers is on the network

formation process. The paper by Allouch [2015] studies a class of public goods in networks

with nonlinear best responses. He establishes the existence and uniqueness of a NE in

terms of the lowest eigenvalue of the network. We show that Allouch [2015]’s result is

a particular case of our framework. In particular, it is shown that his analysis may be

seen as a special case of the class of aggregative network games. Two final differences are

our comparative statics and approximation analysis. None of these topics are studied by

Allouch [2015]. Finally, it is worth mentioning that the recent work by Parise and Ozdaglar

studies variational inequalities and network games. They focus on the notion of P-matrix

and they consider other classes of games (e.g. congestion games). Their analysis and ours

can be seen as complementaries.

The rest of the paper is organized as follows.§2 introduces the problem of strategic

interaction in networks. §3 studies the existence and uniqueness of a Nash equilibrium.

8See section 6 for details.
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§4 presents the analysis of comparative statics and shock propagation in networks. §6
studies the class of aggregative network games. §7and 8 study network games of mixed

interactions and games of incomplete information respectively. §9 concludes. Technical

details and proofs are gathered in appendix A.

2. The environment

There is a set of n players denoted by N . Each player i simultaneously chooses an

action xi ∈ Xi ⊆ R+. We assume that Xi = [0, bi] where bi < ∞. According to this, let

x = (x1, . . . , xn) ∈ X =
∏n
i=1Xi denote the action profile of all players. Let x−i ∈ X−i =∏

j 6=iXj denote a profile of actions for players other than i. The players are embedded

in a fixed network, represented by a n-by-n matrix G. The entry (i, j)th is denoted by

gij , where gij = 1 if player i and j are connected, and gij = 0 otherwise. The terms

gijs represent links between two players, and L = {(i, j) ∈ N × N : gij = 1} denotes the

set of such links. For each player i, we set gii = 0. The network G is assumed to be

undirected, which is equivalent to say that gij = gji for all (i, j) ∈ L. A player j who is

linked to player i is called player i’s neighbor. The set of player i’s neighbors is defined by

Ni = {j ∈ N : gij = 1} and player i’s degree is defined as di = |Ni|. Let x̄−i =
∑n

j=1 gijxj
for all i ∈ N .

An important element in our analysis are the eigenvalues of G, which may be denoted

as:

λmin(G) = λ1(G) ≤ λ2(G) ≤ · · · ≤ λn(G) = λmax(G).

We remark two properties of the eigenvalues of G. First, given that G is a nonnegative

matrix, by the Perron-Frobenius Theorem (Horn and Johnson [1990, Thm. 8.3.1]) we know

that λmax(G) > 0. This fact, impliest our second observation which is related to the fact

that λmin(G) < 0. To see this, note that for any square matrix the sum of its eigenvalues is

equal to its trace. From the definition of G it follows that its trace must be zero. Because

λmax(G) > 0 we find that necessarily λmin(G) must be strictly negative.

We now describe players’ payoffs. Formally, player i’s payoff depend on his own action

xi, the actions of others x−i, and the network G. According to this, we define player i’s

payoffs as

ui(xi,x−i;θi,G),

where θi ∈ Θi ⊆ Rki with Θi being compact and convex and ki ≥ 1 for i = 1, . . . , n. Let

θ = (θ1, . . . ,θn) ∈ Θ =
∏n
i=1 Θi denote the parameter vector for the game.

Throughout the paper we assume the following two conditions on players’ payoff func-

tions:

Assumption 1. For all player i ∈ N and θi ∈ Θi, we assume the following:
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(i) The payoff function ui(·,x−i;θi,G) is continuously twice differentiable and strictly

concave on xi for all x−i ∈ X−i.
(ii) There exists a constant κ̄ > 0 such that

inf
i∈N

inf
x∈X

∣∣∣∣∂2ui(xi,x−i;θi,G)

∂x2
i

∣∣∣∣ ≥ κ̄
Condition (i) states that players’ payoffs are strictly concave on their own strategy.

Condition (ii) assumes that the terms
∣∣∣∂2ui
∂x2

i

∣∣∣ are uniformly bounded from below.

Assumption 2. For all player i ∈ N and θi ∈ Θi, we assume the following:

(i) The cross partial derivative

∂2ui(xi,x−i;θi,G)

∂xj∂xi

is well defined for all x, and (i, j) ∈ L.

(ii) There exists a constant κ > 0 such that

sup
(i,j)∈L

sup
x∈X

∣∣∣∣∂2ui(xi,x−i;θi,G)

∂xj∂xi

∣∣∣∣ ≤ κ.
(iii) The cross partial derivative

∂2ui(xi,x−i;θi,G)

∂θil∂xi

is well defined for all θil with l = 1, . . . , ki and x ∈ X .

Previous assumption describes conditions on the the behavior of cross partial derivatives.

Intuitively, condition (ii) imposes that for each player i the influence of changes on their

neighbors actions has a bounded impact on his marginal utility.

Assumptions 1 and 2 are the only requirements we impose on players’ payoffs. Departing

from previous literature, we do not assume specific functional forms (See the discussion in

examples 1 and 2 below).

In terms of strategic interaction, we focus on games of strategic substitutes and strategic

complements (Bulow et al. [1985]) with an especial emphasis in the former class. Formally,

this class of games is defined as follows.

Definition 1. Given a parameter vector θ and a network G, we say that the game has the

property of strategic substitutes if for each player i the following condition holds:

∂2ui(xi,x−i;θi,G)

∂xj∂xi
< 0 for all (i, j) ∈ L, x ∈ X .
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Similarly, we say that the game has the property of strategic complements if for all player

i ∈ N the following condition holds:

∂2ui(xi,x−i;θi,G)

∂xj∂xi
> 0 for all (i, j) ∈ L, x ∈ X .

Previous definition covers a large class of games. Important example of games covered

by definition 1 are public goods, Cournot competition, and sharing information games.

Example 1. Linear-quadratic network games: In this class of games players’ payoffs are

given by

ui(xi,x−i;θi,G) = xi −
1

2
x2
i − θixix̄−i for all i ∈ N,

with θi ≥ 0. The parameter θi measures how much i and j affect each others payoffs, given

they are linked. Equivalently the parameter θi is a measure of the effect of G on player i’s

payoffs.

It is easy to see that
∂2ui(xi,θi; , θi,G)

∂x2
i

= −1,

∂2ui(xi,θi; θi,G)

∂xj∂xi
= −θigij ,

and
∂2ui(xi,x−i;θi,G)

∂θi∂xi
= −x̄−i

implying that assumptions 1 and 2 are satisfied.

From an applied perspective, the main advantage of this class of games is that players’

best reponses are linear functions. In particular, for each player i ∈ N we get:

βi(x−i;θ,G) = max{1− θix̄−i, 0}.

We shall refer to this class of games as linear-quadratic games (Jackson and Zenou

[2014]). �

Example 2. Cournot networks: We now present a networked version of the traditional

Cournot model of competition. Nodes represent firms and links may be seen as the degree of

substitution between them. Each firm faces an inverse demand function denoted by Pi(xi+

θix̄−i), where the parameter θi > 0 takes into account the network interaction. Assume that

Pi(·) is strictly concave, and continuously twice differentiable on X . In addition, assume

that each firm has a cost function ci(xi) = θi2
x2
i

2 , which is strictly convex, and continuously

twice differentiable on X . Accordingly, firms’ profits are

ui(xi,x−i;θi,G) = xiPi(xi + θi1x̄−i)− θi2
x2
i

2
,∀i ∈ N.
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It is straightforward to check that

∂2ui(xi,x−i;θi,G)

∂x2
i

= 2P ′i (xi + θi1x̄−i) + xiP
′′
i (xi + θi1x̄−i)− θi2 < 0,

∂2ui(xi,x−i;θi,G)

∂θi∂xi
= P ′i (xi + θi1x̄−i)x̄−i < 0,

and
∂2ui(xi,x−i;θi,G)

∂xj∂xi
=
[
P ′i (xi + θi1x̄−i) + xiP

′′
i (xi + θi1x̄−i)

]
θi1gij < 0.

Last inequality states that the game has the property of strategic substitutes.

Let

κ̄ = inf
i∈N,x∈X

{|2P ′i (xi + θi1x̄−i) + xiP
′′
i (xi + θi1x̄−i)− θi2|}

and

κ = sup
i∈N,x∈X

|{|P ′i (xi + θi1x̄−i) + xiP
′′
i (xi + θi1x̄−i)|}.

From previous description, it follows that this networked version of Cournot model satisfies

assumptions 1 and 2. �

2.1. Nash Equilibrium. We focus on Nash Equilibrium (NE) outcomes. We begin noting

that thanks to assumption 1, a NE may be characterized as a solution x∗ to the system of

first order conditions

∂ui(x
∗
i ,x
∗
−i;θi,G)

∂xi
≤ 0 ∀i ∈ N,(1)

x∗i ≥ 0.

In order to make progress, most of the literature has assumed specific functional forms

on players’ payoff functions. The seminal papers by Ballester et al. [2006] and Bramoulle

et al. [2014] assume that players’ payoffs are quadratic functions. Assuming this specific

structure has two advantages. First, expression (1) boils down to a linear system in which

the role of the network G is explicit in determining not only the uniqueness of a NE, but

also properties such stability and local equilibria. Second, and from a technical point of

view, this particular class of games is suitable to be analyzed using potential games and

convex optimization techniques (e.g. Bramoulle et al. [2014]). The literature following

this approach has coined the term of linear-quadratic network games (Jackson and Zenou

[2014]).

However, while appealing, the assumption of linear best responses turn out to be a

very restrictive condition, limiting applications of network games to important economic

problems. For instance, this assumption rules out public good games where players may

have concave (and nonlinear) payoffs, and Cournot games on networks with non linear

market demand.
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2.2. Variational Inequalities. In this paper we employ variational methods, which al-

lows us to overcome the problem of assuming particular functional forms on players’ payoffs.

In particular, we introduce tools from the theory of Variational Inequality Problems.9

This theory enables us to analyze network games in an alternative way. Formally, by

employing these variational methods we may exploit the information contained in players’

first order conditions. To formalize this idea, define the map f(·;θ,G) : X −→ Rn as

follows:

(2) f(x;θ,G) =


−∂u1(x1,x−1;θ1,G)

∂x1
...

−∂un(xn,x−n;θn,G)
∂xn

 .

Previous expression is the payoff gradient of the game. With this definition in place, we

establish the following well-known result.

Proposition 1. Let assumption 1 hold. Then x∗ is a NE of the network game if and only

if x∗ solves the following problem

(3) (y − x∗)T f(x∗;θ,G) ≥ 0, ∀y ∈ X .

The problem of finding a solution to (3) is known as the Variational Inequality Problem

(VI) in the mathematical programming literature. Proposition 1 states that finding a NE

is equivalent to solve a VI. This connection was first noticed by Gabay and Moulin [1980]

and extended by Harker [1991]. In this paper we show that this characterization is key to

understand how the outcomes of the game are determined by the network structure. For

ease notation we denote problem (3) as VI(f,X ).

The theory of existence and uniqueness of solutions to a VI is vast, and most of these

results focus on structural properties of f(x;θ,G). We exploit these results to understand

the role of G in shaping the equilibrium outcomes. In §3 we discuss this approach in detail.

In addition, understanding the equilibria of game in terms of a VI, allows us to carry out

comparative statics exercises. We shall exploit this feature in §4.

3. Equilibrium Analysis

In this section we establish the existence and uniqueness of a NE. To this end we exploit

the variational characterization in proposition 1. Thanks to this result, we focus on the

monotonicity of f(x;θ,G) to understand the connection between the equilibria of the game

and the topology of the network G. Furthermore, the monotonicity of f(x;θ,G) will play

a role in understanding the comparative statics of network games.

9For a general treatment of the subject we refer the reader to Nagurney [1999] and Facchinei and Pang

[2003].
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Throughout the paper we shall consider the following notions of monotonicity.

Definition 2. Let g : B −→ Rn, with B ⊂ Rn. The map g is said to be monotone on B if

for every pair x and y in B we have

(x− y)T (g(x)− g(y)) ≥ 0.

It is said to be strictly monotone on B, if for every pair x and y in B with x 6= y, we have

(x− y)T (g(x)− g(y)) > 0.

Finally, the map g is said to be strongly monotone on B with modulus µ > 0, if for every

pair x and y in B with x 6= y, we have

(x− y)T (g(x)− g(y)) > µ‖x− y‖2 > 0.

The concept of monotone map may be seen as a generalization of the notion of positive

definite matrices to nonlinear maps (More and Rheinboldt [1973]).10 Thus in order to

determine the monotonicity of a map g we can use the information contained on its Jacobian

matrix. Next section exploits this fact.11

3.1. The Jacobian of the game. In this section we show how the monotonicity of

f(x;θ,G) is determined by the eigenvalues of its Jacobian matrix. In order to introduce

this matrix, define the terms fii(x;θ,G) and fij(x;θ,G) as

fii(x;θ,G) ≡ −∂
2ui(xi,x−i;θi,G)

∂x2
i

for all i ∈ N,

and

fij(x;θ,G) ≡ −∂
2ui(xi,x−i;θi,G)

∂xj∂xi
for all (i, j) ∈ L.

Using previous definitions, the Jacobian of f(x;θ,G) is defined as the n-by-n matrix

J(x;θ,G) = [fij(x;θ,G)]i,j ∀x ∈ X .

Decomposing the Jacobian in terms of its diagonal and off diagonal elements we get

(4) J(x;θ,G) = D(x) + N(x;θ,G).

10We point out that for the case of g being an affine map, the notions of strictly and strongly monotonicity

are equivalent. To see this consider the affine map g(x) = Mx + q where M ∈ Rn×n is a constant matrix,

and q ∈ Rn is a parameter vector. Then for x 6= y we find that (x−y)T (g(x)− g(y)) = (x−y)TM(x−y).

Thus the definitions of strictly and strongly monotone coincide.
11Elsewhere, the notion of monotone map has been implemented in the context of multidimensional

mechanism design. In particular, the papers by Saks and Yu [2005], Lavi and Swamy [2009],Berger et al.

[2009], Ashlagi et al. [2010], and Archer and Kleinberg [2014], relate the incentive compatibility (truthful

implementation) of a mechanism to its monotonicity properties.
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D(x) is a diagonal matrix whose entries are the terms fii(x;θ,G)s, which by assumption

1 are strictly positive. Intuitively, this matrix captures players’ payoffs concavity.

The key component in (4) is the matrix N(x;θ,G), which captures the off diagonal

elements of the Jacobian. The entries of this matrix are defined as

(5) Nij(x;θ,G) =

{
fij(x;θ,G) if (i, j) ∈ L;

0 otherwise .

From previous definition, it follows that N(x;θ,G) may be interpreted as a weighted

connection matrix. Formally, the matrix N(x;θ,G) is a transformation of the original

network G, where for each link (i, j) ∈ L we replace the original entries gijs by the

terms fij(x;θ,G)s. In economic terms, these latter terms capture the nature and in-

tensity of strategic interaction amongst players. For the case of strategic substitutes we

have fij(x;θ,G) > 0 for all (i, j) ∈ L, so that N(x;θ,G) is a nonnegative matrix.

Summarizing, the Jacobian matrix encapsulates all the needed information about play-

ers’ payoff function concavity, the topology of the underlying network G, and the nature

and strength of players’ strategic interaction.

From a mathematical point of view, the relevance of the Jacobian is that the monotonic-

ity of f(x;θ,G) is determined by the positive definiteness of J(x;θ,G). The following

well-known result formalizes this relationship (Facchinei and Pang [2003, Prop. 2.3.2]).12

Proposition 2. Let assumption 1 hold. Then

(i) f(x;θ; G) is monotone iff J(x;θ,G) is positive semidefinite ∀x ∈ X .
(ii) f(x;θ; G) is strictly monotone if J(x;θ,G) is positive definite ∀x ∈ X .

(iii) f(x;θ; G) is strongly monotone if J(x;θ,G) is strongly positive definite ∀x ∈ X .

Proposition 2 implies that looking at the eigenvalues of the Jacobian of the game we can

determine the monotonicity of f(x;θ,G). This fact will play a key role in our analysis.

It is worth noticing that in applying proposition 2, the Jacobian does not need to be

symmetric. Thus in determining the positive definiteness properties of J(x;θ,G) we must

look at the eigenvalues of its symmetric part, which is defined by

(6) J̄(x;θ,G) = D(x) + N̄(x;θ,G),

where N̄(x;θ,G) ≡ 1
2 [N(x;θ,G) + NT (x;θ,G)].

12Let M be a n-by-n matrix and let M̄ = 1
2
[M + MT ] denote its symmetric part. M is said to be semi

positive definite if for all y 6= 0 we have yTM̄y ≥ 0. M is said to be positive definite if for all y 6= 0 we

have yTM̄y > 0. Finally, M is said to be strongly positive definite if there exists a scalar µ > 0 such that

yTM̄y ≥ µ‖y‖2 > 0 for all y 6= 0.
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From (6) we note that the positive definiteness of the Jacobian depends on the eigenvalues

of D(x) and N̄(x;θ,G). More precisely, note that by using lemma 1 in Appendix A we

get

(7) λmin(J̄(x;θ,G)) ≥ λmin(D(x)) + λmin(N̄(x;θ,G)).

Inequality (7) deserves some comments. First, We point out that thank to assumption 1

it follows that λmin(D(x)) > 0 for all x ∈ X . In addition, and assuming that players’

strategies are strategic substitutes, we note that λmin(N̄(x;θ,G)) < 0. Combinining these

two observations allow us to conclude that the positive defininetess of the Jacobian depends

on the relationship between λmin(D(x)) and λmin(N̄(x;θ,G)). The second observation is

that given assumptions 1 and 2 inequality (7) can be expressed in a much simpler way. In

particular, lemma 2 in Appendix A establishes that

(8) λmin(J̄(x;θ,G)) ≥ κ̄+ κλmin(G) ∀x ∈ X .

Thus the information to determine the positive definiteness of J(x;θ,G) is governed by

the parameters κ, κ̄ and λmin(G). As we shall see this simple observation is key in deriving

our results.

Finally, we remark that for the case of strategic complements, Eq. (8) becomes:

(9) λmin(J̄(x;θ,G)) ≥ κ̄− κλmax(G) ∀x ∈ X .

3.2. Strong Monotonicity: Existence and uniqueness. We now show how the κ, κ̄,

and λmin(G) provide key information to determine the uniqueness of a NE. In doing so we

begin establishing the following result.

Proposition 3. Let assumptions 1 and 2 hold. Assume that the network game has the

property of strategic substitutes. If the condition

|λmin(G)| < κ̄/κ

holds, then f(x;θ,G) is strongly monotone with modulus µ = κ̄+ κλmin(G) > 0.

The intuition behind proposition 3 is simple. From inequality (8) it follows that the

condition |λmin(G)| < κ̄/κ ensures us that the eigenvalues of the J̄(x;θ,G) are strictly

positive and uniformly bounded from below, implying the strong positive definiteness of this

matrix. As a result, by proposition 2(iii) we conclude that the map f(x;θ,G) is strongly

monotone with modulus µ = κ̄+ κλmin(G).

A direct implication of proposition 3 is the following result.

Theorem 1. Let assumptions 1-2 hold. Assume that the network game has the property

of strategic substitutes. If the condition

|λmin(G)| < κ̄/κ
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holds, then there exists a unique NE.

Four remarks are in order. Our first observation is about the existence of a NE, which

follows from assumptions 1 and 2. In particular, the combination of these two assumptions

allows us to apply More [1974, Thm. 3.1] ensuring that problem 3 has at least one solution.

Second, the uniqueness is a direct consequence of proposition 3. This fact implies that the

uniqueness of a NE depends on λmin(G), which captures how sustitubility among players’

actions is amplified as a function of the sparsity of the network G, κ̄, which captures

players’ payoff functions concavity, and κ which captures the strength of the interaction

among players. In other words, our equilibrium condition combines structural properties

of players’ payoffs functions with spectral properties of the network G.

A third observation is that our result is nonparametric in the sense that we do not impose

any specific functional forms to players’ payoffs. Formally, by studying the equilibria of the

game as the solutions to VI(f,X ), we are able to exploit players’ first order conditions. This

fact represents a fundamental difference from previous contributions which have focused

on ad-hoc specifications of players’ best response functions. In fact, the class of games

with linear best responses is a particular case of our framework. In §3.3 below we show

how theorem 1 generalizes previous results in the literature.13 Fourth, our result does not

require the existence of a potential function, which has been the main tool in studying

network games with linear best responses (See, e.g.,Bramoulle et al. [2014] and Bramoullé

and Kranton [2016]). Thus theorem 1 applies to a larger class of games, being potential

games a particular case.

It is worth pointing out that theorem 1 is different from Rosen [1965]’s uniqueness result.

In particular, his uniqueness result applies under the assumption that f(x;θ,G) satisfies

the property of strict diagonal concavity, which in terms of our framework is equivalent to

assume strict monotonicity. There are two important differences between our result and

Rosen’s result. First, his result is stated in terms of what he calls “pseudo gradients”, which

are just the original gradients weighted for positive scalars. These scalars are unknown and

in applications they need to be determined. Our result does not need to introduce auxiliary

parameters, implying that theorem 1 is a direct way of determining the uniqueness of an

equilibrium point. Second, we provide a precise condition in terms of κ̄, κ, and λmin(G).

This type of spectral characterization is not given by Rosen [1965].

Next result is a direct corollary of Theorem 1

Corollary 1. Let assumptions 1-2 hold. Assume that the network game has the property

of strategic complements. If the condition

λmax(G) < κ̄/κ

holds, then there exist a unique NE.

13Furthermore, in §6 we discuss how to specialize theorem 1 to the class of aggregative network games.
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3.3. Applications. In this section we apply our existence and uniqueness result to three

different classes of network games.

3.3.1. Linear-quadratic network games. In this class of games, players’ payoffs are given

by:

ui(xi,x−i;θi,G) = xi −
1

2
x2
i − θixix̄−i for all i ∈ N.

From this payoff specification, it is easy to see that the condition determining the strict

monotonicity of f(x;θ,G) may be written as

(y − x)T [I + V(θ) ·G](y − x) > 0,

where the term I + V(θ) ·G is the Jacobian of the game with V(θ) = Diag(θi)i∈N .

In Appendix A we show that strong monotonicity of f(x;θ,G) is determined by the

condition

|λmin(G)| < 1

θ̄
,

where θ̄ = maxi∈N{θi}. This latter inequality is the condition established in theorem 1.

Previous analysis shows how the result for an homogeneous θ in Bramoulle et al. [2014]

is a direct corollary of Theorem 1.

3.3.2. Cournot Networks. We consider the networked version of the traditional model of

Cournot competition described in example 2. For this game, the Jacobian can be written

as

J(x;θ,G) = D(x) + V(x,θ) ·G

where D(x) = Diag(−(θi2 + 2P ′i (xi + θi1x̄−i) + xiP
′′
i (xi + θi1x̄−i)))i∈N and V(x,θ) =

Diag (−(P ′i (xi + θi1x̄−i) + xiP
′′
i (xi + θi1x̄−i)θi1))i∈N . Recalling that

κ̄ = inf
i∈N,x∈X

{|2P ′i (xi + θi1x̄−i) + xiP
′′
i (xi + θi1x̄−i)− θi2|}

and

κ = sup
i∈N,x∈X

|{|P ′i (xi + θi1x̄−i) + xiP
′′
i (xi + θi1x̄−i)|} × θ̄i1,

with θ̄1 = maxi∈N{θi1}.

Applying theorem 1 it follows that this game has a unique NE when |λmin(G)| < κ̄/κ.

From the definitions of κ̄ and κ we conclude that the uniqueness of an equilibrium depends

on properties of the demand function.
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3.3.3. Public goods in networks. In our second application we consider the public good

game studied by Allouch [2015]. In order to see how our framework applies to this class of

games, define players’ payoffs as:

ui(xi,x−i;θi,G) = −1

2
(xi + x̄−i − γi(θi + x̄−i))

2, for i = 1, . . . , n.

The function γi(·) is the demand function of the public good. The parameter θi may be

interpreted as player i’s income. Assume that for all i, γi(·) is continuously differentiable on

Xi. In addition, assume that the public good is normal, which mathematically is equivalent

to say that for all player i the following inequality holds:

0 < γ′i(θi + x̄−i) < 1 ∀x ∈ X .

The Jacobian of this game is

J(x;θ,G) = I + V(x,θ)G ∀x ∈ X ,

where V(x,θ) = Diag(1− γ′i(θi + x̄−i))i∈N .

In order to incorporate the role of G, Allouch [2015] introduces the notion of network

normality, which formally can be written as:

1 + (1− γ′i(θi + x̄−i))λmin(G) > 0, ∀i ∈ N,x ∈ X .

Previous condition, combined with the fact that players’ best responses are given by

βi(x−i;θ,G) = max{γi(θi + x̄−i) − x̄−i, 0} for all i ∈ N , allows Allouch [2015, Thm.

1] to establish that network normality determines the uniqueness of a NE.

In appendix A we show that for this class of games, the condition in theorem 1 may be

expressed as

|λmin(G)| < 1

1− γ′∗
∀x ∈ X .

where γ′
∗

= infi∈N,x∈X {γ′i(θi + x̄−i)}.
It is worth noticing that, contrary to Allouch’ analysis, the best response βi(x;θ,G)

does not play any role in our derivation. We only need to focus on the strong monotonicity

of f(x;θ,G). In §4 and 5, we retake this game to show how our approach extends Allouch’s

analysis in terms of comparative statics and ε-approximate equilibrium.

4. Comparative statics and shock propagation

In this section we study the comparative statics of network games. Our main goal is to

characterize how a local exogenous shock (parametric change) at the node level propagates

to the rest of the network. Formally, in understanding how a local shock affects the

equilibrium of the game, we need to find conditions under which an equilibrium x∗ may

be written as a function of the parameter vector θ. The main tool for doing this is the
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Implicit Function Theorem, which requires that the equilibrium x∗ must be interior, i.e.,

the condition

f(x∗;θ,G) = 0.

must hold.

Recalling the definition of f(x;θ,G), it follows that previous requirement is equivalent

to assume that
∂ui(x

∗
i ,x
∗
−i;θi,G)

∂xi
= 0 ∀i ∈ N,

which means that all players choose an interior strategy (a strictly positive number).

However, depeding on the type of strategic interaction, the structure of equilibria of

network games may be very complex. For instance trategic substitutability may be very

complex. In fact, it is easy to find examples where this interiority condition fails. For

instance, in the context of public goods, Bramoulle et al. [2014] show that the set of

equilibria of the game consist of a set “free riders”, i.e., a set of players contributing 0, and

a set of “contributors” which consists of players choosing an interior strategy.14

This technical caveat precludes us of applying directly the implicit function theorem to

characterize how the equilibrium of the game varies in response to exogenous shocks.

In this section we borrow results the theory of sensitivity analysis in VI to overcome

these technical problems. In particular, we show that for a small exogenous shock, the NE

of the game is a continous function of θ. A direct consequence of the continuity of the NE,

is the fact that for small exogenous shocks, the set of contributors and free riders does not

change.

To keep our analysis as simple as possible, we restrict our attention to games with non

degenerate Nash equilibria.

Definition 3. For a given θ ∈ Θ and a network G, we say that the equilibrium x∗ is non

degenerate if

x∗i + fi(x
∗;θ,G) > 0 for all i ∈ N.

The notion of non degenerate equilibria is useful for two reasons. First, assuming that

the equilibrium is non degenerate, we can rule out situations where for a subset of players

we have fi(x
∗;θ,G) = 0 and x∗i = 0. Consistent with this, for a non degenerate equilibrium

x∗ we define the set of active players as:

A = {i ∈ N : fi(x
∗;θ,G) = 0, x∗i > 0} ,

while the set of inactive players is defined as

Ac = {i ∈ N : fi(x
∗;θ,G) > 0, x∗i = 0} .

14Similarly, Belhaj et al. [2014] provide examples of network games of strategic complements, where at

equilibrium some players are inactive.
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A second advantage of assuming a non degenerate equilibrium, is that in economic terms

the set A may be seen as the set of contributors, whereas the set Ac may interpreted as

the set of non-contributors or free riders.

Notation: In stating our results, we use the following notation. For a NE x∗ let f∗ =

f(x∗;θ,G). A sub vector of f∗ with elements fi(x
∗;θ,G) for all i ∈ A, will be denoted by

f∗A. In a similar way we define f∗Ac . Let J∗ = J(x∗;θ,G). A submatrix of J∗ with elements

f∗ij , with i, j ∈ A is denoted by J∗A. The matrices N∗A and GA denote the subnetworks

(weighted and unweighted) of active players. In both networks we do not include active

players who are isolated (disconnected). In a similar way we define the matrix D∗A. Finally,

denote u∗i = ui(x
∗;θi,G) for all i ∈ N .

In characterizing the comparative statics of network games, we introduce the cross-effect

matrix of the game, which captures the strategic interaction amongst active players.

Definition 4. For a Nash equilibrium x∗, the cross effect matrix of the game is defined by

W ∗ = [I + M∗]−1,

where M∗ = D∗−1
A N∗A.

From the definition of W ∗, it follows that its entries, denoted by w∗ij , capture the

interaction of players in the subnetwork GA.15

Next definition is useful in establishing our results.

Definition 5. For a Nash equilibrium x∗, define the |A|-by-k matrix Γ(x∗,θ) whose entries

are given by

τis =
∂2u∗i
∂θil∂xi

,

for i = 1, . . . , n and l = 1, . . . , ki.

We now are ready to characterize the existence, uniqueness, and differentiability of local

equilibria.

Theorem 2. Let assumptions 1-2 hold and let x∗ be a non degenerate NE. Assume that the

network games has the property of strategic substitutes. Finally assume that the following

condition holds:

(10) |λmin(GA)| < κ̄/κ.

Then for θ̃ in a neighborhood of θ, there exists a locally unique once continuously dif-

ferentiable equilibrium x(θ̃) such that x∗ = x(θ) and

15It worth remarking that W∗ is a |A|-by-|A| nonnegative matrix.
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(11)
∂x∗A
∂θjl

= W∗D̂∗−1
A

where D̂∗−1
A = D∗−1

A ejτjl for j = 1, . . . , n and l = 1, . . . , kj.

Theorem 2 establishes that for small perturbations of θ, the equilibrium point x∗ varies

continuously. A very important feature of this result is that the continuity of x∗ is estab-

lished regardless the structure of the equilibrium, i.e., continuity applies not only to active

players but also to inactive players.

Second, from Eq. (11) it follows that W∗ may be seen as a sufficient statistic to un-

derstand the role of the network G in propagating a shock. Concretely, the entries w∗ij
capture the direct effect on player i’s strategy of a parametric change affecting player j.

To see this, we note that for a particular player i formula (11) can be written

∂x∗i
∂θjl

= w∗ij
∂2u∗j
∂θjl∂xj

·

[
−
∂2u∗j
∂x2

j

]−1

for i = 1, . . . , n.

Previous expression makes explicit the property that the effect of an exogenous change

on θjl is captured by the terms w∗ij ’s. An important feature of this result is that player i and

j do not need to have a link between them. Thus W∗ provides all the needed information

to understand how a shock propagates to the network of active players.

A third observation is about the fact that theorem 2 provides an explicit formula to

compute the effect of exogenous shocks. In particular, this result allows us to handle

situations where some players may be inactive. This represent a difference from previous

comparative statics results, which assume that the unique equilibrium is interior (See, e.g.,

Acemoglu et al. [2016] ).

Finally, from a technical point of view the proof of theorem 2 relies on arguments from

the theory of sensitivity analysis in VI. In particular, in proving this result we use arguments

from Kyparisis [1986, 1987] and Tobin [1986].

A direct corollary of previous result, is a first order approximation of the local equilibrium

x∗ around a neighborhood of θ.

Corollary 2. Assume the conditions in theorem 2 hold. A first order approximation of x∗

in a neighborhood of θ is given by:

(12) x(θ̃) = x∗ + W∗D∗AΓ∗∆θ,

where ∆θ = θ̃ − θ and Γ∗ = Γ(x∗,θ∗).
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The effect of adding links to G. In general, and without additional structure, carrying

out comparative statics in terms of G is a challenging task. Fortunately, the strong mono-

tonicity of f(x,θ,G) allows us to bound the effect of adding links on the equilibrium play.

In doing so, we note that G is a subnetwork of G′ if G has less links than G′. We refer to

this as G ⊂ G′. Accordingly we denote the entries of G′ and G by g′ij and gij respectively.

Proposition 4. Let assumption 1 and 2 hold and consider a network game of strategic

substitutes. For the networks G and G′ with G ⊂ G′ assume that the condition

|λmin(G)| < κ̄/κ

holds. Let x∗ be the unique NE for the network G, and let y be a NE for the network G′.

Then

(13) ‖y − x∗‖ ≤ 1

µ
‖f(y;θ,G)− f(y;θ,G′)‖,

where µ = κ̄+ κλmin(G).

Proposition 4 provides a bound to quantify the impact on equilibrium play of adding (or

severing) links to G. A striking feature of bound (13) is the fact that its tightness depends

on µ, which captures the role of the network topology. Intuitively, this result establishes

that the equilibrium x∗ varies “continuously” as a function of G. A second observation is

that the bound in (13) does not need to assume that under the network G′ the game has a

unique equilibrium. The only requirement is that under G′ a NE exists. We remark that

the strong monotonicity of f(x;θ; G) is key in proving and establishing the bound (13).

Finally, it is worth mentioning that for the case of strategic complements the proposition

6 holds with µ = κ̄− κλmax(G).

Example 3. We apply our results to the model of public goods in networks discussed in

§3. Assuming network normality, by the interlacing eigenvalue theorem Horn and Johnson

[1990, p. 185], it follows that for the subnetwork GA and the equilibrium x∗ the following

inequality holds:

|λmin(GA)| < 1

maxi∈A{1− γ′i(θi + x̄∗−i)}
.

A direct consequence of previous condition is that theorem 2 applies, which implies that

the x∗ is a continuous function of the vector of incomes θ. Exploiting this feature, we may

analyze how a small change on player j’s income propagates to the rest of the network.

We begin noting that network normality implies that W ∗ is well defined.16 In particular,

this matrix takes the form:

W ∗ = [I + V(x∗,θ) ·GA]−1,

16This follows from the fact that network normality implies that J∗A is invertible.
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where V(x∗,θ) = Diag(1− γ′i(θi + x̄∗−i))i∈A.

Then applying formula (11), we find

∂x∗i
∂θj

= w∗ij · γ′j(θj + x̄∗−j) ∀i ∈ A.

5. Approximate equilibrium in Networks

In previous sections our analysis has been focused on the notion of NE, which assumes

that players do not make mistakes. In this section we introduce a weaker equilibrium

notion. In particular, we introduce the notion of ε-Approximate NE. Formally this concept

is defined as follows.

Definition 6. Let ε > 0 and θ ∈ Θ. We say that x̂ ∈ X is a ε-approximate NE for the

network game if it solves

(14) (y − x̂)T f(x̂;θ,G) ≥ −ε, ∀y ∈ X .

Definition 6 deserves some discussion. First, we note that an approximate NE is just a

solution to a modification of VI(f,X ). Intuitively an approximate NE may be interpreted

as a situation in which each player does not necessarily play his best response, given what

his opponents are playing, but chooses a strategy which is no worse than ε from his best

response.

As a second observation, we note that definition 6 resembles the notion of ε-NE employed

in the context of large games. This literature mainly focuses in binary/discrete actions

games without considering network structures.17

Next we introduce the notion of δ-near NE, which is closely related to definition 6.

Definition 7. Let x∗ be a NE for network game. We will say that x̂ ∈ X is a δ-near NE

if

‖x̂− x∗‖ ≤ δ.

We now are ready to establish the main result of this section

Theorem 3. Let assumptions 1 and 2 hold. Let x∗ be the unique NE of the game. Assume

that the network game has the property of strategic substitutes. Then every ε-approximate

NE x̂ is a
√

ε
µ -near NE of the network game. In particular

‖x̂− x∗‖ ≤
√
ε

µ
,

where µ = κ̄+ κλmin(G).

17See for instance Kalai [2004] and Azrieli and Shmaya [2013].
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Three remarks are in order. Theorem 3 states that a solution to problem (14) allows us

to find an approximation to the unique NE. The striking feature is that the precision of this

approximation is a function of ε, a parameter chosen by the researcher, and the monotonic-

ity modulus µ, which captures the role of the network topology. Thus in games where µ

is very small, we may counterbalance this effect by choosing a smaller ε. Second, theorem

3 states that λmin(G) not only is key in determining the uniqueness and comparataive

statics of a NE, but also in ε-approximate NE. From an applied point of view, theorem 3 is

useful to generate stoping criteria when implementing algorithms to compute equilibrium

points. Finally, we mention that for the case of strategic complements, theorem 3 holds

with µ = κ̄− κλmax(G).

6. Aggregative network games

An aggregative game is a game in which each player’s payoff is affected by its own

action and the aggregate of the actions taken by all the players. Many games studied in

the literature can be cast as aggregative games, including models of competition, patent

races, models of contests and fighting, congestion games, and public good provision games.

While aggregative games is a well studied subject in game theory, most of the literature

has focused on situations without a network structure.18 In this section we introduce the

class of Aggregative Network Games. The key feature of this class of games is that the

payoff for each player is affected by its own action and the aggregate of the actions taken

by his neighbors. Our aim is to understand how the network topology and the structure of

an aggregative game jointly determine the outcomes of the game and their properties. In

doing so, we exploit the results developed in §2-5.

In this section we show that the existence, uniqueness, and comparative statics of an

equilibrium are determined by a specific interaction between the aggregator function, which

captures how players aggregates his neighbors’ actions, and the network structure.

6.1. Environment. We specialize the environment described in §2 to introduce the class

of aggregative network games with a special focus on the case of strategic substitutes.

According to this, players’ payoffs are defined by:

(15) ui(xi, ϕi(x̄−i);θi,G) ∀i ∈ N,

where x̄−i =
∑n

j=1 gijxj and ϕi(x̄−i) = ϕ(x̄−i + θi1), where ϕ : R+ −→ R+ is an “aggrega-

tor” summarizing the behavior of player i’s neighbors.

Formally, the function ϕ may be interpreted as sufficient statistics capturing player i’s

neighbors behavior and the value of the parameter θi1. Two widely used aggregators are

the identity function, i.e., ϕ(x̄−i + θi1) = x̄−i + θi1, and the average function, which in the

18For a recent treatment of this class of games we refer the reader to Acemoglu and Jensen [2013].
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case of a network game is expressed by ϕ(x̄−i + θi1) = d−1
i x̄−i + θi1 with di =

∑n
j=1 gij .

For ease exposition, throughout this section we use the notation ϕi = ϕ(x̄−i + θi1) and

ϕ = (ϕi)i∈N respectively.

We consider a class of games satisfying two general and mild properties in terms of

players’ payoffs.

Assumption 3. For all player i ∈ N , we assume:

(i) The payoff function ui(·, ϕi;θi,G) is continuously twice differentiable and strictly

concave on xi for all x−i ∈ X−i and θi ∈ Θi.

(ii) There exists a constant κ1 > 0 such that:

inf
i∈N

inf
x∈X

{∣∣∣∣∂2ui(xi, ϕi;θi,G)

∂x2
i

∣∣∣∣} ≥ κ1.

(iii) The cross partial derivative

∂ui(xi, ϕi;θi,G)

∂ϕi∂xi
,

is strictly negative and well defined for all x ∈ X , θi ∈ Θi, and (i, j) ∈ L.

(iv) There exists a constant κ2 > 0 such that:

sup
i∈N

sup
x∈X

{∣∣∣∣∂2ui(xi, ϕi;θi,G)

∂ϕi∂xi

∣∣∣∣} ≤ κ2.

Previous conditions are just an adaptation of assumptions 1 and 2. Condition (i) es-

tablishes that players’ payoffs are strictly concave on their own strategies. Condition (ii)

adapt the uniformity condition in assumption 1. Condition (iii) formalizes the fact that

the game is one of strategic substitutes. Finally, condition (iv) establishes that the impact

of a change on the value of ϕi has a bounded effect on players’ marginal utility.

Assumption 4. For all i ∈ N and θi1 assume:

(i) The function ϕ : R+ −→ R+ is strictly increasing and once continuously differen-

tiable with ϕ′i > 0 for all x−i ∈ X−i .

(ii) There exists a constant κ3 > 0 such that

sup
i∈N

sup
x−i∈X−i

ϕ′i ≤ κ3.

Part (i) makes explicit the class of aggregator functions under consideration. Concretely,

it establishes that the function ϕ is strictly increasing and differentiable on R+. It is worth

emphasizing that neither concavity or convexity of ϕ is assumed. Part (ii) establishes

that the first derivative of ϕ is bounded. This condition is satisfied by many aggregators

functions commonly used in economic models. For instance, when ϕi = d−1
i x̄−i + θi1,
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assumption 4 is automatically satisfied with ϕ′i = d−1
i for all i and the parameter κ2 being

defined as κ3 = maxj=1,...,N{d−1
j }.

Combining Eq. (15) with assumption 3 and 4, the Jacobian of the game may be expressed

as:

(16) J(x;θ,G) = D(x) + V(x;θ,ϕ) ·G,

where D(x) = Diag
(
−∂2ui(xi,ϕi;θi,G)

∂x2
i

)
and V(x;θ,ϕ) = Diag

(
−∂2ui(xi,ϕi;θi,G)

∂ϕi∂xi
· ϕ′i
)

.

Similar to the analysis in §3, the Jacobian in Eq. (16) provides us a simple way to

understand the role of ϕ, the concavity of players’ payoff functions, and the network G in

determining the structure and comparative statics of the equilibria of the game.

Theorem 4. Let assumptions 3 and 4 hold. Assume that the game has the property of

strategic substitutes. If the condition

|λmin(G)| < κ1

κ2κ3

is satisfied then:

(i) The map f(x;θ,G) is strongly monotone with modulus µ = κ1 + κ2κ3λmin(G).

(ii) There exists a unique NE.

Three remarks are in order. First, theorem 4 is a specialization of our general result in

theorem 1. In particular, part (i) states the strong monotonicity of f(x;θ,G) in terms of

λmin(G) and the parameters κ1, κ2, and κ3. Second, and as a direct consequence of part

(i), the existence, uniqueness, and stability of a NE is established.. Thus in this class of

games the study of Nash equilibria boils down to understand the relationship between the

network topology and the conditions stated in assumptions 3 and 4.

Finally, we point out that theorem 4 contributes not only to the literature on network

games, but also to the literature on aggregative games in general. As we said before, this

latter literature focuses on situations in which all players are connected, which in terms of

our framework is equivalent to assume that the underlying network is complete. In fact,

for the case of the complete network, we know that |λmin(G)| = 1 so that the condition in

theorem 4 reduces to κ2κ3 < κ1.

Modifying assumption 3(iii) to the case of strictly positive cross partial derivatives, we

get the following direct corollary of theorem 4.

Corollary 3. Let assumptions 3 and 4 hold. Assume that the game has the property of

strategic complements. If the condition

λmax(G) <
κ1

κ2κ3

is satisfied then:
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(i) The map f(x;θ,G) is strongly monotone with modulus µ = κ1 − κ2κ3λmin(G).

(ii) There exists a unique NE.

Example 4. In order to gain some intuition about how theorem 4 may be applied to

concrete economic models, we reconsider Allouch [2015]’s public goods model. We begin

recalling in Allouch’s model, players’ payoffs are defined as:

ui(xi, ϕi; G) = −1

2
(xi + ϕi)

2, for i = 1, . . . , n,

where ϕi = x̄−i − γi(θi1 + x̄−i).

First, note that
∣∣∣∂2ui
∂x2

i

∣∣∣ = 1 for all i ∈ N,x ∈ X which implies that assumption 3(ii) is

satisfied. Finally, in order to satisfy assumption 4 we introduce a simple modification to

the model. Define the constant γ∗′ = infi,x−i{γ′i(θi1 + x−i)}. Using this definition we find

that the derivative of the aggregator ϕi = x̄−i − γi(θi1 + x̄−i) is bounded by κ2 ≡ (1− γ).19

As a conclusion, assumptions 3 and 4 are satisfied and theorem 4 can be applied. �

6.2. Comparative statics. We begin analyzing the effect of an exogenous change on θjs
applying the results from §4. We recall that A denotes the set of active players, which for

sake of exposition is assumed to be connected.

For this class of games, the matrix W∗ is written as:

W∗ = [I + V̂A(x;θ,ϕ)GA]−1

with V̂A(x;θ,ϕ) = Diag
(

∂u∗i
∂ϕi∂xi

ϕ′i/
∂2u∗i
∂x2

i

)
i∈A

.

Proposition 5. Let assumptions 3 and 4 hold and assume that the game has the property

of strategic substitutes. In addition, assume that

|λmin(GA)| < κ1

κ2κ3

holds and let x∗ be a non degenerate NE. Then for θ̃ in a neighborhood of θ, there exists a

locally unique once continuously differentiable equilibrium x(θ̃) such that x∗ = x(θ) with:

(17)
∂x∗i
∂θj

= W∗D̂∗−1
A

where D̂∗−1
A = D∗−1

A ejτjs with τj1 =
∂2u∗j
∂ϕj∂xj

ϕ′
∗
j

[
−∂2u∗j

∂x2
j

]−1

, ϕ′∗j = ϕ′(x̄∗−j + θj1), and

τjs =
∂2u∗j

∂θjs∂xj
·
[
−∂2u∗j

∂x2
j

]−1

for s = 2, . . . , kj.

19It is worth noticing that the class of public goods with Gorman polar payoffs automatically satisfies

this condition.
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Previous proposition is a direct consequence of the results in §4. The new insight is the

role played by ϕ′∗i , which amplifies the effect of an exogenous change on θj1. Thus the

aggregator function not only plays a role in determining the uniqueness and stability of an

equilibrium, but also plays a role in determining the magnitude of exogenous shocks.

Next result reestablishes the bound in proposition 4 highlighting the role of the function

ϕ.

Proposition 6. Let assumptions 3 and 4 hold and consider a network game of strategic

substitutes. For the networks G and G′ with G ⊂ G′ assume that the condition G ⊂ G′,

and assume that the condition

|λmin(G)| < κ1

κ2κ3

holds. Let x∗ be the unique NE for the network G, and let y be a NE for the network G′.

Then

(18) ‖y − x∗‖ ≤ κ2κ3

µ
‖∆y‖

where µ = κ1 + κ2κ3λmin(G) and ∆y = (
∑n

j=1(gij − g′ij)yj)j∈N .

6.3. Applications. In this section we show how our framework applies to two specific

classes of aggregative network games.20 We begin by analyzing the case where the aggre-

gator takes the form of a simple sum. In our second application we study the case where

the aggregator enters additively on players’ payoffs. In the context of strategic comple-

ments, this type of network games has recently been studied by Belhaj et al. [2014] and

Acemoglu et al. [2016]. We show how our framework complements in an important way

their findings.

6.3.1. Application 1. In our first application, we consider that for each player i the aggre-

gator ϕi takes the form

(19) ϕi = x̄−i + θi1 ∀i ∈ N.

From (19) it is easy to check that this aggregator function automatically satisfies as-

sumption 4 with κ3 = 1.

Under assumptions 3 and 4 the condition in theorem 4 boils down to check

|λmin(G)| < κ1

κ2
.

In terms of comparative statics, proposition 5 can easily be applied using the fact ϕ′∗i = 1.

20The details are provided in Appendix A.
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In bounding the effect of changing G, bound (18) takes a simple form. In Appendix A

we show that

‖f(y;θ,G)− f(y;θ,G′)‖ ≤ κ2
‖∆y‖
µ

,

where µ = κ1 + κ2λmin(G), ∆y =
(∑n

j=1(gij − g′ij)yj
)
i∈N

, and ϕi(ȳλ) = λ
∑n

j=1 g
′
ijyj +

(1− λ)
∑n

j=1 gijyj + θi1 for 0 < λ < 1.

Hence, Eq. (18) can be expressed as:

‖x∗ − y‖ ≤ κ2
‖∆y‖
µ

.

Finally, applying theorem 3 the gap between x̂, an ε-approximate NE, and the equilib-

rium of the game x∗ may be written as

‖x̂− x∗‖ ≤
√

ε

κ1 + κ2λmin(G)
.

6.3.2. Application 2. We now analyze the case of aggregative games with payoffs:

(20) ui(xi, ϕi; G) = θi2xi −
1

2
x2
i − xiϕi ∀i ∈ N.

The main feature in specification (20) is that the aggregator ϕi enters additively. This

class of games has been studied by Belhaj et al. [2014] and Acemoglu et al. [2016] in

the context of strategic complements. However, none of these papers provide the results

discussed in this section.

From Eq. (20) is easy to check assumption 3 is satisfied with

inf
i∈N,x∈X

{∣∣∣∣∂2ui(xi, ϕi; G)

∂x2
i

∣∣∣∣} = min
i∈N
{θi2}

and

sup
i∈N,x∈X

{∣∣∣∣∂2ui(xi, ϕi; G)

∂ϕi∂xi

∣∣∣∣} = 1.

Previous expressions yield κ1 = mini∈N{θi2} and κ2 = 1. Assuming that assumption 4

holds, the condition in theorem 4 may be written as

|λmin(G)| < mini∈N{θi2}
κ3

.

Thus in applying theorem 4, we only need to focus on the parameters mini∈N{θi2}, κ3,

and λmin(G), without assumptions about convexity or concavity of the functions ϕis.
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In bounding the effect of modifying the network G, simple algebra shows that bound

(18) may be expressed as:

‖x∗ − y‖ ≤ κ3‖∆y‖
µ

,

with µ = mini∈N{θi2}+ κ3λmin(G) and ∆y =
(∑n

j=1(gij − g′ij)yj
)
i∈N

.

Finally, the approximation result in theorem 3 implies that for all ε > 0, every ε-

approximate NE x̂ satisfies:

‖x̂− x∗‖ ≤
√

ε

mini∈N{θi2}+ κ3λmin(G)
.

7. Network games of mixed interactions

In this section we show how our approach can be used to study games of mixed interac-

tions. Intuitively, a game of mixed interaction is one in which players’ strategies may be

strategic complements and strategic substitutes. In the context of linear-quadratic network

games, Ballester et al. [2006] allow for mixed interactions among players. Most recently,

the paper by Konig et al. [2017] exploits this idea to study network of conflicts.

Our goal is to show how the results derived in §2-5 can be extended in a natural way

to environments with mixed strategic interactions. An important difference with Ballester

et al. [2006] and Konig et al. [2017] is that we do not impose specific functional forms in

deriving our results. A key insight from our results is that the role of complementarity and

sustitubility is fundamental in determining the existence, uniqueness, and the comparative

of statics of a NE.

7.1. Environment. We specialize the environment described in §2 to allow for mixed

interactions. Players’ payoffs are defined by a general function

ui(xi,x−i;θi,G) ∀i ∈ N.

It is assumed that the functions uis satisfy assumption 1.

The main difference with games analyzed in previous sections is that weFormally we

assume that the network G may be written as

(21) gij =


1 if i and j complements.

−1 if i and j are substitutes

0 Otherwise.

.

Let L+ and L− be the set of links between complements and substitutes respectively.

Similarly define g+
ij = max{gij , 0} and g−ij = min{gij , 0} and G+ = (g+

ij)(i,j)∈L+ and G− =

(g−ij)(i,j)∈L− . Previous definitions implies that the network G can be expressed as:

G = G+ −G−.
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Throught this section we shall assume G+ and G− are connected.

Formally, a game with mixed interactions is defined as follows:

Definition 8. Given a parameter vector θ and a (mixed) network G = G+ −G−, we say

that the game has the property of mixed interactions for each player i ∈ N the following

conditions hold:

∂2ui(xi,x−i;θi,G)

∂xj∂xi
< 0 for all (i, j) ∈ L−, x ∈ X ,

∂2ui(xi,x−i;θi,G)

∂xj∂xi
> 0 for all (i, j) ∈ L+, x ∈ X .

The Jacobian of the game. Let f(x,θ,G) be the map defined in Eq. (2). Based on

this definition, we get:

(22) J(x,θ,G) = D(x) + N(x,θ,G+) + N(x,θ,G−)

The matrix D(x) is a diagonal matrix capturing players’ payoff concavity. The matrices

N(x,θ,G+) and N(x,θ,G−) captures the role of G+ and G− respectively. Formally, these

matrices are defined as:

Nij(x;θ,G−) =

{
fij(x;θ,G) if (i, j) ∈ L−;

0 otherwise .

and

Nij(x;θ,G+) =

{
fij(x;θ,G) if (i, j) ∈ L+;

0 otherwise .

It is worth noticing that fij(x,θ,G) > 0 for(i, j) ∈ L− and fij(x,θ,G) < 0 for(i, j) ∈ L+.

With these definitions in hand we are ready to establish the following result

Proposition 7. Let assumptions 1 and 2 hold. If the following condition

(23) |λmin(G−)| < κ̄− κλmax(G+)

κ
,

is satisfied, then:

(i) The map f(x;θ,G) is strongly monotone with modulus µ given by

µ = κ̄+ κλmin(G−)− κλmax(G+).

(ii) There exists a unique NE.
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Two comments are in order. First, Eq. (23) highlights the fact that a specific relation-

ship between λmin(G−) and λmax(G+) determines the existence and uniqueness of a NE.

Intuitively this condition means that the topology of both network must “interact” in a

very particular way in order to obtain a uniquen NE. A second observation is related to

the fact that for the case of G+ being empty, Eq. (7) boils down to |λmin(G−)| < κ̄/κ,

which is exactly the condition in theorem 1. Similarly, for the case of G− being empty,

Eq. (23) becomes λmax(G+) < κ̄/κ which boils down to the uniqueness result for games

with strategic complementarities. Nexy corollary summarizes this observation.

Corollary 4. Let assumptions 1 and 2 hold.

(i) Let G+ be the empty network. If the following condition is satisfied

|λmin(G−)| < κ̄

κ
,

there exists a unique NE.

(ii) Let G− be the empty network. If the following condition is satisfied

λmin(G+) <
κ̄

κ
,

there exists a unique NE.

In order to caractherize the comparative statics of this class of games, we define G+
A and

G−A as the subnetworks of G+ and G− respectively.

Proposition 8. Let assumptions 1 and 2 hold. Let x∗ be a non degenerate NE, and assume

that the following condition holds:

(24) |λmin(G−A)| <
κ̄− κλmax(G+

A)

κ
.

Then for θ̃ in a neighborhood of θ, there exists a locally unique once continuously dif-

ferentiable equilibrium x(θ̃) such that x∗ = x(θ) and

∂x∗A
∂θjs

= W∗D̂∗−1
A

where D̂∗−1
A = D∗−1

A ejτjs for j = 1, . . . , n and s = 1, . . . , kj.

There is an important difference between proposition 8 and theorem 2. In particular,

an exogeneous change affecting player j will affect player i in a different way depending on

the they type of relationship; complements or substitutes. This information is captured in

the construction of the W∗ whose entries depends on the nature of strategic interaction

(complememts or substitutes).

Finally we can adapt our approximation result (theorem 3) in order to show how the

unique equilibrium of this game can be approximated.
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Proposition 9. Let assumptions 1 and 2 hold. Let x∗ be the unique NE of the game.

Then every ε-approximate NE x̂ is a
√

ε
µ -near NE of the network game. In particular

‖x̂− x∗‖ ≤
√
ε

µ
,

where µ = κ̄+ κλmin(G−)− κλmax(G+).

Proposition 9 states that the quality of the approximation depends on the nature of

conflict among players which is captured by λmax(G+) and λmin(G−). Recalling that

λmax(G+) > 0 and λmin(G−) < 0, it follows that the quality of the approximation will

depend on the difference between these two measures. Thus in general we may expect that

approximating the equilibrium x∗ may be harder that the case analyzed in §4.

7.1.1. Application. In order to gain some intuition we consider a particular class of payoff

functions. Concretely we assume that players’ payoffs are given by the following specifica-

tion:

(25) ui(xi,x−i;θi,G) = xi −
1

2
xi + xiϕ(x̄+

−i + θi1)− xiϕ(x̄−−i + θi2),

where x̄+
−i =

∑n
j=1 g

+
ijxj and x̄−−i =

∑n
j=1 g

−
ijxj with θi1 > 0 and θi2 > 0. Similar to §6, the

terms ϕi represent player i’s aggregator function. We assume that this function satisfies

assumption 4.

Thus the class of games with payoffs (25) can be seen as an aggregative network game

which allows for mixed interaction. In fact, it is easy to check:

∂2ui(xi,x−i;θi,G)

∂xj∂xi
= ϕ(x̄+

−i + θi1)g+
ij > 0 for all (i, j) ∈ L+

∂2ui(xi,x−i;θi,G)

∂xj∂xi
= −ϕ(x̄−−i + θi2)g−ij < 0 for all (i, j) ∈ L−

The following result is a direct adaptation of proposition 7.

Proposition 10. Let assumptions 3 and 4 hold. If the condition

|λmin(G−)| < κ1

κ2κ3
− λmax(G+)

is satisfied then:

(i) The map f(x;θ,G) is strongly monotone with modulus

µ = κ1 + κ2κ3(λmin(G−)− λmax(G+)).

(ii) There exists a unique NE.

Similarly, the comparative statics and approximation results in propositions 8 and 9 can

be adapted for this class of games.
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8. Bayesian Network games

In previous sections we have focused on network games of complete information. The

goal of this section is to show how our framework can be adapted to analyze games of

incomplete information. In particular, we relax the assumption that players knows the

parameter vector θ. Instead, we treat θ as a random vector whose values depends on the

realizations of the underlaying state of the nature. We show how a simple adaptation of

the results in §3 allows us to establish the existence and uniqueness of a Bayesian Nash

Equilibrium (BNE).

Some previous papers have studied network games of incomplete information. The paper

by Galeotti et al. [2010] studies Bayesian network games with discrete actions, showing how

incomplete information can be used to reduce the number of equilibria. In the context of

of linear-quadratic games with complementarities, de Marti and Zenou [2015] state the

uniqueness of a BNE. The closest paper to ours, is the recent contribution by Ui [2016]

who also applies VI to Bayesian games. He shows that when the payoff gradient of the

game is strongly monotone at every state, then there exists a unique BNE.

The findings in this section differs from Ui [2016]’s in at least three important aspects.

First, Ui [2016] we provide an explicit condition to guarantee that the payoff gradient is

strongly monotone. In addition, our characterization requires that strong monotonicity

must be satisfied only on a subset of states. Second, we show how our result can be applied

to games of mixed interactions, a class of games not covered by Ui [2016]’s results. Finally,

our uniqueness result applies to network games beyond the linear-quadratic case.

8.1. Players, networks, and strategies. Consider a Bayesian game with a set of players

N = {1, . . . , n}. As before, player i ∈ N has a set of actions Xi ⊆ R+,which is assumed

to be a convex and compact set. We write X =
∏
i∈N Xi and X−j =

∏
j 6=iXj . Players

are embedded in a network, which is represented by G. Similar to §2 we assume that G

is connected. For a given network G, player i’s payoff function is a measurable function

ui(·; ·,G) : X ×Ω −→ R, where (Ω,F ,P) is a probability space. For a particular realization

of ω, we define the parameter vector θ(ω) = (θ1(ω), . . . ,θn(ω)) ∈ Θ.21

Player i’s information is given by a measurable mapping ηi : Ω −→ Yi, where (Yi,Yi)
is a measurable space. Player i’s strategy is a measurable mapping si : Yi −→ Xi with

E(ηi) < ∞. We consider two strategies s1
i and s2

i as the same strategy if s1
i (ηi(ω)) =

s2
i (ηi(ω)) almost surely. Let Si denote player i’s set of strategies and define S =

∏
i∈N Si

and S−i =
∏
j 6=N Sj . We assume that E(ui(s;θi(ω),G)) exists for all s ∈ S.

Throught this section we assume the following

Assumption 5. For all player i ∈ N we assume the following:

21We recall that Θi ⊆ Rkiwith ki ≥ 1 and Θ =
∏n

i=1 Θi.
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(i) ui(·, s−i;θi(ω),G) : Xi −→ R is continuously twice differentiable and strictly con-

cave on xi for each x−i and a.s. for ω ∈ Ω

E

([
∂ui(xi,x−i;θi(ω),G)

∂xi

]2
)
<∞.

(ii) There exists a constant κ̄(ω) > 0

inf
i∈N

inf
x∈X

∣∣∣∣∂2ui(xi,x−i;θi(ω),G)

∂x2
i

∣∣∣∣ ≥ κ̄(ω) a.s. for ω ∈ Ω.

Assumption 6. For all player i ∈ N we assume the following:

(i) The cross partial derivative

∂2ui(x;θi(ω),G)

∂xj∂xi

is well defined for all x ∈ X and (i, j) ∈ L a.s for ω ∈ Ω.

(ii) There exists a constant κ(ω) > 0

sup
(i,j)∈L

sup
x∈X

∣∣∣∣∂2ui(x;θi(ω),G)

∂xj∂xi

∣∣∣∣ ≤ κ(ω) a.s for ω ∈ Ω.

Throughout this section we fix N , X , and (Ω,F ,P) and denote u = (ui)i∈N and η =

(ηi)i∈N . According to this, a strategy profile s ∈ S is is a Bayesian Nash equilibrium iff

E(ui(s(η);θi(ω),G)|ηi) ≥ E(ui(xi, s−i(η−i);θi(ω),G)|ηi) a.s. for ω ∈ Ω.

The gradient payoff of the game is defined as f(x;θ(ω),G) =
(
−∂ui(x;θi(ω),G)

∂xi

)
i∈N

.

Next result establishes the connection between VI and BNE.

Proposition 11. Let assumption 5 hold. Then s∗ ∈ S is BNE of the network game iff s∗

(26) E((s− s∗(η))T f(s∗(η);θ(ω),G)) ≥ 0 for all s ∈ S.

It is easy to see that previous result is a direct extension of proposition 1 to the case of

the incomplete information games.

8.2. The Jacobian the of the game. Similar to §3 we can write down the Jacobian of

the game. Using assumptions 5(i) and 6(i) it follows that

(27) J(x;θ(ω),G) = D(x;θ(ω)) + N(x;θ(ω),G) a.s. for ω ∈ Ω.

It is easy to see that expression (27) is a stochastic version of the Jacobian defined in Eq.

(4).

Applying lemma 1 in Appendix A for all x ∈ X we get

(28) λmin(J̄(x;θ(ω),G)) ≥ λmin(D(x;θ(ω))) + λmin(N̄(x;θ(ω),G)) a.s. for ω ∈ Ω.



34 E. MELO

Using assumptions 5(ii) and 6(ii), we can apply lemma 2 in Appendix A (in an a.s.

sense) to establish that for all x ∈ X the following lower bound holds:

(29) λmin(J̄(x;θ(ω),G)) ≥ κ̄(ω) + κ(ω)λmin(G) a.s. for ω ∈ Ω.

Thus similar to the case of complete information, to determine the positive definiteness

of J(x;θ(ω),G) the parameters κ(ω), κ̄(ω) and λmin(G) are key.

With this observation in place, we are ready to establish the main result of this section.

Theorem 5. Let assumption 5 and 6 hold. Assume that the game has the property of

strategic substitutes. Suppose that the following inequality hold:

(30) |λmin(G)| ≤ κ̄(ω)/κ(ω) a.s. for ω ∈ Ω.

In addition assume that inequality (30) is strict a.s. for ω ∈ M ⊆ Ω where P(M) > 0.

Then there exists a unique BNE.

We remark two features of theorem 5. First, the uniqueness condition is weaker than the

one assumed in theorem 1. In particular, we only need to assume that inequality (30) is

strict only on a subsetM of Ω. The implication of this requirement is that we only need to

verify that f(x;θ(ω),G) is strongly monotone a.s. for ω ∈M, whereas for ω ∈ Ω \M the

map f(x;θ(ω),G) is monotone. The second observation is related to the fact that theorem

5 generalizes the existence and uniqueness result in Ui [2016]. In particular, our result

provides a specific condition in terms of the network topology without assuming specific

functional forms on players’ payoffs. Similarly, Ui [2016]’s uniqueness result assumes that

the payoff gradient of the game must be strongly monotone a.s. for all ω ∈ Ω, while we

only requires that such a condition must be satisfied on a subsetM⊆ Ω with P(M) > 0.

The following corollary establishes the uniqueness of a BNE for the case of strategic

complements.

Corollary 5. Let assumption 5 and 6 hold. Assume that the game has the property of

strategic complements. Suppose that the following inequality hold:

(31) λmax(G) ≤ κ̄(ω)/κ(ω) a.s. for ω ∈ Ω.

In addition assume that inequality (31) is strict a.s. for ω ∈ M ⊆ Ω where P(M) > 0.

Then there exists a unique BNE.

Similarly, theorem 5 can be extended to the case of network games with mixed interac-

tions.

Corollary 6. Consider a Bayesian network game of mixed interactions and let assumption

5 and 6 hold. Suppose that the following inequality hold:

(32) |λmin(G−)| ≤ κ̄(ω)

κ(ω)
− λmax(G+) a.s. for ω ∈ Ω.
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In addition assume that inequality (32) is strict a.s. for ω ∈ M ⊆ Ω where P(M) > 0.

Then there exists a unique BNE.

8.3. Applications. In order to see how previous results apply, we analyze the linear-

quadratic case with incomplete information. Concretely, we consider a network game

where players’ payoffs are given by

(33) ui(xi,x−i;θi(ω),G) = xi −
1

2
x2
i − θi(ω)xix̄−i a.s. for ω ∈ Ω, i ∈ N .

Previous specification makes clear that the parameter θi(ω) is a random variable. According

to this the random vector θ = (θi(ω))i∈N a.s. for ω ∈ Ω.

The Jacobian of this game can be written as:

J(x;ω,G) = I + V(θ(ω))G a.s. for ω ∈ Ω.

Define θ̄(ω) = maxi∈N{θi(ω)} a.s. for ω ∈ Ω. Then the condition in theorem 5 can be

expressed as 1 + θ̄(ω)λmin(G) ≥ 0 a.s. for ω ∈ Ω and for a subset M ⊆ Ω the inequality

is strict. Thus the conditions for the uniqueness of a BNE can be written as:

|λmin(G)| ≤ 1

θ̄(ω)
a.s. for ω ∈ Ω,

|λmin(G)| <
1

θ̄(ω)
a.s. for ω ∈M.

As a second application, consider the class of aggregative games network games analyzed

in §6.3. Accordingly players’ payoffs are given by:

(34) ui(xi, ϕi;θi(ω),G) = θi2(ω)xi −
1

2
x2
i − xiϕ(x̄−i + θi1(ω)) ∀i ∈ N.

Following similar notation used in §5, we can define

κ3(ω) = sup
i∈N

sup
x−i∈X−i

ϕ′(x̄−i + θi1(ω))

and

θ(ω) = min
i∈N
{θi2(ω)} a.s. for ω ∈ Ω.

Then applying theorem 5 to the class of games with payoffs (34), we find that the equilib-

rium is unique when the following inequalities are satisfied:

|λmin(G)| ≤ θ(ω)

κ3(ω)
a.s. for ω ∈ Ω,

|λmin(G)| <
θ(ω)

κ3(ω)
a.s. for ω ∈M ⊆ Ω.

Thus applying theorem 5 we conclude that the class of aggregative network games with

payoffs (34) has a unique BNE.
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9. Conclusions

In this paper we have introduced variational methods to the study of network games.

Using these techniques, we established the existence, uniqueness, and the comparative

statics of a NE for a general class of network games. An important feature of our results is

that we do not have to assume specific functional forms on players’ payoff functions. Our

analysis shows how the interaction between the lowest (largest) eigenvalue of the network,

a parameter measuring players’ payoff concavity, and a parameter capturing the strength of

the strategic interaction among players contain all the relevant information to understand

the outcomes of the game.

Our second contribution is the comparative statics analysis of network games. We fully

characterized the effect of exogenous shocks at the node level. Our characterization sheds

light about the role of the network topology in propagating shocks. From an economic

point of view, our analysis shows that the notion of interdependence applies far beyond

the class of games with linear best responses (Bramoullé and Kranton [2016]). From a

technical point of view, our comparative statics analysis exploits the theory of sensitivity

analysis in VI Kyparisis [1986, 1987] and Tobin [1986].

As a third contribution we show how the quality of approximation of a NE is determined

by the network topology. Our approximation result is useful when numerical methods are

implemented.

Finally, we applied our results to the study of aggregative network games, games of

mixed interactions, and Bayesian network games. For all of these games, we derive simple

conditions highlighting the role of the network topology.
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Appendix A. Proofs

A.1. Preliminaries. We begin this section defining the eigenvalues of a symmetric matrix.

Let A be a n-by-n symmetric matrix. The i-th eigenvalue of A is denoted by λi(A) for

i = 1, . . . , n. The lowest and largest eigenvalue of A are denoted by λmin(A) = λ1(A) and

λmax(A) = λn(A), where

λmin(A) ≤ λ2(A) ≤, · · · ,≤ λn−1(A) ≤ λmax(A).

Next lemma is a simplified version of Weyl’s inequality (Horn and Johnson [1990, Thm.

4.3.1]). For completeness we provide its proof.

Lemma 1 (Weyl’s inequality). Let J = D + N with D and N n-by-n symmetric matrices.

Then the following inequality holds

λmin(J) ≥ λmin(D) + λmin(N).

Proof. In order to proof this inequality we use the well knwon fact that the the λmin(·) is

a concave function.22 In particular for α ∈ [0, 1] and for symmetric matrices D and N we

get

λmin(αD + (1− α)N) ≥ αλmin(D) + (1− α)λmin(N).

In particular, for α = 1/2, we get

λmin(J) ≥ λmin(D) + λmin(N).

�

Definition 9. A matrix M(x) whose elements mij(x) are functions defined on B ⊂ Rn+ is

said to be positive semidefinite (p.s.d) on B, if for every y ∈ B, we have

yT ·M(x) · y ≥ 0.

It is said to be positive definite (p.d) on B, if for every y ∈ B, we have

yT ·M(x) · y > 0.

It is said to be strongly positive definite (s.p.d.) on B if there exists a scalar µ > 0 such

that for every x ∈ B, we have

yTM(x)y ≥ µ‖y‖2, ∀y ∈ B.

22To see this, we note that for a symmetric matrix J its lowest eigenvalue can be obtained as λmin(J) =

minz6=0
zT Jz
zT z

. Because the the operator min is concave, it follows that λmin(·) is concave.
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A.2. Proof of Proposition 1. (=⇒) Let x∗ be a NE and fix player i ∈ N . By assumption

−ui(x∗i ,x∗−i; θi,G) is strictly convex with respect to xi. By the minimum principle, and

defining fi(x
∗
i ,x
∗
−i;θi,G) = −∂ui(x

∗
i ,x−i;θi,G)
∂xi

, we obtain

(yi − x∗i )fi(x∗i ,x∗−i;θi,G) ≥ 0, ∀yi ∈ Xi.

Thus, if x∗ is a NE, and by concatenating previous expression, it follows that x∗ must solve

VI(f,X ).

(⇐=) Suppose that x∗ solves VI(f,X ). Defining fi(x
∗
i ,x
∗
−i;θi,G) = −∂ui(x

∗
i ,x−i;θi,G)
∂xi

,

previous condition implies that for each player i ∈ N we get

(yi − x∗i )fi(x∗i ,x∗−i;θi,G) ≥ 0, ∀yi ∈ Xi.

By the convexity of −ui we get

−ui(yi,x∗−i,θi; G) ≥ −ui(x∗i ,x∗−i;θi,G) + (yi − x∗i )fi(x∗i ,x∗−i;θi,G).

Using the fact that (yi − x∗i )fi(x∗i ,x−i;θi,G) ≥ 0 we obtain

ui(x
∗
i ,x
∗
−i;θi,G) ≥ ui(yi,x∗−i;θi,G), ∀yi ∈ Xi.

Because last expression holds for all i ∈ N the conclusion follows. �

A.3. Proof of proposition 2. We only proof part ii). The argument for i) and iii) is

identical. Let x1 and x2 be two arbitrary vectors in X . Let

φ(λ) = (x1 − x2)T f(λx1 + (1− λ)x2;θ,G), 0 ≤ λ ≤ 1.

Since, by assumption X is convex, λx1 + (1 − λ)x2 ∈ X for all 0 ≤ λ ≤ 1. From the

definition of φ(λ), we get

φ(1)− ϕ(0) = (x1 − x2)T (f(x1;θ,G)− f(x2;θ,G)).

By the mean value theorem we know that φ(1)− φ(0) = φ′(λ̄) for some 0 < λ̄ < 1. Noting

that φ′(λ̄) = (x1 − x2)T · J(xλ̄;θ,G) · (x1 − x2) with xλ̄ = λ̄x1 + (1− λ̄)x2, we find that

(35) (x1 − x2)T (f(x1;θ,G)− f(x2;θ,G)) = (x1 − x2)TJ(xλ̄;θ,G)(x1 − x2).

From equation (35) we get that if J(x;θ,G) is positive definite, then

(x1 − x2)T (f(x1;θ,G)− f(x2;θ; G)) ≥ λmin(J(xλ̄;θ,G))‖x1 − x2‖2 > 0 ∀x ∈ X ,

so that we conclude f(x;θ,G) is strictly monotone. �

In order to prove proposition 3 we need the following technical result.

Lemma 2. Let assumptions 1 and 2 hold. In a network game of strategic substitutes, if

the condition

|λmin(G)| < κ̄/κ

holds, then J(x;θ,G) is strongly positive definite with modulus µ = κ̄+ κλmin(G).
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Proof. To analyze the positive definiteness of J(x;θ,G) we consider its symmetric part.

Applying lemma 1 combined with the definition of λmin(N̄) we get

λmin(J̄(x;θ,G)) ≥ λmin(D(x)) + min
z 6=0

zT N̄z

zT z
.

By assumption 2 it follows that minz 6=0
zT N̄z
zT z

= minz6=0
zT [N+NT ]z

2zT z
≥ κminz6=0

zTGz
zT z

=

κλmin(G). This latter fact implies combined with assumption 1 implies

λmin(J̄(x;θ,G)) ≥ κ̄+ κλmin(G).

Finally the condition |λmin(G)| < κ̄/κ implies that λmin(J̄(x;θ,G)) ≥ κ̄+ κλmin(G) >

0, which allows us to conclude the strong monotonicity of the Jacobian where the mono-

tonicity modulus µ can be defined as µ = κ̄+ κλmin(G). �

A.4. Proof of Proposition 3. By Lemma 2, we know the condition |λmin(G)| < κ̄/κ

implies that J(x;θ,G) is strongly for all x ∈ X . Combining this fact with proposition

2(iii), we conclude f(x;θ,G) is strongly monotone mapping with monotonicity modulus

µ = κ̄+ κλmin(G). �

Lemma 3. [More (1974)] Let f(x,θ,G) be the map defined in Eq.(2). Assume that for

some fixed y ∈ X the condition:

(x− y)T (f(x;θ,G)− f(y;θ,G))

‖x− y‖
−→ ∞

holds as ‖x‖ −→ ∞, x ∈ X . Then there exists a NE.

Proof. This result follows from Facchinei and Pang [2003, Thm. 2.3.3(b)]. �

A.5. Proof of Theorem 1.

(i) Existence. By proposition 1 By proposition 3 we know that f(x,θ,G) is strongly

monotone. For a fixed y ∈ X strong monotonocity implies that

(x− y)T (f(x;θ,G)− f(y;θ,G))

‖x− y‖
≥ µ‖x− y‖.

For ‖x‖ −→ ∞ it follows that

(x− y)T (f(x;θ,G)− f(y;θ,G))

‖x− y‖
−→ ∞.

Then by lemma 3 the existence of a NE follows.
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(ii) Uniqueness. By mean of contradiction, assume that the network game has two

NE denoted by x∗ and y∗ respectively. From Proposition 3 we know that the

condition |λmin(G)| < κ̄/κ implies that f(x;θ,G) is strongly monotone. Then we

must have

0 < (x∗ − y∗)T (f(x∗;θ,G)− f(y∗;θ,G)),

= x∗T f(x∗;θ,G)− x∗T f(y∗;θ,G)− y∗T f(x∗;θ,G) + y∗T f(y∗;θ,G),

= −x∗T f(y∗;θ,G)− y∗T f(x∗;θ,G) ≤ 0,

which is a contradiction. Thus we conclude that the NE is unique. �

A.6. Proofs of section 3.4. Here we provide the details for the applications in §3.4.

A.6.1. Linear quadratic games. For this class of games the strict monotonicity of f(x,θ,G)

is determined by the positive definiteness of J(x,θ,G) = I+V(θ)·G. Because this Jacobian

is asymmetric, we look at its symmetric part, which is given by:

J̄(x;θ,G) = I +
1

2
[V(θ) ·G + G ·V(θ)] .

Applying lemma 2, it follows that the lowest eigenvalue of 1
2 [V(θ)·G+G·V(θ)] is bounded

below by λmin(G) · θ̄, where θ̄ = maxi∈N{θi}.
It follows then that J̄(x;θ,G) is positive definiteness when 1+λmin(G)·θ̄ > 0. This latter

condition implies, by proposition 3, that f(x;θ,G) is strongly monotone when |λmin(G)| <
1
θ̄
. Then by theorem 1 the existence and uniqueness of a NE follows at once. �

A.7. Proof of corollary 1.

A.7.1. Public goods in networks. For this class of games the Jacobian is given by:

J(x;θ,G) = I + V(x,θ) ·G.

Because this matrix is asymmetric, we look at its symmetric part given by:

J̄(x;θ,G) = I +
1

2
[V(x;θ) ·G + G ·V(x;θ)] .

For a given x, define γ′ = mini∈N{γ′i(θi + x̄−i)}. Combining this definition with lemma 1

we find 1
2 [V(x,θ) ·G + G ·V(x,θ)], we get

λmin

(
1

2
[V(x,θ) ·G + G ·V(x,θ)]

)
≥ (1− γ′)λmin(G).

By proposition 3, we know that |λmin(G)| < 1
1−γ′ implies that f(x,θ,G) is strongly

monotone with modulus µ = 1 + (1 − γ′)λmin(G). Applying theorem 1 we conclude that

the network game has a unique NE. �
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A.7.2. Cournot in networks. In this model, the symmetric part of the Jacobian is given by

J̄(x;θ,G) = D(x) +
1

2
[V(x,θ) ·G + G ·V(x,θ)] ,

where D(x) = Diag(c′′i − 2P ′i − xiP ′′i )i∈N and V(x,θ) = Diag (−(P ′i + P ′′i xi)θi)i∈N .

Applying lemma 1 to 1
2 [V(x,θ) ·G + G ·V(x,θ)] combined with the definition of κ we

get:

λmin

(
1

2
[V(x,θ) ·G + G ·V(x,θ)]

)
≥ κλmin(G).

By the definition of κ̄ get

λmin(J̄(x;θ,G)) ≥ κ̄+ κλmin(G).

Then |λmin(G)| < κ̄/κ implies the existence and uniqueness of a NE. �

A.8. Proof of Theorem 2. By assumptions 1 and 2, it follows that the J∗A is well defined.

Moreover, by lemma 2 we get:

λmin(J∗A) ≥ κ̄+ κλmin(GA).

From previous inequality, it follows that the condition |λmin(GA)| < κ̄/κ implies that J∗A
is strongly positive definite. This latter fact allows us to apply Tobin [1986, Cor. 2.1],

impliying the existence of a locally unique NE. Finally, by Tobin [1986, Thm. 3.1 ] the

locally unique equilibrium x∗ = x(θ) is differentiable. Thus implicit differentiation yields

formula (11). �

A.9. Proof of Proposition 4. . Let x∗ be the unique equilibrium under G. Similarly,

let y be an equilibrium under G′. From proposition 1 we know that x∗ and y must satisfy:

(y − x∗)T f(x∗;θ,G) ≥ 0,

(x∗ − y)T f(y;θ,G′) ≥ 0.

Adding up these expressions we get:

(y − x∗)T (f(y;θ,G′)− f(x∗;θ,G)) ≤ 0.

This condition can be rewritten as:

(y − x∗)T ((f(y;θ,G′)− f(y;θ,G)) + f(y;θ,G)− f(x∗;θ,G)) ≤ 0.

It follows then

(y − x∗)T (f(y;θ,G)− f(x∗;θ,G)) ≤ (y − x∗)T (f(y;θ,G)− f(y;θ,G′)).
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Combining the strong monotonicity of f(x,θ,G) with the Cauchy-Schwartz’s inequality

we get:

‖y − x∗‖2µ ≤ ‖y − x∗‖‖f(y;θ,G)− f(y;θ,G′)‖
Thus we conclude

‖y − x∗‖ ≤ 1

µ
‖f(y;θ,G)− f(y;θ,G′)‖.

�

A.10. Proof of Theorem 3: Let x∗ be the unique NE. Let x̂ be a ε-approximate solution.

Because x̂ ∈ X , it follows that

0 ≤ (x̂− x∗)T f(x∗;θ,G) = [f(x∗;θ,G)− f(x̂;θ,G) + f(x̂;θ,G)].

0 ≤ (x̂− x∗)T (f(x∗;θ,G)− f(x̂;θ,G)) + (x̂− x∗)T f(x̂;θ,G).

Rearranging the last inequality we get the following:

(x̂− x∗)T (f(x̂;θ,G)− f(x∗;θ,G)) ≤ (x̂− x∗)T f(x̂;θ,G).

Using the fact that under assumptions 1 and 2 the map f is strongly monotone with

modulus µ = κ̄+ κλmin(G), we get

µ‖x̂− x∗‖2 ≤ (x̂− x∗)T f(x̂;θ,G).

Noting that x̂ is a ε-approximate NE, and using the fact that (x∗ − x̂)T f(x̂;θ,G) ≥ −ε
may be written as (x̂− x∗)T f(x̂;θ,G) ≤ ε, we obtain:

µ‖x̂− x∗‖2 ≤ ε.

Finally, from previous expression we conclude that:

‖x̂− x∗‖ ≤
√
ε

µ
.

A.11. Proof of Theorem 4.

(i) Strong Monotonicity: The Jacobian for this game is given by Eq. (16). Its sym-

metric part may be expressed as

J̄(x;θ,G) = D(x) +
1

2
[V(x;θ,ϕ) ·G + G ·V(x;θ,ϕ)] .

Applying lemma 1, we get

λmin(J̄(x;θ,G)) ≥ λmin(D(x)) + λmin

(
1

2
[V(x;θ,ϕ) ·G + G ·V(x;θ,ϕ)]

)
Using assumptions 3 and 4 we obtain:

λmin(J̄(x;θ,G)) ≥ κ1 + κ2κ3λmin(G).
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Thus when |λmin(G)| < κ1
κ2κ3

the map f(x;θ,G) is strongly monotone with mod-

ulus µ = κ1 + κ2κ3λmin(G) > 0 .

(ii) The existence and uniqueness follows from applying the same arguments used in

proving theorem 1 combined with part(i). �

A.12. Proof of proposition 5. It follows from applying the same logic used in proving

theorem 2. �

A.13. Proof of Proposition 6. By proposition 4 we know:

‖y − x∗‖ ≤ 1

µ
‖f(y;θ,G)− f(y;θ,G′)‖.

By a mean value argument is easy to see

‖f(y;θ,G)− f(y;θ,G′)‖ ≤ κ2κ3‖∆y‖.

We get

‖y − x∗‖ ≤ κ2κ3

µ
‖∆y‖

�

A.14. Proofs of sections 6.3.1 and 6.3.2.

A.14.1. Details section 6.3.1. Here we provide the details needed to obtain the bound in

section 6.3.1. First, for each i ∈ N , a mean value arguments allows us to write down the

following:

fi(y;θ,G)− fi(y;θ,G′) =
∂2ui(yi, ϕi(ȳλ);θi,G)

∂ϕi∂xi
ϕ′i(ȳλ)∆iy,

where ∆iy =
∑n

j=1(gij − g′ij)yj and ϕi(ȳλ) = λ
∑n

j=1 gijyj + (1 − λ)
∑n

j=1 g
′
ijyj with

0 < λ < 1.

It follows that

‖f(y;θ,G)− f(y;θ,G′‖ ≤ κ2κ3‖∆y‖.

Then

‖x∗ − y‖ ≤ κ2κ3

µ
‖∆y‖.

�
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A.14.2. Details section 6.3.2: Here we provide the details needed to obtain the bound in

section 6.3.2. For each i ∈ N , the mean value theorem allows us to write down the following

inequality:

fi(y;θ,G)− fi(y;θ,G′) = ϕ′i(ȳλ)∆iy,

where ∆iy =
∑n

j=1(gij − g′ij)yj and ȳλ = λ
∑n

j=1 gijyj + (1 − λ)
∑n

j=1 g
′
ijyj + θi with

0 < λ < 1.

By assumption 4, it follows that

‖f(y;θ,G)− f(y;θ,G′)‖ ≤ κ3‖∆y‖.

Hence we conclude

‖x∗ − y‖ ≤ κ3‖∆y‖
µ

.

�

A.15. Proof of proposition 7. (i) We begin noting the a direct application of lemma 1,

combined with assumptions 1 and 2, yields:

λmin(J(x;θ,G)) ≥ κ̄+ κλmin(G−)− κλmax(G+).

Under condition Eq. (23) previous expression is strictly positive. By proposition 2(iii) im-

plies that f(x;θ,G) is strongly monotone with modulus µ = κ̄+κλmin(G−)−κλmax(G+).

(ii) The strong monotonicity of f(x;θ,G) combined with proposition 3 the existence and

uniqueness of a NE follows at once. �

A.16. Proof of proposition 8. This result is a direct application of theorem 2. �

A.17. Proof of proposition 9. It follows from theorem 3 with µ = κ̄ + κλmin(G−) −
κλmax(G+). �

Lemma 4. Let assumption 5 and 6 hold. Suppose that the following inequality hold:

(36) |λmin(G)| ≤ κ̄(ω)/κ(ω) a.s. ω ∈ Ω.

In addition assume that inequality (36) is strict a.s. for ω ∈M ⊆ Ω with P(M) > 0. Then

(i) The Jacobian J(x;θ(ω),G) is positive semidefinite a.s. for ω ∈ Ω.

(ii) The Jacobian J(x;θ(ω),G) is strongly positive definite a.s. for ω ∈M.

(iii) The map f(x;θ(ω),G) is monotone a.s. for ω ∈ Ω and strongly monotone with

modulus µ(ω) = κ̄(ω) + κ(ω)λmin(G) a.s. for ω ∈M.

Proof. The proof of parts (i) and (ii) follow from definition 9 combined with Eq. (29). The

proof of part (iii) is a direct application of proposition 2. �
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A.18. Proof of proposiition 5. Proof. Existence: The existence follows from the com-

pactness of X and the continuity of f(s;θ(ω),G) combined with proposition 2 in Ui [2016].

Uniqueness: Let s1 and s2 be two BNE. Then the following conditions must hold:

E((s2(η)− s1(η))T f(s1(η);θ(ω),G)) ≥ 0,(37)

E((s1(η)− s2(η))T f(s2(η);θ(ω),G)) ≥ 0.(38)

Adding up (37) and (38) we get:

(39) E((s2(η)− s1(η))T (f(s2(η);θ(ω),G)− f(s1(η);θ(ω),G)) ≤ 0.

Last expression can be written as23

E((s2(η)− s1(η))T (f(s2(η);θ,G)− f(s1(η);θ,G))) =

∫
Ω\M

(s2(η)− s1(η))T (f(s2(η);θ,G)− f(s1(η);θ,G)dP.

+

∫
M

(s2(η)− s1(η))T (f(s2(η);θ,G)− f(s1(η);θ,G)dP

By assumption inequality (32) holds a.e. for ω ∈ Ω. This condition implies that

f(s(η), ω,G) is monotone. In particular, for the subset Ω \ ω we can write down

(40)

∫
Ω\M

(s2(η)− s1(η))T (f(s2(η);θ,G)− f(s1(η);θ,G)dP ≥ 0.

Similarly, for M we get

(41)∫
M

(s2(η)− s1(η))T (f(s2(η);θ,G)− f(s1(η);θ,G)dP >
∫
M
µ(ω)‖s1(η)− s2(η)‖2dP > 0

where µ(ω) = κ̄(ω) + κ(ω)λmin(G).

From Eqs. (40) and (41) we find

E((s2(η)− s1(η))T (f(s2(η);θ,G)− f(s1(η);θ,G))) ≥
∫
M
µ(ω)‖s1(η)− s2(η)‖2dP > 0,

which contradicts Eq. (39). Therefore we must have s1(η(ω)) = s2(η(ω)) a.s. for ω ∈ Ω.

�
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