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Abstract

This paper analyzes the effect of environmental policies on the direction of energy
innovation across countries over the period 1990-2012. Our novelty is to use thresh-
old regression models to allow for discontinuities in policy effectiveness depending on
a country’s relative competencies in renewable and fossil fuel technologies. We show
that the dynamic incentives of environmental policies become effective just above the
median level of relative competencies. In this critical second regime, market-based
policies are moderately effective in promoting renewable innovation, while command-
and-control policies depress fossil based innovation. Finally, market-based policies
are more effective to consolidate a green comparative advantage in the last regime.
We illustrate how our approach can be used for policy design in laggard countries.

Keywords: Directed technical change; threshold models; environmental policies;
policy mix.

JEL classification: Q58, Q55, Q42, Q48, O34

1 Introduction

The Paris Agreement, signed in December 2015 by 195 parties, represents a global action
plan to address climate change by limiting global warming to well below two degrees.
One key feature of the Agreement, compared to the Kyoto Protocol, is that all countries
committed to undertake an active role to reduce greenhouse gas (GHG) emissions, even
if recognizing the principle of “common but differentiated responsibilities and respective
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†Université Côte d’Azur, CNRS, Gredeg, OFCE SciencesPo and SKEMA Business School, France,
lionel.nesta@unice.fr

‡FEEM and CMCC, Italy elena.verdolini@feem.it
§OFCE SciencesPo, SKEMA Business School and Université Côte d’Azur (GREDEG)
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capabilities”. This important political turnaround reflects a more general shift in policy
making, whereby fast-developing and developing countries are taking a more active role
in addressing the challenges linked with sustainable development. With respect to cli-
mate change, stronger commitment arose from the fast growth in global share of GHG
emissions from BRIICS countries in last two decades1 and from growing concerns in
developing and fast-developing countries over the consequences of climate change.

A crucial step in successfully curbing emissions is to promote innovation in green
technologies. This opens up opportunities as well as burdens for both developing and
fast-developing countries, and raises some key questions related to the design of effective
climate policies. What is the optimal policy portfolio to redirect innovation towards
low-carbon technologies? Are policy instruments equally effective in developed and
developing countries? And, given the strong path dependency in innovation, how can
emerging economies move from being laggards in low-carbon innovations to becoming
leaders in this promising domain?

This paper proposes a new empirical methodology to provide a preliminary and nec-
essarily incomplete answer to these questions, shedding light on the choice of the appro-
priate policy instrument to promote green innovation in countries at different stages of
technological development. Using information on patent production and environmental
policies, we test whether the dynamic incentives of different policy instruments exhibit
discontinuities depending on the country’s technological know-how. In this context, the
factor mediating policy effectiveness is the level of relative technological specialization
of a given country, which is measured by the ratio of the stock of patents in green versus
brown energy technologies. This variable captures the path-dependency in the direction
of energy innovation of a given country.

Detecting discontinuities in policy effectiveness is essential for identifying the envi-
ronmental policies that are relevant at specific stages of technological development. To
the best of our knowledge, the current empirical literature on the determinants of energy
innovation and on directed technical change has ignored this issue.2 The starting point
of our paper is to see the inducement effect of environmental policies on the direction
and the rate of innovation as a particular case within the more general debate on the
theoretical relationship between optimal policy and the stage of technological develop-
ment (Acemoglu et al. 2006, Aghion & Howitt 2006). As suggested by Acemoglu et al.
(2006), policies should be changed at the right moment to switch from an investment-
based strategy for countries far from the technological frontier to an innovation-based
strategy for countries near the frontier. Understanding whether and to what extent
policy effectiveness depends on the stage of technological development would provide a
much-needed foundation for clearer policy insights to emerging economies such as China
and India. For these countries, which also face other development challenges, the choice

1As of today, 2/5 of global GHG emissions comes from BRIICS: Brazil 2.3%; Russia 5%, but second
after the USA in per-capita terms; China 26.8%, reflecting the boom of Chinese industrial production
after the entry in the WTO in 1999; India 6.7% and South Africa 1.1%

2See for instance Popp (2002), Johnstone et al. (2010), Verdolini & Galeotti (2011), Nesta et al.
(2014), Noailly & Smeets (2015), Aghion et al. (2016), Calel & Dechezleprêtre (2016).
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of the most effective policy instrument is indeed a crucial concern.3 Our research ad-
dresses this general issue using energy innovations as an important case study, given the
potential opportunities and burdens opened by the Paris Agreement

To identify different regimes of policy effectiveness, we adapt Hansen’s threshold
effect model (Hansen 1999), which is particularly suited to empirically detect regime
switches in the effect of a certain (policy) variable contingent on specific contextual fac-
tors, i.e. green vs. brown technological specialization. We amend the model in two ways.
First, we use the pre-sample mean of the dependent variable to model unobservable indi-
vidual effects in a flexible way (Blundell et al. 2002). This method is particularly useful
in retrieving consistent estimates of variables that have minimal variation over time,
such as environmental policies. Second, we test the presence of discontinuities in the
effect of two different policy instruments. As discussed at length below, countries can
adopt either market-based (i.e. subsidies and taxes) or command-and-control policies
(i.e. emission standards) to address climate change mitigation. These policy instruments
differ in effectiveness and in political acceptability, but also, and more importantly in
our context, in dynamic incentives to innovate. Furthermore, we address the issue of
environmental policies endogeneity through an IV strategy. The main concern in ad-
dressing endogeneity is not to retrieve a precise estimate of the effect of each policy, but
rather to validate the thresholds of technological specialization around which the policy
effect significantly changes using arguably exogenous variations in policy stringency.

Our main finding is that there exist two discontinuities in policy effectiveness de-
pending on the in-house competencies in renewable relative to fossil fuel technologies.
This suggests the presence of three policy regimes. In countries whose level of relative
competencies is below the median, neither market-based nor command-and-control poli-
cies being effective in promoting greener technology options (first regime). As countries
increase their specialization towards renewable innovation, the dynamic incentives of
environmental policies become powerful. In this critical second regime, market-based
policies are moderately effective in promoting green innnovation, while command-and-
control policies play an important role in depressing brown innovation. Finally, only
market-based policies are effective in the third policy regime, allowing to consolidate a
comparative advantage in renewable energy technologies. These findings lead to a key
policy implication: countries need to strengthen their level of green relative to brown
technological competencies before they can fully benefit from the dynamic incentives of
environmental policies.

The remainder of the paper is organized as follows. Section 2 contains a conceptual
discussion on the importance of discontinuities in the effects of policies as contingent

3Our contribution specifically focuses on the dynamic incentives of domestic policies. Recent contri-
butions in this literature have pointed to the role played by foreign (demand-pull) policies in promoting
domestic innovation (Peters et al. 2012, Dechezleprêtre & Glachant 2014) or foreign patenting (Verdolini
& Bosetti 2017). However, available evidence confirms that the role of foreign demand is significantly
less strong that that of domestic demand and policies. In the case of wind, for instance, Dechezleprêtre
& Glachant (2014) shows that the marginal impact of foreign demand is considerably lower – by a factor
of 12 – that of domestic demand in a sample of OECD countries. In Section 5.1 we briefly return on this
issue, describing the robustness of our results to the inclusion of proxies for foreign demand pull.
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on technological competencies. Section 3 presents our empirical approach by detail-
ing the modifications to Hansen’s threshold model, describing our data and sources,
and discussing the instrumental variables chosen to address the concerns related to the
endogeneity of the policy variables. Sections 4 and 5 present and discuss our results,
respectively. Section 6 concludes, highlighting the key policy implications of our analysis.

2 Discontinuous Policy Effects on Innovation

The idea that appropriate policy choice is contingent on the stage of technological devel-
opment of a country is certainly not new in the literature on economic growth. Rodrik
(2005) provides a thorough discussion of the appropriate growth strategy, defined as mix
of policies and institutions, for countries at different stages of economic development.
Several papers relate the emergence of multiple equilibria and poverty traps to factors,
and thus implicitly to policies, affecting the accumulation of physical (see, e.g., Murphy
et al. 1989) and human capital (see, e.g., Galor & Zeira 1993) as well as technological
development (see, e.g., Howitt & Mayer-Foulkes 2005). This notwithstanding, only Ace-
moglu et al. (2006) develop an endogeneous growth model that explicitly examines how
the choice of the appropriate policy depends on the distance to the technological fron-
tier. In this model, laggard countries do not have enough competencies to innovate, but
invest in order to enhance their capacity to absorb foreign innovations. At an early stage
of development, entry barriers and anticompetitive strategies can favour technological
catching-up because they magnify the appropriability of these investments in absorptive
capacity. However, as countries approach the technological frontier, a switch in policy is
required to jump to an innovation-based growth path, which entails greater competition
and the continuous entry of newcomers to boost the emergence of new ideas. Impor-
tantly, the model exhibits discontinuities: countries that reach a certain threshold of
competencies but do not switch to innovation-based policies remain stack into a non
catching-up trap.

These policy threshold effects are extremely important when two technologies com-
pete with one another, as in the case of green vs. brown innovations. Indeed, what
matters in the context of competing technologies is not the overall level of competencies,
but the existing comparative advantages in one technology versus the alternative. As
pointed out by the seminal work of Arthur (1989), pure market forces may not ensure
that the most socially desirable technology prevails. In the presence of increasing returns
in technological adoption, small random variations in the initial number of adopters may
lock the economic system into an inefficient, or less socially desirable, technology. The
paradox is that although technological selection can occur through small random events,
escaping the lock-in may become very costly because increasing returns in adoption are
further reinforced by complementary investments in the dominant technology.

Acemoglu et al. (2012) study the path-dependency in green vs. brown innovation
as function of environmental policies and of the ratio of the accumulated competen-
cies. Their model shows that, provided that the degree of substitution between green
and brown technologies is not too low, there always exists a policy stimulus that allows

4



to switch on a greener innovation path and, at the same time, sustain long-term eco-
nomic growth. Notably, the magnitude of the policy response required to redirect energy
innovation depends on the relative technological maturity of brown and green technolo-
gies. As a result, the system can exhibit sharp nonlinearities in policy effectiveness as
dependent on the relative degree of specialization in green versus brown technologies.

In practice, redirecting energy innovation is an enormous endeavor. The energy sys-
tem is locked in fossil fuel technologies both because of accumulated learning and because
of the support of an extensive infrastructure of fuel supply, distribution, maintenance
and ancillary services (Kline 2001). Improving the efficiency of well-established fossil
fuel technologies through more incremental changes (i.e. brown innovation) is presum-
ably easier than investing in radical, yet uncertain innovation in renewable energy, which
entails large fixed costs to learn and experiment (i.e. green innovation). In this respect,
the transition from fossil fuel to renewable technologies can be seen as a case of locking-
out. The energy system should gradually replace a well-established dominant technology
with a new competing technology triggering a virtuous cycle whereby increased adoption
gives rise to further technological developments. In this context, the possibility that a
policy stimulus may be too small to trigger a virtuous circle of clean innovations is not
a remote concern, but rather constitutes a central problem for policy design.

Surprisingly, while the issue of switching from a dominant technology to a new tech-
nology has been addressed from different theoretical perspectives, empirical research is
scant on the role of policy in making a technological lock-out feasible. The main contri-
bution of our paper is to present an empirical case study of how policies may contribute
to lock out from a mature technology (fossil fuel) to a new technology (renewables). In
doing so, our second contribution is to use a methodology, the threshold effect model
developed by Hansen (1999), that allows to empirically identify discontuinities in policy
effectiveness. We differ from earlier empirical tests based on the model of Acemoglu
et al. (2012), which assume the effect of environmental policies as independent from the
level of competencies in clean relative to dirty technologies (Aghion et al. 2016, Noailly
& Smeets 2015). By explicitly allowing for the policy effectiveness to depend on the
past competencies in green and dirty technologies, we relax and empirically test this
assumption.

Our final contribution concerns the choice of the appropriate policy instrument in
environmental economics. To spur environmental innovations, the choice of the appro-
priate policy is complicated by multidimensionality. We distinguish between policies
that affect innovation directly and indirectly.

On the one hand, policies such as green public research and development (R&D) in-
vestments affect innovation directly and purposively aim at building technological com-
petencies in a given domain. These investments represent an essential policy in building
a critical level of competencies (Freeman 1982), but usually their effects emerge with
a long time delay. In the case of energy innovation, Popp (2016) shows that research
outputs from basic R&D projects appear after a time span of up to ten years. This is due
to the fact that building competencies necessarily involved a wide variety of public and
private institutions active in upstream research, namely public research organizations
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and private firms. But equating technological competencies with upstream research ex-
clusively would downplay the role of downstream applications as a source of new ideas
(Rosenberg 1982). Technological trajectories are the product of technology develop-
ers and final adopters, due to the multiple linkages that bond end-users with inventors
(Kline & Rosenberg 1986). Whether technology-pushed or demand-pulled (Dosi 1982),
innovations always involve the commitment of a great variety of actors. In these complex
networks, government intervention is essential (Mazzucato 2015) not only in reducing
the level of uncertainty born in research activities but also in providing markets with
clear signals on where, when and how to invest.4

On the other hand, all those instruments which directly address environmental exter-
nalities also indirectly affect the incentives to invest in green innovations. Among these,
economists generally distinguish between command-and-control (CC) and market-based
(MB) approaches (Requate 2005). The most commonly used command-and-control in-
struments are standards regulating either the type of technology adopted or the level
of emissions. Commonly adopted market-based instruments include subsidies on abate-
ment of emissions, tradable permits, and to a lesser extent, emission taxes.

Economists’ preference for MB instruments is by virtue of their static efficiency:
MB instruments incentivize pollution reductions through either direct or indirect prices,
leaving firms free to decide how much they want to emit or to abate. In a competitive
market, such instruments lead to the equalization of marginal abatement costs for all
actors in the market, meaning that a given emission target is reached at the lowest pos-
sible cost. However, as shown by the seminal paper by Weitzman (1974), this conclusion
is sensitive to the way of abatement costs and benefits are designed: price-based policies
outperform quantity-based policies only when uncertainty regarding abatement costs is
relatively low and when technological alternatives are relatively abundant.5 Further,
the superior performance of MB instruments over CC instruments is not warranted if
one either relaxes the assumption of perfectly competitive markets or considers the dy-
namic incentives to innovation associated with each policy (Requate 2005). Empirically,
a growing literature on the determinants of renewable energy innovations did not reach
a firm conclusion on the superiority of one instrument over the other (Johnstone et al.
2010, Nicolli & Vona 2016). Using the long history on environmental policies of the
USA, two papers examined the effect of a change in policy strategy. Popp (2003) shows
that after the passage of the 1990 CAAAs, which instituted permit trading, innovation
activity decreased in intensity. However, he also shows that the inventions developed
under the market-based policy were of higher efficiency than those developed under the
command-and-control regulation. Taylor (2012) shows that for both the US cap-and-
trade program for SO2 emissions and the Ozone Transport Commission NOx Budget

4For the case of green technologies, Mazzucato (2015) provides evidence on the crucial role of federally
funded R&D research labs for the development of green start-ups. Vona et al. (2017) show that the
presence of these public research laboratories and of green inventors favour the emergence of green
industrial clusters in US regions.

5Extensions of the Weitzman’s model that incorporate technology choices are carried out in a static
framework and therefore did not allow for path dependency in innovation, i.e., the influence of past
competencies on the probability of innovating (e.g., Krysiak 2008).
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Program, patenting activity collapsed when traditional CC regulation was replaced by
a cap-and-trade program (MB). A likely explanation put forward in the analysis is that
planned investments in clean technologies, which are spurred by the expectation of high
permit prices, are reduced once the economic actors realize that the regulation may not
be as stringent as expected. Another explanation is that either MB or CC policies can
be appropriate at a different stage of technological development.

To deal with policy multidimensionality, our working assumption is that any policy
indirectly affecting innovation rests upon a critical accumulation of scientific and tech-
nical knowledge. To paraphrase Patel & Pavitt (1997), if a country wants to innovate in
solar energy, it must know about photovoltaic science; if a country wants to specialize
into wind turbines, it must know about wind gust modeling and aerodynamics. Hence,
the very step for a country is to invest in knowledge accumulation in order to build
its critical mass, thereby increasing its absorptive capacity (Cohen & Levinthal 1989)
and develop its own expertise in particular fields of applications. Only then will the
dynamic incentives of CC and MB instruments come into play. Our empirical strategy
allows to directly explore the possibility that the appropriate choices between CC and
MB depends on a country’s stage of technological development. Indeed, lacking a clear
theoretical ranking of instruments as explained above, testing this hypothesis ultimately
remains an empirical issue.

3 Empirical Framework

3.1 Econometric Strategy

The starting point of our analysis is the standard empirical specification to test the effect
of policy on the direction of technical change in the energy sector (Aghion et al. 2016,
Noailly & Smeets 2015). This model reads as:

yi,t = βmbMBit + βccCCit + βKKR/F,it +BX+ µi + λt + eit, (1)

where innovation y and knowledge stock KR/F are the log-transformed ratio of innova-
tion (resp. knowledge stock) in green innovation over the innovation (resp. knowledge
stock) in brownl technologies. This is consistent with the literature on directed techni-
cal change. Variables MB and CC stand for market-based and command-and-control
policies, respectively, while X is a vector of control variables that will be specified in the
next Section; µi and λt are country i and time t effects; and eit is the error term. The
parameters of interest are βmb and βcc, which are the effects of the two types of policies
on renewable energy innovation, which we expect to be significant and positive.

Our key novelty is that policy effectiveness depends upon the degree of specialization
in renewable energy. The most immediate econometric counterpart is to extend specifi-
cation 1 by interacting the two policy variables MB and CC with the ratio of the two
knowledge stocks ratio KR/F . The basic model then becomes:
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yi,t =βmbMBit + βccCCit + βKKR/F,it+

βmbKKR/F,it ×MBit + βccKKR/F,it × CCit+

BX+ µi + λt + eit.

(2)

A limit of Equation 2 is that it assumes that the change in the policy effectiveness
on innovation is linear in K. That is: ∂yit/∂pol = βpol + βpolK × KR/F,it, where pol
stands for either MB or CC policies. One alternative is to investigate whether there are
discontinuities in this interaction, so that there may be threshold values of KR/F below
which a given policy is ineffective and above which the policy becomes both effective
and stable.

To detect sharp nonlinearities in the effect of policies on green innovation, we rely
on the estimation and inference methodology developed by Hansen (1999). We amend
Hansen’s approach in two ways. First, we model the country fixed effect µi using the pre-
sample mean of the dependent variable rather the relying on within-country variations.
Our motivation lies in the fact that although there is a time variation in the policy
variables, such measures change only slowly over time. As is well known in the literature
(Blundell et al. 2002), the use of within differences would withdraw a large share of
the identifying variation, possibly leading to inconsistent estimates of the parameters
of interest βmb and βcc.

6 Second, whereas in his example on firm financial constraints
Hansen (1999) interacts the threshold variable with only one variable of interest – namely
cash flow – we interact the threshold variable – namely the ratio between the renewable
and the fossil fuel knowledge stock K– with two variables of interest, MB and CC
policies. This approach allows us to test which policy approach is more effective at a
given level of technological maturity and thus to track how the appropriate policy mix
changes with the level of technological competencies.

Hansen’s method also determines empirically the number of thresholds underlying
the relationship between the dependent variable and the variable(s) of interest. For the
case of two policy instruments and one threshold, the model reads:

yi,t =βmb1(γ)MBitI(KR/F,it ≤ γ) + βp2(γ)MBitI(KR/F,it > γ)+

βcc1(γ)CCitI(KR/F,it ≤ γ) + βcc2(γ)CCitI(KR/F,it > γ)+

βKKR/F,it +BX+ µi + λt + eit,

(3)

6One objection against the use of the pre-sample mean is that the presence of less developed countries
in our sample may substantially decrease its variance. Should this be the case, one would not be able
to properly account for unobserved heterogeneity among less developed countries. We test this by first
assuming that the pre-sample mean follows a normal distribution PSM ∼ N(µ, σ). We then condition
parameters µ and σ on the log of GDP per capita using maximum likelihood estimation methods. Results
show that whereas µ is positively associated with GDP per capita, the variance of the distribution
captured by parameter σ is independent from the level of development of the country, implying that
the country fixed effects can be accounted for using the pre-sample mean. Results are available upon
request.
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where I is an indicator variable set to unity, whether the threshold variable KR/F,it is
below (KR/F,it ≤ γ) or exceeds (KR/F,it > γ) a given threshold value γ. An important
requirement is that the panel is balanced with n countries and T time periods, so that
N = n× T . Notice that this model allows for the empirical detection of discontinuities
in the relationship between the threshold variable KR/F and our variables of interest.
It is thus important to compare the results of this model with those of the interactions
model in (2), as we do extensively in the next Section.

To retrieve an estimate of γ, we should first define Y, the vector stacking all obser-
vations of the dependent variable; Ŷ(γ), the corresponding vector of predicted values
by estimating equation 3; and the vector of residuals ê(γ) = Y − Ŷ(γ). The algorithm
proposed by Hansen (1999) chooses γ so as to minimizes the sum of squared errors S1(γ),
where S1(γ) = ê(γ)′ê(γ). More precisely, the estimator of γ̂ reads:

γ̂ = argmin
γ

S1(γ). (4)

The computation of the least squares estimate of the threshold γ involves the min-
imization exercise 4. To do so, we first sort the threshold variable KR/F in ascending
order and exclude the bottom and top 5% of observations. This step is to rule out
regimes which would include too few observations below or above an obtained threshold.
The remaining N .95

.05 observations represent the set of values over which the optimal γ̂ is
determined. We obtain the sum of squared errors ê(γ) and its associated S1(γ) using
equation in (3). The smallest value for S1(γ) is γ̂.

The first step regards the significance of the threshold and tests whether the iden-
tified regimes are significantly different from one another, the null hypothesis being
H0 : β1 = β2, where 1 and 2 refer to the estimated coefficients in the first and sec-
ond regime, respectively. The second step concerns efficiency in order to determine the
95% confidence interval of the threshold likely values, with the null hypothesis being
H0 : γ̂ = γ∗, the true value of the threshold. Appendix A provides more details on the
inference procedure.

Model (3) implicitly assumes that there are only two regimes of policy effectiveness
in the direction of technical change. Yet, there may very well be several thresholds. For
instance, in the case of two policy instruments and two thresholds, with γ1 < γ2, the
equation becomes:

yi,t =βmb1(γ)MBitI(KR/F,it ≤ γ1) + βmb2(γ)MBitI(γ1 < KR/F,it ≤ γ2)+

βmb3(γ)MBitI(KR/F,it > γ2)+

βcc1(γ)CCitI(KR/F,it ≤ γ1) + βcc2(γ)CCitI(γ1 < KR/F,it ≤ γ2)+

βcc3(γ)CCitI(KR/F,it > γ2)+

βKKR/F,it +BX+ µi + λt + eit.

(5)

In such cases, one possibility is to search simultaneously for (γ1, γ2) by minimizing
S2(γ1, γ2). While this seems to be a reasonable path to take, the scope of search over
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the entire grid may be computationally cumbersome.7 Rather, Hansen (1999) suggests
proceeding sequentially by taking threshold γ̂1 as given and searching for γ2 over the
threshold variable KR/F by minimizing S2(γ̂1, γ2).

8 Fixing γ1 to γ̂1, the minimization
program to identify the second threshold can be written as:

γ̂2 = argmin
γ2

S2

(

γ2
∣

∣

γ1=γ̂1

)

. (6)

The inference of γ2 and the determination of its 95% confidence interval are deter-
mined as detailed in Appendix A based on bootstrapped samples to test H0 : β1(γ) =
β2(γ) and H0 : γ = γ0. If γ̂2 proves significant, Bai (1997) shows that the estimation of
γ̂1 must be refined by a third stage estimation, taking γ̂2 as given, and the refinement
minimization program becomes:

γ̂1 = argmin
γ1

S1

(

γ1
∣

∣

γ2=γ̂2

)

. (7)

The algorithm described above can be generalized to any higher order of thresh-
olds. In this paper, we fix the maximum number of possible thresholds to three, imply-
ing potentially four types of policy regimes. The advantage of this measure is that it
avoids arbitrarily setting the number of regimes. Instead, this number is determined en-
dogenously, giving rise to significant structural breaks that are not time-dependent but
dependent upon the threshold variable KR/F representing competencies in renewable
energy innovation.9

3.2 Endogeneity

A key requirement for a causal interpretation of the coefficients of interest (βmb and βcc)
is the exogeneity of the environmental policies variables. This requirement is likely to be
violated in our context for four reasons. First, policy choices depend upon the expected
effectiveness of the policy in terms of both economic and environmental outcomes. For
instance, a policy maker of a technologically laggard (resp. leading) country can correctly
forecast that a given environmental policy will have little (resp. large) effect on the
country’s capacity to produce renewable energy innovations. As a result, the policy
response will positively depend on both the current and the future innovative capacity
of the country, leading to an upward bias in the coefficients of interest.

Second, a well-known argument postulates that policy interventions should be tem-
porary and support renewable energy only during an initial phase of technological de-
velopment when these technologies are significantly more costly than fossil fuel-based
technologies. In more mature stages, technological development in renewable energy can

7A search grid over (γ1, γ2) requires (N .95
.05 )

2 regressions. The search grid for a higher order number
of thresholds rapidly becomes prohibitive.

8Because it is important to have a minimum number of observations in each regime, we restrict the
search over KR/F so that the distance between γ̂1 and γ̂2 amounts to at least a decile.

9In the remainder of the paper, we will indifferently call variable KR/F competencies in, knowledge
stock of, or technological expertise in renewable energy.
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proceed independently from the existence of a policy support (Acemoglu et al. 2012),
which would give rise to a downward bias in the coefficients of interest. Indeed, there is
some evidence in our data that the stringency of MB policies has decreased for certain
periods in leading countries such as Germany, Denmark and Spain. These two sources
of reverse causality go in opposite directions and may counterbalance each other. Hence,
assessing the direction (if any) of the overall reverse causality bias in the estimates of
the policy effects remains an empirical issue.

Third, another source of endogeneity arises from errors in the measurement of MB
and CC policies. As discussed in detail in Section 3.3, our policy stringency measures
assign a time-varying categorical score to each country. This score is in turn based on
underlying continuous data on the stringency of several policy instruments, such as taxes
and feed-in tariffs. This approach mechanically creates a source of measurement error.
Typically, if the measurement error is only on the explanatory variable and normally
distributed, it is expected to give rise to a downward bias in the estimates.

Finally, it is worth noting that due to data constraints, we cannot observe the pres-
ence and size of subsidies to fossil fuel production, which implies the existence of an
omitted variable bias. If, as plausible, fossil fuel subsidies are negatively correlated with
both renewable energy policies and with our main dependent variable (i.e., the ratio
between renewable and fossil fuel patents), the estimated coefficients of environmental
policies should be biased downward.

To address the above concerns on the endogeneity of the MB and CC variables, we
use an instrumental variable approach, as discussed in Section 5.1. An important caveat
is that our IV strategy should be seen more as a robustness exercise used to corroborate
the identification of the thresholds levels of KR/F rather than a way to retrieve the exact
effect of MB and CC policies on those thresholds. A precise identification of the effect of
each of the policy instruments in each of the different regimes would require a validation
using separate regressions for observations belonging to each regime. This is unfeasible
given the relatively small number of country-year observations used to estimate our
effects of interest. While this is beyond the scope of this paper, such an endeavor should
be the focus of future research once data availability constraints are relaxed.

3.3 Data

Our analysis is based on a sample of 34 countries over the years 1990-2012.10 Below, we
discuss in turn the use of patent statistics in our context, the definition of our dependent
variable, our proxies for technological competencies and for environmental policies, and
the control variables included in our estimation. Descriptive statistics for the sample
and for each of the 34 countries are presented in Tables 1 and 2.

3.3.1 Patent Statistics

We use patent data as a proxy for innovation, i.e. the dependent variable, and for ac-
cumulated competencies, i.e. the threshold variable. The pros and cons of this proxy

10The countries included in the analysis are listed in 2.
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with respect to other available innovation proxies, and particularly R&D investments,
have been widely discussed (Griliches 1990, Popp et al. 2010). We argue that patent
statistics are well suited to capture the level of technological activity of a country in
our context for two reasons. First, as discussed above, patents are the result of several
polices and institutional settings that span well-beyond mere R&D investments. Sec-
ond, unlike R&D investments, patent databases are much more detailed than most other
sources of information on renewable and fossil investments. Indeed, patent statistics are
readily available and exhaustive, and cover a great variety of public and private institu-
tions, essentially business firms, universities, other education and training institutions,
and government. Third, patent data allow quantifying each country in terms of innova-
tion performance (the dependent variable) and accumulated competencies (the threshold
variable) in renewable energy relative to fossil fuel technologies. Overall, in the absence
of systematic information on the private and public funding and on the technological
content of R&D investments, the measurement error embodied in patent data is likely
to be substantially lower than in R&D data.

Our patent data come from the OECD Green Growth Indicators Database, which
includes patent counts for several energy technologies (Haščič et al. 2015, Haščič &
Migotto 2015). Renewable energy generation patents include solar, wind, geothermal,
marine, and hydro as well as technologies for energy generation from biomass and waste.
Fossil-based generation technologies include technologies for improved output efficiency
(such as combined heat and power and combined cycles) and technologies for improved
input efficiency (such as efficient combustion or heat usage).11

3.3.2 Innovation

The share of renewable over fossil fuel patents with a family of two or larger measures
the innovation relative performance of countries in these technologies. The first and
second rows of Figure 1 show the evolution of renewable energy and fossil-based patents,
respectively, for selected OECD countries, for the BRIICS countries12 and for the overall
sample average. Four facts emerge. First, innovation in renewable energy technologies
has been larger than in fossil-based technologies over the sample period. This should be
expected because the fossil technologies included in the OECD Green Growth Indicators
Database are only those relative to improving the efficiency of fossil fuel energy produc-
tion, rather than the overall number of fossil technologies. Moreover, fossil innovations
are quantitatively fewer than renewables innovations due to the fact that fossil technolo-
gies are more mature, while renewables are more likely to be protected by intellectual
property rights because they are novel and less incremental. Second, there is a global
upward trend in patenting in both renewable and fossil fuel technologies, but the latter
grew at a significantly slower pace than the former. Third, OECD countries produce
far more patents that BRIICS countries during the period of investigation. But among

11For a more detailed discussion of the different technologies, please refer to Lanzi et al.
(2011), Haščič & Migotto (2015) and the OECD ENV-TECH classification, available at
http://www.oecd.org/environment/indicators-modelling-outlooks/green-patents.htm.

12These countries are Brazil, Russia, India, Indonesia, China and South Africa
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the BRIICS countries, China seems to take a significant leap forward and invest mas-
sively in renewable energy technologies. Fourth, and related to this, while all countries
in the sample show a re-direction of innovation in favor of renewable technologies, the
phenomenon is more pronounced, but also more heterogenous, in the BRIICS countries
than in the largest OECD economies. Among the BRIICS, the dynamics of patenting
in China and India clearly stand out.

[Figure 1 about here.]

3.3.3 Threshold Variable and Environmental Policy

Patent data are used to compute the threshold variable, which measures each country’s
level of technical competencies in renewables relative to fossil-fuels. Specifically, we
compute the knowledge stocks for both renewable and fossil energy technologies for
each country and each year. The threshold variable KR/F is then defined as the ratio
between the former and the latter. We rely on the perpetual inventory method to
compute knowledge stocks in renewables and fossil fuel technologies as follows. Details
are presented in the Appendix B. The first row of Figure 2 shows the evolution of
our threshold variable over time. We observe that KR/F increased significantly in the
BRIICS over the sample period, while in large OECD countries, this variable displays
more of a U-shape with a turning point concomitant with the Kyoto agreement.

[Figure 2 about here.]

To proxy for environmental policy, which is our other main variable of interest, we
extract data from the OECD Environmental Policy Stringency (EPS) Indicator (Botta
& Kozluk 2014), which allows to distinguish between market-based MB policies and
command-and-control CC regulations (see Appendix B for details on the computation
of the indexes). The evolution of these variables is presented in the second and third rows
of Figure 2. Note that command-and-control policies are vastly adopted in developed
countries, while the score is lower and displays less variation in the BRIICS. Market-
based policies have a much lower score overall, but their use/stringency increases steadily
throughout the sample period, reflecting a gradual replacement of CC policies with MB
policies in several countries.

3.3.4 Control variables

To estimate the impact of technological competencies and policy instruments on innova-
tion ceteris paribus, we include in the estimation a vector X of control variables13, which
are quite standard in the literature and discussed in the Appendix B. Two controls de-
serve to be discussed. First, the pre-sample mean of the dependent variable is computed

13These variables are: the presample mean of the dependent variable, the total stock of knowledge
in a given country, GDP per capita, average years of schooling, the share of electricity and heat exports
over total electricity production and Coal Dependence
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over the years 1980 and 1989 and is used to control for heterogeneity across countries,
as explained in Section 3.1. Second, the (log of the) overall stock of knowledge is built
using information on all patents applied for by inventors of each country each country i
at time t following the formula used for the renewable and fossil patent stocks presented
in Appendix B. This variable conditions the estimates on overall trends in patenting
activities, which are country-specific and time-varying. Indeed, countries with a larger
total patent stock (e.g. USA, Japan, Germany) may be less specialized in a particular
energy technology than countries with a small stocks because they are more likely to
be actively engaged in both types of technologies. Tables 1 and 2 present descriptive
statistics of all the variables included in subsequent econometric analyses.

[Table 1 about here.]

[Table 2 about here.]

4 Econometric Results

4.1 Baseline Results

Table 3 shows a first set of results. Model 1 is a parsimonious specification that includes
only time fixed effects, the log-transformed ratio of renewable and fossil knowledge stocks
KR/F (the threshold variable) and the pre-sample mean of the dependent variable. In line
with related papers of Aghion et al. (2016) and Noailly & Smeets (2015), the coefficients
of both KR/F and the pre-sample mean are positive and statistically significant at 1%
level. This confirms our hypothesis of persistence in direction of innovation in energy
technologies: countries with experience in renewables – relative to fossil fuel – have a
comparative advantage in producing further renewable energy innovation – relative to
fossil fuel innovation. It also reinforces the idea that in the realm of energy innovation,
there is a first-mover advantage for early innovators in a particular field, i.e. brown vs.
green. This, however, also implies that laggard countries can be locked in a fossil fuel
technological paradigm.

Model 2 includes environmental policies, namely MB and CC. Both variables take
positive values. However, the coefficient associated with MB policies fails to reach
acceptable levels of significance (p-value=0.147). This surprising result is however not
robust. In Model 3, which includes additional control variables, the coefficient associated
with the MB variable is similar in magnitude to that estimated in Model 2, but is now
statistically significant. Conversely, the coefficient associated with CC, which becomes
smaller in size, is now imprecisely estimated (p-value=0.145). On the whole, our results
corroborate the well-accepted fact that environmental policies have a positive effect in
redirecting innovation from brown to green technologies (Aghion et al. 2016). However,
the lack of precision in the point estimates may conceal heterogeneity in the effects of
MB and CC policies on innovation.

Two of the control variables included in Model 3 emerge as particularly strong.
Electricity exports and the total stock of knowledge positively influence our dependent
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variable, implying that they are associated with a redirection of innovation from fossil
to renewable technologies. Concerning the latter variable, this suggests that countries
located at the overall technological frontier tend to innovate more in renewables. Indeed,
innovation in renewables is still a highly exploratory path to take, and technologically
advanced countries are better equipped to follow this course. Electricity exports behave
as expected. Exports act as a buffer to handle the intermittency of renewable electric-
ity generation, making innovation in renewable relatively more attractive. Finally, the
inclusion of the control variables yields non-significance of the pre-sample mean. This
should be expected, since the pre-sample mean catches the countries’ unobserved het-
erogeneity, which is essentially captured in variables such as GDP per capita, human
capital, exports and total knowledge stock. This implies that the series of control are
successful in grasping the specific – regulatory and institutional – features of countries
in our sample.

[Table 3 about here.]

The discussion in Section 2 suggests that environmental policies play a role in redi-
recting energy innovation. Models 2 and 3 provide preliminary evidence in this respect,
but do so by averaging away the heterogeneity in the policy effectiveness for countries
with different level of relative competencies. Model 4 tackles this issue by interacting
KR/F with the two policy variables. Two interesting results deserve to be discussed.
First of all, the Log-Likelihood Ratio (LR) test confirms that Model 4 brings significant
explanatory power when compared with Model 3 (LR-test of 54.05 with a p-value of
zero). In other words, the specification with the interaction terms outperforms the spec-
ification without them in explaining the direction of innovation in energy technologies.
Second, the coefficients of the interaction terms indicate that both CC and MB are
more effective in redirecting innovation towards renewable energy technologies when the
relative stock of competencies in these technologies is larger.

These results conform to our claim that the indirect effect of environmental policies
on the direction of energy innovation is proportional to the degree of specialization
in renewable as opposed to fossil-fuel technologies. One possible explanation is that
countries with more competencies in fossil-fuel than in renewable technologies will try to
meet the environmental requirements of such policies by making fossil fuel energy more
efficient. These results implicitly suggests that direct innovation policies may be required
to elicit the indirect innovation effect of MB and CC policies. As argued in previous
studies (Popp 2006, 2016, Mazzucato 2015), targeted public R&D plans represent a good
example of chief policy to boost knowledge accumulation in specific technological fields.

4.2 Threshold Specification Results

The interaction model confirms that the effect of environmental policies is contextual,
but assumes away the possibility of discontinuities in policy effectiveness. Specifically,
the model does not allow for a discontinuous switch in the selection of appropriate poli-
cies, but only a difference in the two policy effects associated with the relative level of
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competencies. As mentioned in Section 3.1, we use Hansen’s threshold model to deter-
mine whether such discontinuities exist and, if so, what are the values of the threshold(s)
that delimit different policy regimes as dependent on KR/F . For the sake of exposition,
we first discuss the number and levels of the thresholds which emerge from the model,
and then present the results of the estimation of the threshold model, although both
steps are simultaneous.

4.2.1 Determination of the thresholds

Table 4 presents the estimated thresholds and their associated F-statistics: F1, where
the null hypothesis H0 posits the absence of threshold and the alternative hypothesis H1

states that there is at least one threshold; F2 as a test of the existence of one threshold
(H0) against the alternative hypothesis of at least two thresholds (H1); F3 as a test
of the existence of two threshold (H0) against the alternative hypothesis of at least
three thresholds (H1). The main message of Table 4 is that policy effectiveness exhibits
threshold effects: both the F1 and the F2 tests for the single threshold and double
threshold models are highly significant, with bootstrapped p-values of 0.000, and 0.094,
respectively. Conversely, the F3 test for the three-threshold model is not significant, with
a bootstrap p-value of 0.736. Overall, the Hansen’s procedure provides strong evidence
that there are two thresholds, and hence three regimes, linking MB and CC policies
with directed energy innovation.

Table 4 also displays the point estimates of the two thresholds, 2.856 and 1.706, which
correspond to respectively the 88th and 47th percentiles of the distribution of the KR/F

threshold variable. The confidence intervals around the estimated thresholds are small,
indicating little uncertainty about the location of the level of KR/F needed to switch
from one regime to another. The plots of the concentrated likelihood ratio function,
which are shown in Figure 3, provide further information about the threshold estimates.
In particular, the graph for the one-threshold model indicates a first threshold, which
is where the LR hits zero at the 88th percentile of the threshold variable, and a second
major fall in the LR at the 47th percentile. The Hansen’s procedure uses the values of
the estimated thresholds to create dummy variables for the different regimes, which we
are then interacted with the policy variable(s). This means including three variables for
each of the policy instruments (CC and MB), indicating whether a given observation
belongs to the first, second or third regime, as detailed below.

[Table 4 about here.]

[Figure 3 about here.]

A legitimate question is whether the threshold specification outperforms the interac-
tion specification of Model 4. The answer lies in the last two rows of Model 5 displayed
in Table 5. We use the LR-test to compare the two-threshold model with 15 explanatory
variables with the interaction model which has 11 explanatory variables. Note that the
difference between the two models is not the use of more information coming from an
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additional explanatory variable; rather, the difference lies in the way we exploit how
the level of expertise KR/F interacts with the two policy variables. In the LR-test, the
null hypothesis H0 is that any change in the level of expertise in renewable energy rela-
tive to fossil fuel energy modifies policy effectiveness linearly (i.e. the interaction model
is corroborated), whereas the alternative H1 is that there are several regimes between
which policy effectiveness differs significantly and within which policy effectiveness is
stable (i.e. the threshold model is corroborated). The key result here is that with a
critical probability value of 0.060, we can reject the null hypothesis H0 and accept the
alternative hypothesis H1: there are regimes between which policy effectiveness differs
significantly and within which policy effectiveness is stable.

4.2.2 Estimation Results

The results of the estimation of the two-threshold model are presented in Table 5, which
strongly supports our conjecture that the selection of the appropriate policy instrument
switches discontinously across the different regimes, which are defined by the country’s
degree of specialization in renewable technologies as compared to fossil-based technolo-
gies.

In the first regime where KR/F is low, only the threshold variable is positive and
significant, while the CC and MB policy indexes are not statistically significant. This
implies that in the first regime, policy effectiveness of either CC or MB is simply nil,
which includes almost half of our country-year observations (47%). Importantly, these
results contradict the paradoxical results stemming from the interaction model which
suggest a counter-productive effect of environmental policies on the direction of techni-
cal change when the level of expertise is particularly low. The second regime, which is
characterized by values of KR/F between the median and the 87th percentile, gives simi-
lar results, with the important difference that the coefficient associated with CC policies
is positive and almost significant (p-value of 0.146). While this coefficient is not precisely
estimated, this result suggests that CC policies may be somewhat more effective than
MB policies in redirecting energy innovation towards renewables for countries that lack
specialization in any of the two technological domains. Lastly, in the third regime, the
positive effect of the threshold variable is compounded by a positive and statistically
significant effect of the MB index. Therefore, a country that has accumulated a consid-
erable amount of experience in renewables vis-a-vis fossil technologies (the top 12% of
the country-year observations in our sample) can avoid the use of command-and-control
policies and rely exclusively on market-based policies.

Figure 4 provides a graphical representation of the size of the policy effects in different
regimes. In particular, we quantify the effect of a one standard deviation of each policy
index around the mean in each regimes. Market-based policies have a large impact on
the direction of technical change in the third regime, with a one-standard deviation
increasing the ratio of renewable to fossil patent by 0.55, which represents 40% of the
average value of the dependent variable PR/F . Notice that the insignificant effect of
MB policies in the second regime is less than a fifth of that in the third regime. CC
policies appear more useful in redirecting energy innovation in the crucial second regime,
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although their effect is only barely significant. The estimated impact is moderately large
with one-standard deviation increase in CC policies accounting for an 8% increase in
the expected number of renewable patents relative to fossil fuels.

Given the nature of our dependent variable, which is defined as the ratio of renewable
over fossil fuel innovation, a legitimate question raised by these results is the exact
mechanism through which MB and CC policies affect the direction of energy innovation.
A key issue to understand the mechanisms is whether (and how) MB and CC affect
the numerator and/or the denominator of our ratio. Table 5 displays two additional
models, which explore separately the effect of the policy instruments with respect to
the level of renewable (Model 6) and fossil fuel innovation (Model 7). As in Model 5,
the MB and CC variables are interacted with dummy variables representing each of
the three regimes, where the previously estimated threshold values are taken as given.
This accounts for the fact that the level of innovation in green or brown technologies
still depends on the relative degree of technological specialization, which captures the
opportunity cost of not investing in the alternative technology. The two models provide
important insights on the mechanisms at work. Specifically, they indicate that MB
policies in the second and third regimes positively impact renewable energy innovation.
Conversely, CC policies impact the direction of innovation by depressing fossil-based
innovation in the second regime (see also Figure 4).

The focus on the effectiveness of the two policy instruments on the level of clean vs.
brown innovation points to the second regime as the crucial period where an appropriate
policy mix must be implemented. This policy mix is characterized by a positive impact
of MB policies on renewable innovation and a negative impact of CC policies on fossil-
based innovation. Clearly, command-and-control policies, by setting up emissions quotas,
send a clear orientation to private actors on the future of fossil fuel within a country and
deter brown innovation. However, CC policies do not spur innovation in renewables,
and only the support of MB policies comes into play and provides actors with the
necessary incentives to actually undertake invention activities in new carbon-free energy
solutions.14

In sum, command-and-control policies act as a stick to properly orientate actors in a
regime characterized by a not yet well-defined specialization in energy technologies (first
threshold is at 47%), but must be combined with the MB policies, which act as a carrot
in providing direct monetary incentives to the green innovators. Beyond a certain level
of comparative advantage in renewables (88%), only the carrot is effective in reinforcing
green technological specialization.

[Table 5 about here.]

[Figure 4 about here.]

14Note that the impact of MB policies in the second regime is very heterogeneous, and the combined
effect on the direction of technical change is not precisely estimated.
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5 Discussion

5.1 Robustness Checks

In this section, we show that our results are robust to a series of alternative specifications,
which are presented in Table 6 alongside our favourite specification (Model 5) for the
sake of comparison. Before commenting each robustness exercize, we note the high
persistence of the estimated threshold percentiles throughout Models 5 to 10. In all
cases, our model estimates two thresholds, located near the median and near the 9th

decile.
First and foremost, to reinforce a causal interpretation of the policy effects, we begin

by estimating our favourite specification using an IV strategy. As Subsection 3.2, our
least square estimates could be biased due to three different reasons: reverse causality,
omitted variable bias and measurement errors. The direction of bias in the case of re-
verse causality cannot be determined a priori, while in the case of both omitted variable
and measurement errors, one would expect a downward bias. To perform an IV estima-
tion, we select two external instruments, which are arguably correlated with our policy
stringency scores but not with the direction of technical change. Our first instrument
is a shift-share variable constructed as an interaction between population growth and
the pre-sample mean of PM2.5 concentration, i.e. the concentration of particles with an
aerodynamic diameter of less that 2.5 µm.15 The instrument PM2.5i,t is built as fol-
lows: PM2.5i,t = (1 + gPOPi,t)PM2.5i,t−1, where PM2.5i,t=0 = PM2.5i,1990 represents
emission concentrations in 1990, and gPOPt is the growth of the population in country i
at time t. This instrument captures the counterfactual level of PM2.5 concentration that
would be uniquely attributed to population dynamics. The exclusion restriction here is
that, conditional on a set of controls for the country’s size and wealth (such as total stock
of patents and GDP per capita), this counterfactual level of emissions does not alter the
relative incentives of pursuing renewable energy rather than fossil fuel innovation. We
are confident that this restriction is satisfied because fossil-fuel plants have a limited
impact on PM2.5 emissions, and hence concentrations, which are primarily caused by
the transport sector. Therefore, the effort of the fossil-fuel lobbies against this regula-
tion should be limited. Further, the concentration of PM2.5 emission is also affected by
geographical and atmospheric factors that are partially unrelated with effective PM2.5
emissions. This does not affect the strength of the instrument that is corroborated by
the first-stage results, which are presented in Appendix C.16 That the instrument is
strong and positively correlated with both CC and MB policies is expected as policy

15The source of this data is Brauer et al. (2016), as reported by WDI (2016). Satellite measure-
ments of concentrations (ug/m3) measure the concentration levels in a given country in a given year.
These in turn are determined by a wealth of anthropogenic and non-anthropogenic factors, namely: an-
thropogenic emissions, background concentrations, natural emissions (dust, vegetation, natural aerosols,
etc..), secondary pollution (particulates formed in the atmosphere), transboundary pollution (i.e., pol-
lution originating in other countries).

16Appendix C presents the results of the first stage estimation where MB and CC are instrumented
with the series of exogenous variables X in equation 3 and the two additional instruments. Note that
the first column of Table A1 presents the second stage of the IV procedure estimating equation 1.
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makers adopt environmental policies to respond to emissions above the norm, especially
for diffused sources like PM2.5 to which citizens are more sensitive.

The second instrument we use is the length of time for which a country has had
consolidated and durable democratic institutions.17 This instrument simply captures
the fact that democratic countries tend to approve stricter environmental policies and
has been used by the closely related paper of Nesta et al. (2014), to which we refer for
a more detailed discussion. The first-stage results in Appendix C show that this second
instrument is strong and correlated with both CC and MB policies. However, while the
estimated coefficient is positive in the CC fist stage regression, it is negative in the MB
specification. Note however that this last result can be totally attributed to the inclusion
of the control variables, as a reduced model with regresses MB only on TENSYS and
time dummies shows a positive and significant effect of the latter18. Overall, the F-test
of excluded instruments corroborates our choice regarding both instruments.

The second stage results, presented in Model 8, are consistent with those presented so
far, and indicate a downward bias in the least square estimates.Not only is the coefficient
associated with MB policies in the third regime more than double that presented in the
preferred model, but the coefficient associated with CC policies in the second regime
also becomes significant and considerably larger.

We are cautious in giving full credit to these estimates as capturing the true mag-
nitudes of the policy effects in different regimes because our exclusion restrictions are
neither theory-driven nor extensively validated in previous literature, with the excep-
tion of the paper of Nesta et al. (2014). However, the policy variation captured by our
instruments is arguably more exogenous than that of the original policy indexes. We
are thus confident that, at least, this robustness exercise corroborates our main findings
regarding the location of the regime switches and the qualitative importance of CC and
MB policies in different regimes.

Second, Model 9 presents the results of the estimation when restricting attention
to patents of higher economic value. This is obtained by considering only innovations
that are protected in at least four, not two, countries. The results differ slightly from
those of the base model 5 because the estimated thresholds are higher, indicating that
switching from the first to the second regime and from the second to the third regime
occur at higher levels of the threshold variable. The estimated thresholds are indeed
associated with the 94th and the 65th percentiles. This is in line with the expectation
that innovation of higher quality is more difficult to achieve.19 Another important finding
of Model 9 is that command-and-control policies do not seem to matter for directing
technical change at the frontier. These remarks are consistent with the third regime of
Model 5 where only market-based policy instruments matter.

17The data on TENSYS are sourced from the Database on Political Institutions (Thorsten et al. 2001,
Cruz et al. 2016).

18Results are available upon request.
19The fact that the required level of technological specialization increases with patent quality also

seems intuitive. Although the order of detection of the threshold may swap from one specification to
the other, this altogether is a source of confidence in the results stemming from Hansen’s threshold
specification.

20



Third, Models 10 shows the results using a broader definition of our dependent
variable, and specifically including in the computation of the numerator of the threshold
variable also patents relative to “supporting” technologies that ease the diffusion of
renewable energy sources in the electricity system. These are energy storage and smart
grids. The former contributes to smoothing the variable of reneweable energy supply,
which is one of the main difficulties linked with integration high shares of renewables
in the energy system (Verdolini et al. 2016, Carrara & Marangoni in press), while the
latter allows distributed generation as opposed to centralized generation of energy. We
observe that the results are robust.

Whether MB and CC promote the diffusion of renewable technologies, rather than
mere innovation, is a key issue because laggard countries can use MB and CC policies
first to favour the diffusion of renewable energy technology and then, through learning
effects, to become green innovators. Taking the estimates regimes as given, Model 11
extends the focus of our analysis from the dynamic incentives of policy instruments to
their impact on technology diffusion. In details, the dependent variable is now calculated
as the percentage of electricity generation coming from renewable sources over total
electricity produced in a given country i in a given year t.20 As in Models (6) and (7) in
Table 5, we take the estimates thresholds as given. To control for the overall dynamics of
energy generation in a given country, we substitute the Total Stock of Knowledge variable
with a variable measuring Total Primary Energy Supply in the country (from the IEA).
Model 5 in Table 5 shows that policy effectiveness in different regimes is qualitatively
similar for diffusion and innovation. Specifically, CC policies are associated with higher
shares of renewable energy generation in the second regime, while MB policies are
most effectively in promoting renewable penetration in the third regimes. We can hence
conclude that a demand-pull strategy based on diffusion first and then innovation does
not allow laggard countries to lock out from brown technologies.21

[Table 6 about here.]

5.2 Country Diagnostics

Our results allow establishing a set of diagnostics to measure the adequacy of each
country’s policy mix with its level of expertise in renewable relative to fossil energy

20The results are similar if one includes also statistics relative to heat generation, and they are
available upon request.

21As a final comment, note that our contribution is specifically designed to detect discontinuities in
the dynamic incentives of domestic policies. These are by far the most important policy driver identified
in the literature. Recent empirical evidence points to a considerably smaller, yet significant, effect of
foreign policies in promoting domestic innovation (Peters et al. 2012, Dechezleprêtre & Glachant 2014).
In our model, the role played by foreign policies is accounted for in a general way with the inclusion of
time fixed effects. A more thorough investigation would require, on the one hand, the computation of a
country-specific, time varying index of exposure to foreign policies and, on the other hand, a significant
complication of the empirical set up of the threshold model. In unreported analyses available upon
request, we built simple proxies of foreign policies, as the average values of MB and CC policies in all
countries i 6= j, and introduced them in the vector of control variables. The results are very similar to
the ones presented above, thereby corroborating our findings.
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technologies, which help highlighting successes and failures. This is especially important
to draft policy recommendation for countries which lack technological specialization in
either fossil or renewable energy technologies, but need to implement environmental
policies to comply with international agreement. Specifically, our results can be used
to identify the policy mix which is most effective in promoting dynamic incentives to
redirect innovation towards more sustainable, green technologies. To this end, Table 7
displays the position of a country in a percentile within the threshold variable KR/F and
market-based and command-and-control policy indexes for the entire period 1990-2012.
It also displays each of these variables for three subperiods, where the first period gathers
the pre-Kyoto years (1990-1997), the second period concerns the post-Kyoto pre-great
recession years (1998-2007) and the last period ranges from 2008 to 2012. Looking at
the mean of the threshold variable by subperiod, the redirection of innovation towards
renewables in the third period is striking, with the average country located in the 72th

percentile of KR/F compared with the 42th and the 45th in the first and second period,
respectively.22

Table 7 highlights a fundamental difference between countries which adopt environ-
mental policies resulting in a clear technological direction and countries that do not.
We discuss these differences illustrating a successful case, two failure cases, and then
concentrate on Eastern European countries and the BRIICS countries more specifically.

The typical successful example comes from Denmark. In the pre-Kyoto period, Den-
mark had not yet reached the required level of expertise in renewable energy relative to
fossil fuel energy (41st percentile, below the 47th). With the new millennium, Denmark
chooses to increase both MB and CC policies (reaching .45 and .42, respectively). This
is in tune with our findings that both types of policies are useful in providing private
investors with a clear orientation of the technological direction where the country wants
to embark. Yet, in the post-crisis era, Denmark has reached a level of expertise that al-
lows the country to switch to the third regime KR/F,DEN = 96.6. Meanwhile, Denmark
is the only country where MB policies moderately outperform CC policies in the last
period, and increasingly so in the most recent – unreported – years.

Now focusing on failures, two examples are France and Sweden. At a first glance,
France does not seem to fit in our story. The lack of an adequate MB support in
the nineties has led to the full dissipation of the French early advantage in renewable
technologies. With accumulated competencies in the 94th percentile of KR/F in the first
period, France is the only country that is in the third regime in the first period. France
was then in an ideal position to implement ambitious MB policies before other countries
and keep its relative technological advantage. Instead, its choice to fully specialize in
the nuclear energy has led to a reduction of resources devoted to the development of
renewable energy sources. In the same vein, Sweden represents a case of failure predicted

22Unreported analyses of variance (ANOVA) show that both cross-country and time variations explain
a substantial share of the variance in the sample. For the threshold variable KR/F , ANOVA results show
that cross-country variations explain 50% of the variance and that time variations explain 21%. For
MB (resp. CC policies), the same decomposition shows that cross-country variations explain 28% (resp.
27%) and that time variations explain 43% (resp. 45%). It is thus important to consider the dynamics
of countries individually.
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by our model. A revealed specialization in fossil fuel technologies (on average 27th

percentile) undermined the dynamic effect of ambitious environmental policies. Correctly
predicting this structural disadvantage, Swedish policy-makers did not actively invest in
wind and solar R&D compared with other OECD countries (see, e.g., Figures 2-3 in
Popp 2015).

Transition economies joined the EU (Poland, Hungary, the Slovak Republic, the
Czech Republic and Slovenia) with a clear agenda to gradually comply with EU envi-
ronmental regulations upon their entry in 2004. This represented a big policy push that
is also evident in our data. For all these countries, both the MB and the CC indexes
move from nearly zero initially to values in line with the sample mean in the second
period. Looking at the last two subperiods characterized by this policy push, countries
in the position to adopt ambitious policies (Czech Republic, Hungary and the Slovak
Republic) succeeded in redirecting innovation towards renewable energy technologies. Of
these three countries, Slovenia has been more reluctant to adopt ambitious CC policies
compared to Hungary and the Czech Republic. In line with our findings, this policy
gap has been translated into a less pronounced redirection of innovation in Slovenia
compared with the other two countries.

The final case is that of the BRIICS countries. These also started regulating emissions
from fossil fuel generation only recently, but, absent from the policy push of the EU
membership, at a significantly lower level of stringency than transition economies. China
already started a virtuous circle reaching the 97th percentile of knowledge accumulation
and specialization KR/F in the last period, sharply contrasting with the 49th percentile
of the second period, making it possible for China to implement the third type of policy
mix. The reasons underlying the Chinese green turnaround are not fully clear. Green
policies remain rather timid, and lower wages may have attracted foreign investors to
develop given segments of the renewable sector. Other BRIICS countries still suffer from
a general lack of total knowledge, including energy-related technological expertise.23 As
highlighted by the examples of India and Indonesia, which are at the bottom percentiles
of KR/F , policies directly targeting innovation, i.e. to develop the country’s absorptive
capacity, are of paramount importance in these cases.

[Table 7 about here.]

6 Conclusions

This paper has analyzed the effectiveness of different environmental policies instruments
in terms of dynamic incentives to redirect technical change towards clean technologies.
The question is admittedly not new, but our approach to providing an answer is innova-
tive for at least two reasons. First, we use threshold econometric models (Hansen 1999)
to test whether policy effectiveness displays discontinuities depending on the relative

23The country diagnostic Table highlights the importance of controlling for the total patent stock in
our regressions. Indeed, countries with a large total patent stock (e.g. USA, Japan, Germany) are less
specialized than countries with a smaller knowledge stocks.
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specialization of a country in renewables vis-á-vis fossil fuel technologies. This choice
is corroborated by the fact that the threshold model explains the largest share of the
variance in innovation compared to alternative specifications. Second, in the context of
thresholds models, we compare the effectiveness of the dynamic incentives of two types
of environmental policies, market-based and command-and-control policies.

Our results can be summarized as follows. We provide evidence on the existence of
three regimes, with thresholds located at the 47th and the 88th percentiles of relative
technological specialization. In the first regime, neither MB nor CC policies are effec-
tive in promoting a switch towards renewable energy innovation. In the second critical
regime, command-and-control policies act as a stick by depressing brown innovation and
properly orientating actors in countries without a yet well-defined specialization in clean
technologies. In these countries, market-based policies compound this effect by acting as
a carrot which provides incentives to the green innovators. However, beyond a certain
level of comparative advantage in renewables, a third regime emerges where only the
carrot is effective in reinforcing green technological specialization. Finally, our results
are robust to several robustness checks and alternative specifications, which include an
IV approach and different definitions of (renewable) energy innovation.

These results imply that implementing policies in support of innovation in renewable
energy is highly contextual. When knowledge accumulation and specialization is low,
countries need to strengthen their level of green relative to brown technological com-
petencies before they can fully benefit from the dynamic incentives of environmental
policies. Therefore, our conclusion is that policies aiming at the accumulation of sci-
entific and technical expertise appear to be a critical. We mainly think of basic R&D
investments and education to build and expand national capabilities. By developing
their absorptive capacity, laggard countries will be able to satisfactorily identify, assim-
ilate and eventually exploit green competencies invented elsewhere. Moreover, without
such capabilities, a laggard country will simply not be able to fully exploit the dynamic
incentives of environmental policy instruments and will not catch up with frontier coun-
tries. Finally, we illustrate cases where environmental policies have been effective in
redirecting energy innovations in laggard countries. The case of transition economies
that joined the EU is encouraging in that such external push for environmental policies
can become an opportunities to redirect energy innovation also for countries without a
clear green specialization. The Paris agreement can represent a similar opportunity for
other developing and emerging economies, provided that the right enforcement mecha-
nisms are put in place.

24



References

Acemoglu, D., Aghion, P., Bursztyn, L. & Hemous, D. (2012), ‘The environment and
directed technical change’, American Economic Review 102(1), 131–66.

Acemoglu, D., Aghion, P. & Zilibotti, F. (2006), ‘Distance to frontier, selection, and
economic growth’, Journal of the European Economic Association 4, 37–74.

Aghion, P., Dechezleprêtre, A., Hémous, D., Martin, R. & Reenen, J. V. (2016), ‘Carbon
Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto
Industry’, Journal of Political Economy 124(1), 1 – 51.

Aghion, P. & Howitt, P. (2006), ‘Joseph schumpeter lecture appropriate growth policy: A
unifying framework’, Journal of the European Economic Association 4(2-3), 269–314.

Arthur, B. (1989), ‘Competing technologies, increasing returns, and lock-in by historical
events’, Economic Journal 99, 116–31.

Bai, J. (1997), ‘Estimating Multiple Breaks One at a Time’, Econometric Theory
13(03), 315–352.

Blundell, R., Griffith, R. & Windmeijer, F. (2002), ‘Individual effects and dynamics in
count data models’, Journal of Econometrics 108, 113–131.

Botta, E. & Kozluk, T. (2014), ‘Measuring Environmental Policy Stringency in OECD
Countries: A Composite Index Approach’, OECD Economics Department Working
Papers, No.1177 .

Brauer, M., G, F., J, F. & van Donkelaar A et al. (2016), ‘Ambient air pollution ex-
posure estimation for the global burden of disease 2013’, Environmental Science and
Technology 50, 79–88.

Calel, R. & Dechezleprêtre, A. (2016), ‘Environmental Policy and Directed Technological
Change: Evidence from the European Carbon Market’, The Review of Economics and
Statistics 98(1), 173–191.

Carrara, S. & Marangoni, G. (in press), ‘ncluding system integration of variable renew-
able energies in a constant elasticity of substitution framework: The case of the witch
model’, Energy Economics (10), 3150–3182.

Cohen, W. M. & Levinthal, D. (1989), ‘Innovation and learning: the two faces of r&d’,
Economic Journal 99(September), 569–596.

Cruz, C., Keefer, P. & Scartascini, C. (2016), ‘Database of political institutions: Changes
and variable definitions’.

Dechezleprêtre, A. & Glachant, M. (2014), ‘Does foreign environmental policy influence
domestic innovation? evidence from the wind industry’, Environmental and Resource
Economics 58(3), 391–413.

25



Dosi, G. (1982), ‘Technological paradigms and technological trajectories: A suggested
interpretation of the determinants and directions of technical change’, Research Policy
11(03), 147–162.

Feenstra, R. C., Inklaar, R. & Timmer, M. P. (2015), ‘The next generation of the penn
world table’, American Economic Review 105(10), 3150–3182.

Freeman, C. (1982), The Economics of Industrial Innovation, Pinter Publisher, London,
UK.

Galor, O. & Zeira, J. (1993), ‘Income distribution and macroeconomics’, The review of
economic studies 60(1), 35–52.

Griliches, Z. (1990), ‘Patent Statistics as Economic Indicator: A Survey’, Journal of
Economic Literature 28(4), 1661–1707.
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Appendix A. Determination of the 95% confidence interval for the esti-

mated thresholds

Once threshold γ̂ has been identified, two additional steps are needed. The first one
regards the significance of the threshold and tests whether the two identified regimes are
significantly different from one another, the null hypothesis being H0 : β1 = β2, where
1 and 2 refer to the first and second regimes, respectively. The second step concerns
efficiency in order to determine the 95% confidence interval of the threshold likely values,
with the null hypothesis being H0 : γ̂ = γ∗.

Concerning the first step, inference on γ̂ is achieved by generating bootstrapped
samples and comparing model 1 with model 3. First, observe that specification 1 is
nested in 3, which is a more general representation of the effect of policies on green
innovation. Hence we can rely on the use of a likelihood ratio test to determine whether
specification 3 conveys more information than specification 1. Second, given the panel
nature of the data, we randomly draw (with replacement) countries in order to produce
a bootstrapped sample of size N . Using the bootstrapped sample, we then estimate
specifications 1 and 3 and perform the likelihood ratio test. We repeat this procedure a
sufficiently large number of times and count the number of times for which the likelihood
ratio test fails to reject the null hypothesis that the specification 1 brings as much
information as specification 3. By way of example, for the case of MB policies the null
hypothesis is H0 : βmb1(KR/F ≤ γ) = βmb2(KR/F > γ), which implies the absence of
two distinct regimes. The share of samples failing to reject the null hypothesis of no
threshold is used as the critical probability value.

The second step is concerned with efficiency, with the null hypothesis being H0 : γ̂ =
γ∗. We follow Hansen (1999) and use the likelihood ratio statistics LR1(γ

∗) as follows:

LR1(γ) =
S1(γ)− S1(γ̂)

σ̂2
, (A1)

where σ = 1
n(T−1)S1(γ̂). Hansen (1999) shows that this statistics follows the distribution

function Pr(LR1(γ) ≤ x) = (1 − exp(−x/2))2, with inverse function c(α) = −2 ln(1 −
√

(1− α)), where α is the chosen critical probability value at which one fails to reject
the null H0. For example, the null hypothesis is rejected at the 5% level when the LR
statistics exceeds c(α = .05) = 7.35. To form a confidence interval for γ, the no-rejection
region of the (1−α) confidence level is the set of values for which LR1(γ) ≤ c(α = 0.05).
This is done by plotting the LR1(γ) and drawing a flat line at c(α = 0.05) (see Hansen
1999, pages 351-352).

In the two- and three-threshold models, the likelihood ratio statistics reads, respec-
tively:

LR2(γ) =
S2(γ2)− S2(γ̂2)

σ̂2
. (A2)

and
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LR3(γ) =
S3(γ3)− S3(γ̂3)

σ̂2
. (A3)
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Appendix B. Threshold variable, policy variables and controls

B.1 Threshold variable: computation of the knowledge stocks

The threshold variable is then defined as the ratio between the knowledge stocks for
renewable over the knowledge stock for fossil energy innovations for each country and
each year. To compute the stock variables, we rely on the perpetual inventory method
to compute knowledge stocks in renewables and fossil fuel technologies as follows:

Ki,s,t = PATi,s,t + (1− δ)Ki,s,t−1 (B4)

where s corresponds to either renewable energy or fossil-based technologies and δ = 0.1
is the depreciation rate set at a level in line with the literature on innovation (Peri 2005).

The initial value of the knowledge stock is defined as K0 =
PATi,s,t0
(ḡs+δ) , with ḡs being the

average rate of growth of patenting in the technology s for the period between t0 and
t0 − 4. We use t0 = 1984 as the initial year to compute knowledge stock. The first row
of Figure 2 shows the evolution of our threshold variable over time. We observe that the
threshold variable increased significantly in the BRIICS over the sample period, while
in the top OECD countries, this variable displays more of a U-shape. For the latter,
note that the upward trends initiate between 2000 and 2005, which is when the Kyoto
agreement was to be implemented.

B.2 Policy Variables

Our policy proxies are sourced from the OECD EPS databse, which is the largest
country-specific and internationally-comparable database, including information on 14
environmental policy instruments primarily related to climate and air pollution and cov-
ering the years 1990-2012 for the countries in our sample. The databases covers both
market-based and non-market based instruments. Within the former, it reports informa-
tion about Taxes (CO2, Diesel, NOx and SO2), Traditing Schemes (Green Certificates,
CO2 and White Certificates), Feed-in Tariffs (Wind and Solar). Within the latter, it re-
ports information on Standards (emission limites for NOx, SO2, PMs and diesel sulphur
content), and R&D subsidies (Renewable energy public RD&D budget). Stringency is
defined as the degree to which environmental policies put an explicit or implicit price on
polluting or environmentally harmful behavior. For each policy instruments, countries
are scored on a scale from 0 (not stringent) to 6 (highest degree of stringency). For
the purpose of our analysis, we create and indicator for CC and one for MB policies,
measuring the stringency of market-based and command-and-control policies, respec-
tively. MB is calcuated as the weighted average of (a) taxes on CO2, NOx and SOx;
(b) trading schemes (Green Certificates, White Certificates and CO2); and (c) feed-in
tariffs (for wind and solar power generation). CC is calculated as the weighted average
of the scores for emission limits of NOx, SOx and PM . These variables are presented in
the second and third row of Figure 2. Note that command-and-control policies are vastly
adopted in developed countries, while the score is lower and displays less variation in the
BRIICS. Market-based policies have a much lower score overall, but their use/stringency
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increases steadily throughout the sample period, reflecting a gradual replacement of CC
policies with MB policies in several countries. Note that in the empirical estimation, we
transform the two policy variables so as to make them vary between 0 and 1 by using
the following transformation: P̃it =

Pit−MinP
MaxP−MinP

, where P stands for either MB or CC
policies. We do this in order to facilitate the comparison of the parameter estimates for
the two policy instruments.24

B.3 Controls

Our estimates are conditional on a vectorX of control variables which are rather standard
and include GDP per capita, average years of schooling, the share of electricity and heat
exports over total electricity production and Coal Dependence. GDP per capita, defined
as the output-side real GDP at chained PPPs in million 2011 USD, is obtained from
the Penn Tables (Feenstra et al. 2015) and controls for time-varying, country-specific,
macro-economic shocks that could likely affect our dependent variable. We also extract
from the Penn Tables a human capital index, defined as the average years of schooling
in the population.25 We claim that a higher educational attainment should make the
population of the country more inclined to renewable energy and more generally to
environmental issues. The share of electricity and heat exports over total electricity
production in a given country and Coal dependence are control variables specific to the
energy sector. The former is built using data on exports and production from IEA
(2016) and controls for the ability of countries to export electricity to neighbours. This
is an important aspect of the energy system because, as discussed more in detail in
Verdolini et al. (2016), it provides a buffer to handle the intermittency of renewable
electricity generation. Such flexibility would affect our dependent variable because it
makes innovation in renewables relatively more attractive. The latter is defined as the
sum of coal, gas and oil rents measured as share of GDP, as provided by the World
Development Indicators, and controls for the strength and relevance of the fossil fuel
sector in a given economy, which can affect both innovation dynamics and the propensity
to adopt environmental and energy policies.

24Importantly, this transformation does not affect the covariance of either the dependent variable or
the set of control variables with the two policy variables.

25We refer the reader to the above-mentioned paper Feenstra et al. (2015) and to the documentation
attached to the new Penn World Tables proposed by the Groningen Growth and Development Centre
(http://www.rug.nl/ggdc/productivity/pwt/).
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Appendix C. Instrumental Variable Method. Results on the first and sec-

ond stages with no threshold effect.

Table C1: Results on the second and first stages of the instrumental variables

(C1) (C2) (C3)
OLS IV OLS IV OLS IV

2nd stage 1st stage 1st stage
VARIABLES MB CC

Pre-sample mean -0.028 0.093*** -0.033**
(0.084) (0.016) (0.017)

KR/F 0.288*** -0.008 0.003
(0.0418) (0.008) (0.010)

PM2.5 Counterfactual 0.005*** 0.004***
(0.000) (0.000)

Length of Democracy -0.001** 0.002***
(0.000) (0.000)

MB policies 1.346**
(0.577)

CC policies 1.494***
(0.564)

GDP per capita -0.038 0.114*** 0.082***
(0.079) (0.016) (0.019)

Coal Dependence 0.048 -0.038** -0.108***
(0.104) (0.015) (0.0141)

Electricity Exports 1.638*** 0.110 -0.209***
(0.338) (0.067) (0.0751)

Human Capital 0.057 -0.019 -0.046**
(0.089) (0.018) (0.022)

Total Knowledge Stock 0.092*** -0.019*** 0.016**
(0.030) (0.006) (0.006)

Observations 782 782 782
R-squared 0.535 0.570 0.451
F-Test on excluded Instruments 37.790 29.698

Columns 2 and 3 of Table C1 display the results of the first stage of the IV procedure
where both MB and CCg policies are being instrumented by the series of exogenous
variables X in equation 3 and the two additional instruments, length of democracy and
PM2.5 counterfactual, as exclusion restrictions. The first column of Table C1 presents
the second stage of the IV procedure estimating equation 1.
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Figure 1: Evolution of renewable patent counts PREN , of fossil fuel patents counts
PFFS , and of the ratio of the two patent counts (PR/F ) for selected OECD and BRIICS
countries
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Figure 2: Evolution of the threshold variable and of MB and CC policy scores for
selected OECD and for BRIICS countries
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Figure 3: Likelihood Ratio test and confidence interval construction for the three thresh-
olds tested. Vertical axis: LR-test; horizontal axis: percentiles of the threshold variable
KR/F . The dashed horizontal line represents the 5% critical value of the test.

γ
γ

γ
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Figure 4: Marginal effect of market-based policies (left panel) and command-and-control
policies (right panel) on the ratio of renewable over fossil fuel patents (PR/F , top panel),
the number of renewable patents (PREN , middle panel) and the number of fossil fuel
patents (PFFS , bottom panel). Marginal effects have been computed using a one-
standard-deviation change in the policy variable. Vertical axis: Marginal effect from
models 5 (top panel), 6 (middle panel) and 7 displayed in Table 5 ; horizontal axis:
percentiles of the threshold variables. Dashed lines denote non-significance at 10% level
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Table 1: Summary statistics

Variable Name Obs. Mean Median SD Min Max

Renewable/Fossil patents (log) PR/F 782 1.319 1.298 1.043 -1.872 4.839
Renewable patents PREN 782 42.720 7.000 111.7 0.0 969.6
Fossil patents PFFS 782 4.753 0.515 11.89 0.0 132.3
Pre-Sample Mean (log) PSM 782 0.919 0.593 0.768 0.0 2.838
Renewable/Fossil stocks (log) KR/F 782 1.693 1.756 0.819 -0.613 3.995
Market-based policies MB 833 0.759 0.462 0.846 0.0 3.531
Command-and-Control policies CC 833 1.940 1.000 1.734 0.0 6.0
GDP per capita (2011 USD PPP) GDP 850 9.964 10.17 0.733 7.177 11.34
Human Capital HC 850 2.971 3.113 0.536 1.487 3.734
Total Knowledge Stock TKS 782 31,262 4,543 71,637 14.35 430,998
Coal Dependence CD 844 0.136 0.0 0.483 0.0 6.660
Electricity Exports EE 782 -0.065 -0.029 0.099 -0.573 0.0
Counterfactual PM2.5i,t INST1 850 23.31 23.22 9.002 7.677 46.61
Length of Democracy t− 2 INST2 766 37.46 28.0 27.66 1.0 80.0

a Electricity Exports is the log of the ratio of electricity exports over production of electricity.

38



T
ab

le
2:

S
u
m
m
ar
y
st
at
is
ti
cs

b
y
co
u
n
tr
y
(A

ve
ra
ge

ov
er

th
e
p
er
io
d
19

90
-2
01

5)

C
o
u
n
tr
y

P
R
/
F

P
R
E
N

P
F
F
S

P
S
M

K
R
/
F

M
B

C
C

G
D
P

H
C

T
K
S

C
D

E
E

I
N
S
T
1

I
N
S
T
2

A
L
L

1
.3
2

4
2
.7
2

4
.7
5

0
.9
2

1
.6
9

0
.7
6

1
.9
4

9
.9
6

2
.9
7
1

3
1
.2
6

1
3
.6
0

-0
.0
6
5

2
3
.3

3
7

A
U
S

1
.6
6

9
.4
6

0
.6
9

1
.0
8

2
.3
1

0
.7
0

1
.8
5

1
0
.5
0

3
.4
7
4

5
.8
3

3
0
.5
0

0
.0
0
0

8
.9

6
9

A
U
T

1
.8
6

2
2
.2
8

1
.9
7

1
.3
9

2
.0
1

1
.0
4

3
.6
7

1
0
.4
3

3
.1
5

1
0
.9
2

0
.0
0

-0
.1
7
0

2
7
.2

4
5

B
E
L

1
.7
9

1
1
.8
1

0
.6
7

1
.7
7

2
.4
4

0
.3
4

2
.7
0

1
0
.3
2

2
.9
8
6

7
.1
9

0
.0
0

-0
.0
8
6

3
0
.1

6
9

B
R
A

1
.1
3

5
.2
5

0
.3
3

0
.5
3

2
.3
4

0
.0
0

0
.6
7

9
.1
5

2
.1
5
9

1
.5
3

0
.1
5

-0
.0
0
1

1
1
.6

1
0

C
A
N

1
.8
2

2
3
.9
4

2
.1
5

1
.6
1

1
.9
9

1
.1
5

2
.6
4

1
0
.5
0

3
.5
1
7

1
6
.8
2

3
.1
5

-0
.0
7
0

1
3
.1

6
9

C
H
E

1
.2
3

2
0
.9
1

5
.0
4

1
.8
2

1
.4
6

0
.6
5

2
.5
5

1
0
.6
8

3
.5
5
7

1
6
.1
6

0
.0
0

-0
.4
2
6

2
5
.2

6
9

C
H
N

1
.6
9

4
4
.1
7

1
.8
7

0
.2
5

1
.6
1

0
.5
7

1
.5
3

8
.5
5

2
.1
9
2

1
4
.3
0

8
0
.7
0

-0
.0
0
3

4
3
.5

7

C
Z
E

1
.1
5

3
.4
3

0
.0
7

0
.0
0

2
.2
2

0
.9
2

1
.9
1

1
0
.0
0

3
.5
0
6

1
.0
7

7
.1
9

-0
.1
4
7

3
2
.9

1
1

D
E
U

2
.0
1

3
1
3
.0
0

2
8
.4
8

1
.4
8

1
.9
5

1
.2
9

3
.7
4

1
0
.4
4

3
.5
7

1
7
8
.8
2

0
.8
0

-0
.0
6
5

3
0
.5

5
1

D
N
K

2
.2
1

3
7
.3
9

1
.1
3

1
.3
0

2
.1
5

1
.4
7

2
.2
6

1
0
.4
5

3
.3
1
7

4
.6
1

0
.0
0

-0
.1
3
0

1
9
.2

6
9

E
S
P

2
.3
6

3
7
.1
1

0
.9
6

1
.4
4

2
.7
5

1
.5
7

2
.1
5

1
0
.1
5

2
.6
6
5

6
.5
4

0
.3
4

-0
.0
3
6

1
9
.4

2
2

F
IN

1
.1
2

1
4
.8
1

3
.7
1

0
.5
9

0
.7
4

0
.2
8

3
.2
0

1
0
.3
5

3
.1
7
8

1
0
.1
0

0
.0
0

-0
.0
1
6

1
0
.0

6
9

F
R
A

1
.5
4

6
9
.7
3

8
.8
5

2
.6
8

2
.2
4

1
.4
5

2
.7
7

1
0
.3
4

2
.9
4
2

6
3
.9
2

0
.0
0

-0
.1
1
8

2
4
.2

6
9

G
B
R

1
.9
4

7
2
.4
1

6
.6
2

1
.6
5

1
.8
2

1
.0
2

2
.7
3

1
0
.3
8

3
.5
1
6

5
2
.2
5

0
.7
3

-0
.0
0
3

2
0
.7

6
9

G
R
C

1
.1
2

3
.6
4

0
.1
7

0
.5
6

1
.8
4

1
.2
2

1
.4
5

1
0
.0
4

2
.7
7
5

0
.5
2

0
.6
3

-0
.0
3
0

2
4
.7

2
5

H
U
N

0
.9
9

2
.4
1

0
.0
7

0
.6
5

1
.7
1

0
.9
1

1
.8
7

9
.6
9

3
.0
5
1

1
.7
9

0
.3
0

-0
.0
9
4

3
3
.4

1
1

ID
N

0
.1
4

0
.2
1

0
.0
0

0
.0
0

0
.3
0

0
.2
9

0
.9
4

8
.4
6

2
.2
0
2

0
.0
9

5
8
.6
0

0
.0
0
0

2
5
.2

1
4

IN
D

0
.4
4

7
.3
7

3
.0
5

0
.4
2

0
.6
8

0
.3
6

0
.4
4

7
.8
1

1
.7
8
6

2
.5
4

5
4
.0
0

0
.0
0
0

3
7
.8

1
0

IR
L

1
.0
2

4
.3
7

0
.1
3

0
.5
0

1
.9
5

0
.2
6

2
.0
4

1
0
.4
7

2
.9
0
1

1
.4
0

0
.0
3

-0
.0
0
4

1
3
.8

6
9

IT
A

1
.6
1

5
3
.9
8

5
.8
8

1
.5
4

1
.8
2

1
.3
2

2
.3
9

1
0
.3
5

2
.8
1
6

3
2
.1
0

0
.0
0

-0
.0
0
4

3
1
.2

2
3

J
P
N

2
.1
6

2
7
4
.4
0

2
8
.3
5

2
.8
4

2
.2
6

0
.9
8

1
.6
5

1
0
.4
2

3
.3
7

3
1
6
.7
9

0
.0
0

0
.0
0
0

2
0
.0

2
3

K
O
R

1
.9
9

1
1
9
.5
0

5
.1
1

0
.5
9

2
.0
5

1
.0
6

2
.5
1

1
0
.0
6

3
.2
3
1

4
8
.7
4

0
.3
0

0
.0
0
0

3
8
.7

1
2

M
E
X

0
.6
3

1
.4
1

0
.0
0

0
.0
5

0
.8
4

0
.0
1

0
.8
5

9
.4
1

2
.4
4
4

0
.5
9

1
.3
5

-0
.0
0
7

1
7
.9

6
N
L
D

2
.1
6

2
7
.9
2

1
.9
3

1
.7
3

2
.2
6

0
.8
2

2
.2
8

1
0
.5
0

3
.1
6
5

1
5
.1
3

0
.0
0

-0
.0
3
1

3
0
.2

6
9

N
O
R

1
.7
7

1
5
.0
9

1
.3
4

0
.4
7

1
.7
3

0
.4
2

2
.3
5

1
0
.8
3

3
.4
0
6

3
.6
7

0
.6
6

-0
.0
8
1

1
0
.2

6
9

P
O
L

0
.7
9

4
.3
4

0
.5
9

0
.5
5

1
.6
2

0
.9
6

1
.8
8

9
.5
5

3
.0
4
9

0
.8
7

2
3
.5
0

-0
.0
4
1

3
1
.2

1
0

P
R
T

1
.1
2

3
.6
5

0
.1
0

0
.4
1

2
.1
7

1
.1
3

2
.1
7

9
.9
3

2
.2
1

0
.3
6

0
.0
0

-0
.0
6
1

1
5
.4

2
3

R
U
S

1
.1
8

6
.4
9

0
.7
1

0
.1
0

1
.4
6

0
.1
3

0
.7
3

9
.5
6

3
.1
1
3

2
.7
0

6
0
.5
0

-0
.0
0
9

1
9
.4

8

S
V
K

0
.6
5

1
.4
3

0
.0
9

0
.0
5

1
.3
9

0
.6
7

0
.5
7

9
.7
1

3
.3
8
6

0
.3
4

0
.1
6

-0
.1
6
2

3
2
.0

1
0

S
V
N

0
.3
9

0
.9
1

0
.1
1

0
.1
0

0
.9
4

0
.3
8

1
.8
7

9
.9
7

3
.2
8
2

0
.4
6

2
.1
9

-0
.3
0
8

2
5
.5

1
0

S
W

E
1
.0
2

1
5
.9
7

3
.9
4

1
.2
8

1
.2
6

1
.2
0

2
.0
6

1
0
.4
5

3
.2
3
8

1
8
.8
1

0
.0
0

-0
.0
7
2

1
2
.3

6
9

T
U
R

0
.6
0

1
.7
4

0
.1
1

0
.0
0

0
.8
9

0
.3
9

1
.1
5

9
.4
5

2
.0
4

0
.4
4

0
.8
8

-0
.0
0
7

2
4
.0

1
5

U
S
A

1
.2
8

2
2
1
.1
0

4
7
.3
4

1
.6
5

1
.5
3

0
.7
8

2
.6
4

1
0
.7
1

3
.5
9
6

2
2
5
.0
9

6
.2
4

-0
.0
0
4

1
8
.7

6
9

Z
A
F

0
.2
9

0
.6
2

0
.0
6

0
.1
8

0
.8
3

0
.2
3

0
.2
3

9
.1
7

2
.2
2
1

0
.4
5

1
2
5
.1
0

-0
.0
3
3

1
4
.6

1
2

P
R
/
F
:
R
en

ew
a
b
le

o
v
er

fo
ss
il

fu
el
s
p
a
te
n
t
co

u
n
t
ra
ti
o
;
P
R
E
N
:
N
u
m
b
er

o
f
p
a
te
n
ts

in
re
n
ew

a
b
le
s;

P
F
F
S

:
N
u
m
b
er

o
f
p
a
te
n
ts

in
fo
ss
il

fu
el
s;

P
S
M
:
P
re
-s
a
m
p
le

m
ea

n
o
f
th

e
d
ep

en
d
en

t
v
a
ri
a
b
le

P
R
/
F
;
K

R
/
F
:
R
en

ew
a
b
le

o
v
er

fo
ss
il
fu
el
s
p
a
te
n
t
st
o
ck

ra
ti
o
;
M
B
:
M
a
rk
a
t
b
a
se
d
p
o
li
ci
es
;

C
C
:
co

m
m
a
n
d
-a
n
d
-c
o
n
tr
o
l
p
o
li
ci
es
;
G
D
P
:
G
D
P

p
er

ca
p
it
a
,
in

th
o
u
sa
n
d
s
o
f
2
0
1
1
U
S
D

P
P
P
;
H
C
:
H
u
m
a
n

ca
p
it
a
l
in
d
ex

;
T
P
S
:
to
ta
l
p
a
te
n
t

st
o
ck

(i
n
th

o
u
sa
n
d
s)
;
C
D
:
C
o
a
l
d
ep

en
d
en

ce
(×

1
0
2
);

E
E
:
E
le
ct
ri
ci
ty

ex
p
o
rt
;
IN

S
1
:
p
a
rt
ic
u
la
r
m
a
tt
er

P
M

2
.5

i,
t
;
IN

S
2
d
em

o
cr
a
cy

lo
n
g
ev

it
y
(i
n

y
ea

rs
).

39



Table 3: Sequential Regressions. Dependent Variable: (Log of the) Ratio of renewable
to fossil fuel patents (PR/F,it)

(1) (2) (3) (4)

Pre-Sample Mean 0.386*** 0.315*** 0.026 -0.001
(0.090) (0.095) (0.144) (0.131)

KR/F 0.353*** 0.338*** 0.294*** 0.106
(0.076) (0.070) (0.081) (0.065)

MB Policies 0.388 0.456* -1.497***
(0.264) (0.258) (0.462)

MB ×KR/F 0.951***
(0.255)

CC Policies 0.464* 0.266 -0.350
(0.252) (0.183) (0.313)

CC ×KR/F 0.224
(0.149)

GDP per capita 0.100 0.151
(0.099) (0.094)

Coal Dependence -0.130 -0.100
(0.108) (0.100)

Electricity Exports 1.265** 0.910**
(0.465) (0.403)

Human Capital 0.026 -0.005
(0.143) (0.120)

Total Knowledge Stock 0.110* 0.147**
(0.063) (0.058)

Observations 782 782 782 782
R-squared 0.547 0.561 0.602 0.628
LL -832.5 -820.4 -781.9 -754.9
RSS 385 373.2 338.3 315.7
LR-test 24.26 76.89 54.05
P-value 0.000 0.000 0.000

Clustered standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
All regressions include a full vector of unreported year fixed effects. All LR-
tests compare the current specification (m) with specification(m− 1).
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Table 4: Threshold percentile, value, and significance test for the threshold variable (log
of) KR/F

γ̂1 γ̂2 γ̂3

Threshold percentile 88 47 64
Threshold value for KR/F 2.856 1.706 2.004
95 % CI for KR/F [2.483, 2.678] [1.664, 1.757] [NA, NA]
F-statistics 33.03 19.68 5.873
P-value 0.000 0.094 0.736

The obtained thresholds are estimated from model 5 of Table 3 with 500
bootstrapped samples. See Appendix A about inference of the estimated
thresholds and on the determination of their confidence intervals.
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Table 5: Threshold regressions using as the dependent variable the log of ratio of renew-
able over fossil fuel patents (PR/F ), the number of renewable patents (PREN ) and the
number of fossil fuel patents (PFFS), respectively

PR/F
a PREN PFFS

(5) (6) (7)

Pre-Sample Mean 0.006 0.099 0.456***
(0.128) (0.114) (0.125)

KR/F 0.134* 0.416*** 0.350***
(0.066) (0.103) (0.065)

MB ×I(K ≤ γ̂2) 0.053 0.041 -0.047
(-0.293) (-0.362) (-0.294)

MB ×I(γ̂2 < K ≤ γ̂1) 0.377 0.572** 0.255
(-0.299) (-0.252) (-0.235)

MB ×I(K ≤ γ̂1) 2.276*** 1.678*** -0.529
(-0.592) (-0.535) (-0.327)

CC ×I(K ≤ γ̂2) -0.207 0.258 -0.056
(-0.214) (-0.234) (-0.238)

CC ×I(γ̂2 < K ≤ γ̂1) 0.361 -0.051 -0.412**
(-0.247) (-0.242) (-0.164)

CC ×I(K ≥ γ̂1) -0.2 -0.474 0.168
(-0.384) (-0.393) (-0.255)

GDP per capita 0.141 -0.138 -0.131
(0.094) (0.123) (0.081)

Coal Dependence -0.120 -0.139 0.009
(0.093) (0.109) (0.057)

Electricity Exports 0.949** 1.261** -0.118
(0.395) (0.542) (0.374)

Human Capital 0.016 0.114 -0.037
(0.124) (0.155) (0.104)

Total Knowledge Stock 0.139** 0.220** 0.087*
(0.058) (0.087) (0.044)

Observations 782 782 782
R-squared 0.631 0.881 0.802
LL -752.1 -689.8 -558.6
RSS 313.4 267.3 191.1
LR-test 5.626
P-value 0.060

Clustered standard errors in parentheses. *** p<0.01, **
p<0.05, * p<0.1. All regressions include a full vector of un-
reported year fixed effects. Variable K stands for KR/F in
model 5, KREN in model 6 and KFFS in model 7. Percentile
values of the two thresholds are γ̂1 = .88 and γ̂2 = .47 (see
Table 4).

a The LR-test compares model 4 from Table 3 with model 5.



Table 6: Robustness tests using various specifications for the threshold regressions.

(5) (8) (9) (10) (11)

Pre-Sample Mean 0.006 -0.047 -0.079 -0.031 0.505***
(0.128) (0.139) (0.128) (0.117) (0.110)

KR/F 0.134* 0.115* 0.204*** 0.131** -0.037
(0.066) (0.063) (0.063) (0.057) (0.144)

MB 1st regime 0.052 0.623 -0.126 0.007 -0.408
(0.293) (0.784) (0.231) (0.344) (0.608)

MB 2nd regime 0.376 0.780 0.909*** 0.463 -0.079
(0.300) (0.921) (0.316) (0.286) (0.476)

MB 3rd regime 2.276*** 7.015*** 2.478*** 1.550* 1.895**
(0.591) (1.742) (0.377) (0.766) (0.914)

CC 1st regime -0.204 0.966 0.005 -0.008 0.305
(0.211) (0.898) (0.211) (0.259) (0.402)

CC 2nd regime 0.362 1.801* -0.036 0.401 0.629**
(0.247) (1.022) (0.233) (0.265) (0.278)

CC 3rd regime -0.199 -2.360 -0.168 0.568 -0.481
(0.384) (1.400) (0.407) (0.557) (0.643)

GDP per capita 0.141 0.049 0.093 0.226*** 0.348
(0.094) (0.115) (0.095) (0.079) (0.237)

Coal Dependence -0.120 0.029 -0.138* -0.108 -0.230**
(0.093) (0.123) (0.069) (0.098) (0.100)

Electricity Exports 0.949** 1.150** 0.858** 0.839* -1.494
(0.395) (0.431) (0.396) (0.433) (1.082)

Human Capital 0.016 0.044 0.092 -0.046 -0.466
(0.124) (0.127) (0.075) (0.106) (0.338)

Total Knowledge Stock 0.139** 0.117** 0.134*** 0.124**
(0.058) (0.054) (0.049) (0.050)

Total Primary Energy Supply -0.006
(0.074)

First Threshold 88 89 94 87 88
P-value first threshold 0.000 0.002 0.008 0.006 given

Second Threshold 47 48 65 57 47
P-value second threshold 0.094 0.022 0.052 0.076 given

Third Threshold 64 11 13 10 -
P-value third threshold 0.736 0.448 0.446 0.440 -

Observations 782 782 782 782 782
R-squared 0.631 0.634 0.650 0.633 0.693
LL -752.1 -748.9 -731.2 -750.5 -788.7
RSS 313.4 310.8 297.1 312.1 344.1

Clustered standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. All regressions
include a full vector of unreported year fixed effects. In Models 5 through 10 the dependent
variable is the (log of the) ratio of renewable over fossil fuel patents (PR/F ). Model 5 is displayed
in Table 3. Model 8 uses instrumental variables (IV) to control for the endogeneity of the two
policy variables. The results for the first stage are displayed in Appendix C. Model 9 only
counts patents protected in at least 4 countries. Model 10 uses a broader definition of renewable
patents. Finally, Model 11 uses the share of renewable energy generation in country as a depedent
variable.
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