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Abstract

Concurrent with the rapid development of the market for catastrophe (cat)

bonds, a steady decline in their risk premia has been observed. Whether the latter

trend is consistent with the evolution of natural disasters risk is an open question.

Indeed, a large share of outstanding risk capital in the cat bonds market appears

to be exposed to some climate change-related risk as, for instance, hurricane risk,

which global warming is expected to enhance. This paper addresses the above issue

by assessing the global warming evidence, its implications for the natural environ-

ment and the drivers of cat bonds risk premia. We find that radiative forcing, i.e.

the net insolation absorbed by the Earth, drives the warming trend in tempera-

ture anomalies and the trend evolution of natural phenomena, such as ENSO and

Atlantic hurricanes, enhancing their disruptive effects. Hence, in the light of the

ongoing contributions of human activity to radiative forcing, i.e., greenhouse gases

emissions, natural disasters risk appears to be on a raising trend. Yet, the latter

does not appear to have been accurately priced in the cat bonds market so far. In

fact, while we find that the falling trend in cat bonds multiples is accounted by

the expansionary monetary stance pursued by the Fed, we do also find evidence of

significant undervaluation of natural disasters risk.
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1 Introduction

Catastrophe bonds, or cat bonds, are natural disaster risk-linked securities which have

the purpose of transferring natural disasters risk from an issuer/insurance company to

investors in the bonds markets. By purchasing a cat bond, investors take on the risks

of the occurrence of a specified natural disaster against the payment of a return. In the

occurrence of the event the investors will then loose the capital invested and the issuer

will use that money to cover the damages.1 Cat bonds were created in the mid-1990s,

after hurricane Harvey in 1992 led eleven insurance companies to bankruptcy as a direct

or indirect result of the damages inflicted by the storm. Hurricane Andrew served as a

wake-up call for the insurance industry, showing that the tail risk associated with natural

disasters might be so severe that insurance companies themselves might not have enough

reserves to cover it. Insurance securitization was then seen as an effective risk sharing

mechanism, to spread natural disaster risk through financial markets and investors.

Since their introduction, the size of the cat bonds market has grown steadily, rising

to about US$ 10 billions in the mid-2000s, and then to over US$ 30 billions by the

following decade (Figure 1; top plot, LHS). Owner composition of cat bonds has also been

changing over time: while in the early 2000s cat bonds were largely owned by hedge funds

and reinsurance companies, currently institutional investors, including pension funds and

mutual funds, own about 30% of total assets (Figure 1; bottom plot, LHS). These changes

have been coupled by a steady decline in return per unity of risk or multiple, i.e. the

coupon (net of the risk free rate) to the Expected Loss (EL) ratio (Figure 1; top plot,

RHS). Cat bond multiples/risk premia have been falling from a value of 8 in 2000 to

about 4 in 2003. Since 2012 a new contraction in multiples can be noted, falling to a

record low value of 2 in 2017.

Despite the prolonged contraction in cat bond risk premia is a shared feature with

more traditional asset classes, such as corporate bonds (Figure 1; center plot, RHS), and

possibly related to the response of monetary policy to the recent financial crises2, it might

also reflect a change in investors’ perception about cat bonds as portfolio diversification

assets, i.e. from an "exotic" to a more standard instrument. In the logic of portfolio

risk diversification, cat bonds are, in fact, attractive assets, being not correlated with

traditional bond market instruments (Davies, 2017).

Given the increasing participation of institutional investors to the cat bonds market,

and the limits to risk exposure imposed by current regulation for pension funds, in par-

ticular, an important open question is then whether cat bonds risk is currently correctly

perceived and priced. This paper attempts to answer the latter question by investigating

whether the falling trend in cat bonds risk premia is consistent with trend dynamics in

natural disaster risk, which, due to ongoing climate change, is actually expected to in-

crease. This is also in the light of the large share of outstanding capital in the cat bonds

market which is exposed to Atlantic hurricanes (Figure 1; bottom plot, LHS), whose in-

1See http://www.artemis.bm/library/what-is-a-catastrophe-bond.html for a quick introduction to cat

bonds.
2For instance, since 2007 Fed’s balance sheet has risen by $3.5 trillion, from $0.9 trillion to $4.4

trillion. Engen et al. (2015) suggest that the effect of the entire QE programme was to reduce the 10-

year term premium, and therefore the bond yield, by 120 basis points in 2013. The QE programme also

increased US equity prices by 11-15 per cent, and reduced the dollar effective exchange rate by 4.5-5 per

cent. Other central banks, such as the Bank of England, the Bank of Japan and the European Central

Bank have implemented similar policies. It is then likely that the expansionary monetary policy stance

might have also determined a surplus of capital in the reinsurance industry.
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tensity might be enhanced by global warming (IPCC, 2012), also through its impact on

natural oscillations, such as the El Niño Southern Oscillation (ENSO; Cai et al., 2015a,b;

2014; Kim et al., 2014).3

The deep economic and human implications of these facts are clearly shown by recent

events. For instance, the 2014-2016 El Niño event contributed to the most (least) active

tropical cyclone season on record for the Central Pacific basin (Australian region) and to

the formation of some systems outside of the season boundaries within the North Atlantic,

Eastern and Southern Pacific basins. Various countries around the world, including

Africa, Central America, South-East Asia and Pacific Islands, were affected by below or

above-average rainfall and flooding, increased food scarcity and susceptibility to illnesses,

forced displacement (UNOCHA, 2016). The severity of 2017 Atlantic hurricanes season

also appears to be related to ENSO anomalies.4 At the time of writing, a preliminary

total of over US$ 316.51 billions in damages have been accrued and 464 fatalities can

be counted. Season 2017 was indeed a record one under many respects: a part from

its extreme intensity, all ten of the season’s hurricanes occurred in a row, the greatest

number of consecutive hurricanes ever observed in the satellite era.5 Consistent evidence

is also yield by the Loss/Risk ratio for Atlantic hurricanes (Figure 1; center plot, RHS), as

measured by the ratio of total damages to accumulated cyclones energy (ACE), showing

increasing level and volatility since the early 2000s and record high in 2017.

Hence, cat bonds risk assessment appears to require the investigation of the global

warming phenomenon ( ) and of its implications for natural disasters. In this paper,

the latter analysis is carried out in an innovative econometric framework, i.e. the semi-

parametric dynamic conditional correlation model (SP-DCC) of Morana (2015), which

allows for accurate modelling of first and second conditional moments of temperature

anomalies. Within this framework, we then assess: 1) whether the current warming

trend in temperature anomalies is due to radiative forcing, i.e. the net insolation ab-

sorbed by the Earth, and, therefore, whether global warming ( ), at least in part, is of

anthropogenic origin (carbon dioxide, methane and aerosols emissions); 2) whether there

are any feedback effects of  on the environment, for instance concerning natural phe-

nomena, such as ENSO (El Niño/La Niña episodes) and Atlantic-hurricanes, and their

disruptive effects. In the light of the evidence in 1)-2) we then investigate the long- and

short-term drivers of cat bonds multiples, in relation not only to the monetary policy

stance and investors’ preferences, but also to climate change risk.

To summarize the key results of the study, we find that radiative forcing has been

driving the warming trend in temperature anomalies since the 1980s, also accounting for

their mid-end 1990s level switch, the 1998-2013 "warming hiatus" and their current raise;

we also find that radiative forcing is driving the trend evolution of natural phenomena,

such as ENSO and Atlantic hurricanes activity, and might enhance their disruptive effects.

Hence, our evidence is supportive of the global warming hypothesis and the existence of

feedback effects of global warming for the environment, in terms of higher natural disasters

risk (more intense cyclones, draughts and floods).

We also document the GARCH properties of the time-varying volatility of tempera-

3See also Coumou and Rahmstorf (2012) and Ng et al. (2015) on these issues.
4While an El Niño event was initially predicted to develop in 2017, and expected to lower storm

activity in the Atlantic, cool-neutral conditions (La Niña) materialized instead, yielding the opposite

effect.
5In 2017 there were 16 named storms in total; 4 of them reached the intensity of hurricanes, while

other 6 were classified as major hurricanes. Season 2017 was therefore a record high also for the total

accumulated cyclone energy (221 104kt2) and number of major hurricanes since 2005.
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ture anomalies and SOI, a feature neglected in the literature so far. In this respect, a

sizable increase in SOI volatility can be noted since the mid-2000s, concurrent with the

recent steepening in the radiative forcing trend and raise in global temperature volatility,

pointing to more unstable ENSO episodes, possibly also as a consequence of  .

In the light of current contributions of human activity to radiative forcing, i.e., carbon

dioxide, methane and aerosols emissions, natural disasters risk, such as hurricanes (as

well as extreme droughts and floods), then appears to be on a raising trend. Similarly

on a raising trend is then cat bonds risk, at least with reference to that sizable portion

of outstanding capital facing some exposure to climate change-related risk. However,

the latter risk dynamics do not appear to have been properly incorporated in cat bonds

multiples so far. In fact, while we find that falling cat bonds risk premia should be related

to the expansionary monetary stance pursued by the Fed, as well as to some portfolio shift

effects, we also find evidence of significant undervaluation of natural disasters risk. As an

implication, it appears that cat bonds might not be a suitable diversification instrument

for risk-adverse investors, such as pension funds. Moreover, due to risk undervaluation,

the overall sanity of the market, as well as whether, in a not too far future, the cat bonds

market might become a trigger for a new phase of generalized financial instability, appear

to be important issues which do call for assessment a further research.

The rest of the paper is organized as follows. In Section 2 we introduce the data, while

in Section 3 we present the econometric model. Then, in Sections 4 and 5 we discuss

the empirical results concerning the global warming evidence and risk pricing in the cat

bonds market, while Section 6 concludes. In the Appendix we finally report estimation

details and Monte Carlo evidence for the SP-DCC estimator. Additional empirical results

are contained in the Online Appendix.

2 The data

Our climatological information set is monthly and spans the period 1978:12 through

2016:12, for a total of 457 observations. It consists of average land and ocean tempera-

ture anomalies for the entire globe (GL; 90S-90N) and seven zones, namely the Northern

Hemisphere (NH; 0-90N), the Southern Hemisphere (SH; 90S-0), the Tropics (Trpcs; 20S-

20N), the Northern Extratropic (NoExt; 20N-90N), the Southern Extratropic (SoExt;

90S-20S), the Northern Polar (NoPol; 60N-90N), the Southern Polar (SoPol; 90S-60S).
6 We also include the Southern Oscillation Index (SOI) to track the temporal evolution

of ENSO episodes.7 Moreover, following Hansen et al. (2005), radiative forcing is mea-

sured by the sum of various components: Well-Mixed Greenhouse Gases (WMGG; carbon

dioxide (CO2), methane (NH4), nitrous oxide (N2O) and chlorofluorocarbons (CFCs)),

Ozone (O3), Stratospheric Water Vapor (StrH2O), Reflective Tropospheric Aerosols (Re-

flAer), Tropospheric Aerosol Indirect Effects (AIE), Black Carbon Aerosols (BC), Snow

Albedo (snowAlb), Stratospheric Aerosols (StrAer), Solar Irradiance (Solar), Land Use

6The source is the NASA Goddard Institute for Space Studies and we refer to Christy

et al. (2011) for details concerning data construction. The data are available at

http://www.nsstc.uah.edu/data/msu/v6.0/tlt/uahncdc_lt_6.0.txt
7SOI measures the bimodal variation in sea level barometric pressure between ob-

servation stations at Darwin (Australia) and Tahiti. SOI data are available at

https://www.ncdc.noaa.gov/teleconnections/enso/indicators/soi/
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(including irrigation; LandUse).8 As radiative forcing data are available at the annual

frequency and up to 2011 only, implementation of the monthly model in Sections 4-5 re-

quired forecasting radiative forcing data through 2016 and monthly interpolation. Details

of the procedure implemented are provided in the Online Appendix. Finally, in order to

measure Atlantic cyclones intensity, we consider the accumulated cyclone energy (ACE)

index, which is also available annually.9

Concerning financial data, due to cat bonds data sample limitations, we consider

annual figures for the period 1997 through 2017. In particular, we consider average

multiples, the effective federal funds rate, the BofA Merrill Lynch US corporate AA,

BBB and BB option-adjusted spreads, US Treasury bills (3-month) and bonds (10-year)

rates, and the Loss/Risk ratio for Atlantic hurricanes, as yield by the damages to ACE

ratio.10

3 The econometric model

The semiparametric dynamic conditional correlation model ( −; Morana, 2015)

is defined by the following equations

y = μ(δ) + ε (1)

ε = H
12
 (δ)z (2)

where y =
£
        

¤0
is the

 × 1 column vector of the variables of interest, i.e. temperature anomalies for various
zones and SOI ( = 9), μ(δ) is the  × 1 conditional mean vector  (y|−1), δ is a
vector of parameters, −1 is the sigma field; H(δ) is the  ×  conditional variance-

covariance matrix   (y|−1). Moreover, the random vector z is of dimension  × 1
and assumed to be i.i.d.N with first two moments  (z) = 0 and   (z) = I .

3.1 The specification of the conditional mean function

We employ an univariate Adaptive-X-ARMA model for each of the  elements in the

mean vector μ(δ), i.e.

 ()  =  +  ()   = 1   (3)

8According to IPCC glossary, radiative forcing or climate forcing is the difference between insolation

(sunlight) absorbed by the Earth and energy radiated back to space. Positive (negative) radiative forcing

means Earth receives more (less) incoming energy from sunlight than it radiates to space. This net gain

(loss) of energy will cause global warming (cooling). Causes of positive radiative forcing include changes

in insolation and the concentrations of radiatively active gases, commonly known as greenhouse gases,

and aerosols, which (in large part) are the anthropogenic contribution to global warming. RF is measured

in W/m2. The data ara available at https://data.giss.nasa.gov/modelforce/Fe_H11_1880-2011.txt
9The ACE is calculated by squaring the maximum sustained surface wind in the system every six

hours (knots) and summing it up for the season. It is expressed in 104kt2. ACE figures can be found at

http://www.aoml.noaa.gov/hrd/tcfaq/E11.html.
10The source for cat bonds multiples is Artemis (http://www.artemis.bm/deal_directory/cat_bonds

_ils_average_multiple.html). Data for the federal funds rate, Treasury bills and bonds, and the

AA, BBB, and BB corporate spreads are available from FRED, with acronyms FEDFUNDS, TB3MS,

GS10, BAMLC0A2CAA, BAMLC0A4CBBB, and BAMLH0A1HYBB, respectively. Figures for to-

tal damages are available season by season on wikipedia; for instance, 2017 figures can be found at

https://en.wikipedia.org/wiki/2017_Atlantic_hurricane_season
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where  () and  () are polynomials in the lag operator with all the roots outside

the unit circle;  is a level component specified according to the general -order Fourier

function in radiative forcing ( )

 = 0+
X

=1
+2+

X

=1
 sin (2

∗
 )+

X

=1
 cos (2

∗
 ) MX

(4)

where  ∗ =
−min

max−min is  scaled to range between 0 and 1, and  is a generic

step dummy variable with unitary values set according to the Bai and Perron (1998)

structural break tests.

We also use the nested specification

 = 0 + 2 +
X

=1
 sin (2

∗
 ) +

X

=1
 cos (2

∗
 ) 2 = 0 MXR

which omits the dummy break variable, and therefore relates the underlying evolution in

the series to  only.

In terms of properties, the Adaptive-X-ARMA model is then consistent with the

available evidence in the literature, which suggests the existence of a common trend in

temperature anomalies and radiative forcing (Kaufmann et al., 2013; Schmith et al.,

2012; Estrada and Perron, 2016), as well as of structural breaks in temperature anom-

alies, possibly associated with the persistent effects of natural oscillations, such as the El

Niño Southern Oscillation (ENSO), the Atlantic Multidecadal Oscillation (AMO) or the

Antarctic Oscillation (AAO) (Gay et al., 2009; Mills, 2013, Estrada and Perron, 2016;

McKitrick and Vogelsang, 2014).

3.2 The specification of the conditional variance function

Concerning the conditional variance-covariance matrix H(δ), we assume that the ele-

ments along its main diagonal, i.e. the conditional variances   (|−1) ≡  follow

a GARCH(1,1) process

 =  + 
2
−1 + −1  = 1   (5)

subject to the usual restrictions to ensure that the conditional variances are positive

almost surely at any point in time.

Concerning the definition of the off-diagonal elements of H, i.e. the conditional

covariances ( |−1) ≡ , the latter are defined according to the polarization

identity of the covariance operator11

 =
1

4
[ −1( + )−  −1( − )]   = 1    6=  (6)

By defining the aggregate variables + ≡ + and 
−
 ≡ −, and assuming

a GARCH(1,1) specification for their conditional variance processes  −1(
+
|−1) ≡

+ and  −1(
−
|−1) ≡ − , one then has

 =
1

4

£
+ − −

¤
  = 1    6=  (7)

11For any two random variables  and , one has () ≡ 1
4
[ (+)−  (−)], since

 (±) =  () +  ()± 2().
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where

+ = + + +
+2
−1 + +

+
−1   = 1    6=  (8)

− = − + −
−2
−1 + −

−
−1   = 1    6=  (9)

with + =  +  and − =  − .

3.3 Estimation of the SP-DCC model

Starting with the Gaussian log-likelihood for the model in (1)-(2)

 = −1
2

X
=1

¡
 log (2) + log |H|+ ε0H−1 ε

¢
 (10)

consistent and asymptotically Normal estimation is obtained by , following a multi-

step procedure. Firstly, the mean equation model in (1) is estimated equation by equation

by , i.e. the misspecified likelihood

(ϑ) = −1
2

X
=1

X
=1

log (2) + log 2 +
2

2
(11)

is maximized by separately maximizing each term.

Then, using the estimated conditional mean residuals ε̂, the conditional variance

model is estimated by  using the misspecified GARCH likelihood

(θ) = −1
2

X
=1

X
=1

log (2) + log  +
̂2


 (12)

which is jointly maximized by separately maximizing each term.

Similarly for the aggregate series + and −, i.e. the GARCH likelihood

 (φ) = −
X
=1

X
=1

X


Ã
log (2) + log + +

̂+2

+

!

−
X
=1

X
=1

X


Ã
log (2) + log − +

̂−2
−

!
(13)

with ̂+ = ̂ + ̂ and ̂− = ̂ − ̂, is jointly maximized by separately maximizing

each term.

The conditional covariances are then estimated by means of the polarization identity,

i.e. the off-diagonal elements of H, ,   = 1   ,  6= , are computed as

̂ =
1

4

h
̂+ − ̂−

i
  = 1    6=  (14)

The conditional correlation matrix R is finally estimated as

R̂ = D̂
−1
 ĤD̂

−1
 (15)

where D̂ = 
³
̂
12
1   ̂

12



´
. See the Appendix for further details and Monte Carlo

results.
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4 Empirical results

 estimates of the models are reported in Table 1, Panel A (MX) and Panel B (MXR).

Concerning the specification of the break dummies for the MX model, as shown in the

Online Appendix (Table 2, Panel C), the  − test points to a single break point

over the investigated sample. Consistent with McKitrick and Vogelsang (2014), the break

would be located about the mid-/end 1990s (1995 through 1998), and might therefore

be related to the concurrent El Niño events (weak: 1995-1996; very strong: 1997-1998)

and fading away of the cooling effect of the vulcanian eruption in the Philippines (Mt.

Pinatubo in 1991).

As shown in Table 1, all models are equivalent in terms of residual properties as

in none of the cases evidence of misspecification is detected by standard diagnostics.

Moreover, according to the coefficient of determination, the explanatory power of the

various models is similarly sizable, i.e. about 0.70 for GL, NH and SH and 0.80 for Trpcs;

low for the Poles, i.e. 0.30 and 0.10 for NoPol and SoPol, respectively; intermediate, i.e.

0.40 to 0.60, for NoExt, SoExt and SOI.

The weaker connection of the trend component for Trpcs with radiative forcing is

consistent with the potential effects of extreme ENSO episodes, such as in 1997-1998 and

2015-2016, which might have yield a sizable and long lasting impact on average temper-

atures, particularly at the tropics. As pointed out by Cai et al. (2015a,b; 2014) and

Kim et al. (2014), extreme ENSO events are different from moderate events and, in

assessing the evidence on global warming ( ), the latter should be kept separate from

normal episodes.12 The stronger persistence of Trpcs relative to the other anomalies,

as well as the different autoregressive structure, might indeed be related to the occur-

rence of extreme ENSO episodes, which might impart an upward bias to the estimated

autoregressive parameter.13

In the light of the above assessment we have then selected the Adaptive-X-AR model

(MXR, Panel B) as best model. As shown in the plots in Figure 2, the radiative forcing

nonlinear trend closely tracks the low frequency evolution in temperature anomalies,

accounting not only for their recent raise and mid-end 1990s level switch, but also for

the 1998-2013 warming hiatus (slowdown in  ). This is consistent with Estrada and

Perron (2016), who relate the hiatus to radiative forcing, i.e. to CFC and methane

reductions, rather than to natural variability factors such as AMO, PDO, ENSO, or

lower solar activity. See also Kosaka and Xie (2013) and Pretis et al. (2015) on this

issue. Therefore, our results appear to be supportive of the “ hypothesis”.

Our results have also implications for the recent debate concerning the effects of 

on the frequency and amplitude of the ENSO phenomenon. The statistical significance of

the radiative forcing variable in the SOI conditional mean specification points in fact to a

12In this respect, Jones (1989) and Wigley (2000) find that following a typical El Niño event the

global surface air temperature increases of up 0.1 C with a lag of 6 months. A larger impact of 0.2 C is

documented by Christy and McNider (1994) and Angell (2000) in correspondence of the 1997-1998 very

strong El Niño event.
13The consensus view on the contribution of ENSO to  indeed posits that ENSO might account for

between 10% and 30% of the inter seasonal and longer-term change in surface and/or lower tropospheric

temperature, but little of the global mean warming trend since the 1950s (Foster et al., 2009). The latter

warming trend is generally related to  (Kaufmann et al., 2013; Schmith et al., 2012; Estrada and

Perron, 2016). Yet, Douglas and Christy (2009) show that about 88% of the temperature anomaly over

the period 1979-2007 might be accounted by ENSO (El Niño3.4 lagged 4 months) and volcano climate

forcing. A connection between the North Atlantic Oscillation (NAO), the Arctic Oscillation (AO) and

global warming has also bee investigated. See Cohen and Barlow (2005).
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feedback effect from global warming to ENSO. This is consistent with the view that ENSO

and other natural oscillations might increase in amplitude and frequency and that their

teleconnections might be shifted, both as consequences of mean climate state changes

(Cai et al.. 2015a,b; 2014; Kim et al., 2014; Ng et al., 2015; Coumou and Rahmstorf,

2012). Our findings are supportive of the above arguments, since the negative sign of

the estimated coefficient of the  variable (4) implies that global warming (cooling)

enhances El Niño (La Niña) events. Interestingly, the linkage between  and ENSO

appears to be highly nonlinear and similar to what detected for Trpcs, the geographical

zone which is most closely and directly affected by ENSO.

4.1 Robustness check

In order to check the robustness of our conclusions to data extension and interpolation,

models MX and MXR were firstly reestimated over the shorter sample 1978:12 through

2011:12, therefore omitting the forecasted data; moreover, the model were reestimated

over the full sample, yet using the raw step function data, rather than their smoothed

values. The results are reported in Tables A4 and A5 in the Online Appendix. By

comparing figures reported in Tables 1 and A4, it can then be noticed that the results

are strongly robust to the use of forecasted data, since omitting the last five years of

(forecasted) data leaves even point estimates virtually unchanged. Moreover, by com-

paring the estimates reported in Tables 1 and A5, it can be concluded that the sign and

magnitude of the contribution of  to the determination of temperature anomalies is

again virtually unchanged, albeit some differences in the order or type of the selected

trigonometric components can be noted in few cases. However, in only in three out of

eighteen cases the models estimated using step function data are preferred, according

to information criteria, to the models estimated using the smoothed interpolated data

(GL and NoExt for MX; Trpcs for MXR). Further support for the empirical analysis is

provided by the model selection exercise reported in the Online Appendix, showing that

the MX and MXR models are superior to a comprehensive set of competing specifications

neglecting the contribution of  .

4.2 The conditional variance of anomalies

The estimated conditional standard deviations for temperature anomalies and SOI are

plotted in Figure 3. As shown in the plots, all anomaly series show clusters of more

and less sizable changes alternating over time. The latter GARCH feature suggests that

temperature risk (or volatility) is not only time-varying, but that abnormal/extreme tem-

perature changes occur in clusters. This property has important implications concerning

temperature forecasting in general, and for the pricing of financial instruments traded to

hedge against temperature risk. In this respect, GL volatility has been raising since the

1980s and stabilized at a high level during the "hiatus"; a new phase of raising volatility

seems to have started since 2010. Interesting patterns can also be detected for the other

zones; for instance, temperature volatility appears to be on a upward trend for NH and

NoExt and on a downward trend for SH and SoExt. Also noteworthy is the volatility

spike in Trpcs, concurrent with the extreme 1997-1998 El Niño event. We are unaware

of previous contributions to the literature pointing to GARCH properties of temperature

anomalies.

Moreover, the GARCH property can also be detected for SOI. As shown in Figure 3,
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a sizable increase in SOI volatility can be noted since the early 2000s, therefore pointing

to more “unstable ENSO” over time. The latter finding is interesting and surely deserves

further study, particularly in connection with the concurrent steepening in the radiative

forcing trend shown in Figure 3, and therefore with potential feedback effects of  .

4.3 Conditional correlations and global warming

Estimation of the conditional covariances and correlations is performed by means of the

polarization identity in (14), which requires the estimation of the conditional variance

for the aggregate anomaly and SOI series + and −, i.e. ̂+ and ̂−, using the
corresponding aggregated residuals ̂+ and ̂−.
As for the 9 original series, an IGARCH(1,1) specification is selected also for any of

the 72 aggregate cases, with the same estimated persistence parameter, equal to 0.99

(not reported). A summary of the results is provided in Figure 4, where Boxplots for the

p-value of the Box-Ljung tests for serial correlation and conditional heteroskedasticity

are plotted for the 81 standardized residual series. As shown in the plots, the models are

well specified in all cases, since standardized residuals behave according to a white noise

process. Given the single decay factor IGARCH (1,1) specification, positive definiteness

at each point in time of the conditional variance-covariance and correlation matrices is

granted.

Support for the modeling of time-varying conditional correlations across temperature

series and SOI is also provided by the comparison with the Constant Conditional Correla-

tion model of Bollerslev (1990; ).  − is in fact preferred to , yielding a

lower BIC information criterion, i.e. -9.5651 versus -9.2682 (not reported).  − is

also preferred to Engle (2002)  (BIC = -9.3973; not reported).14 The latter finding

is fully consistent with the results of the Monte Carlo analysis reported in the Appendix,

showing that − outperforms Engle (2002) in the IGARCH(1,1) framework.

In Figure 5 we plot the conditional correlations for non overlapping zones in the North-

ern and Southern hemispheres, i.e. NH/SH, NoExt/SoExt, NoPol/SoPol. An upward

sloping trend can be detected in all cases, revealing increasing comovement of tempera-

ture anomalies over time. We interpret the latter finding as further evidence in support

of the  hypothesis, since it suggests the existence of a common driver of the warm-

ing trend in temperature anomalies, i.e.,  . Additional results, concerning the ENSO

teleconnection and its evolving properties, are reported in the Online Appendix.

4.4 Implications of global warming for natural disasters risk

Conditional mean and variance modelling of temperature anomalies and SOI allow to

draw some important conclusions concerning climate change risk. Firstly, we find evidence

of ongoing  . In fact, the warming trend in temperature anomalies appears to be

determined by  ; coherently, also an increasing positive correlation or comovement of

anomalies across non-overlapping geographical zones is detected. Secondly, we find that

 might exercise feedback effects on the environment, by enhancing the intensity of

ENSO events. In fact,  also appears to drive trend fluctuations in SOI. Thirdly, we

find evidence of time varying temperature and SOI volatility. In particular, GL volatility

shows a rapid increase since the mid-1980s, stabilizing at much higher levels during the

"hiatus"; a new phase of raising GL volatility seems to have started since 2010. Moreover,

14Details are available upon request from the authors.
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an increase in SOI volatility can be noted since the early 2000s. Hence, given current

contributions of human activity to radiative forcing, i.e. current carbon dioxide, methane

and aerosol emission levels, more intense and unstable ENSO events and a higher risk of

associated disruptive phenomena, i.e. cyclones, floods and droughts, should be expected.

In this respect, the economic and human implications of the 2014-2016 El Niño event, as

well as of the hyperactive 2017 Atlantic hurricanes season, are the most recent evidence

consistent with this view.

In this Section we further assess the predictability of climate-change related disasters.

In particular, since about half of the current US$ 30 billions of outstanding risk capital in

the cat bonds market might be facing some exposure to Atlantic hurricane risk, we inves-

tigate the linkage between radiative forcing, i.e. the  driver, and Atlantic hurricanes

intensity, as measured by its accumulated cyclones energy (). As shown in Figure

6, over the last thirty years, Atlantic hurricanes activity has undergone some noteworthy

changes. In fact, since the mid-1990s Atlantic storms intensity appears to have raised

to very high levels, particularly during five episodes, i.e. 1995, 1998-1999, 2003-2005,

2010 and 2016-2017 (top plot, shaded areas). The increase in level (and volatility) is

concurrent with the level switch detected in temperature anomalies, and related to 

dynamics. Indeed, as shown in the plot,  does appear to well track also  trend

developments, and might therefore be a useful conditioning variable in an econometric

model for hurricanes risk.

4.4.1 An econometric model of hurricanes risk

Our econometric analysis of hurricanes risk is based on the following parsimonious reduced

form Adaptive-X-AR model

() = () +
X

=1
() sin (2 ∗ ) + ()

12

 + 

 ∼ (0 2) (16)

where (), (), () and () are polynomials in the lag operator with all the roots

outside the unit circle,  ( ∗) is radiative forcing (normalized to range in the [0 1]
interval), 

12

 is the annualized volatility of the global temperature anomaly delivered

by the monthly econometric model15. For numerical convenience all the variables are

reported in standardized units.

Model selection has been implemented following a general to specific reduction ap-

proach, allowing for up to five lags of each variables.16 The selected econometric model

is reported in Table 2, Panel A. In addition to the Adaptive-X-AR model, we also report

two nested specifications, i.e. the AR model, which neglects past climatological informa-

tion (() = () = () = 0), and the Adaptive-X model, which neglects past 

information (() = 1). According to residuals diagnostics, all the models appear to

be well specified. The adaptive models are however clearly preferred to the AR model

in terms of fit and information criteria: the coefficient of determination is 0.71 for the

Adaptive-X-AR model and 0.59 for the Adaptive-X model; only 0.07 for the AR model.

See also Figure 6 (second plot from above).

15It is computed as

µX12

=1


¶12
 = 1979 2016

16We also considered other potential conditioning variables, as for instance SOI level and volatility.

However, the preferred econometric model did not include the latter variables.
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From the solved long-run equation (Table 2, Panel A), it can be noticed that an

increase in both radiative forcing and temperature volatility would lead to a long-term

increase in , and therefore in Atlantic hurricane risk. Hence, Atlantic hurricanes

intensity/risk would be enhanced by global warming, also consistent with the feedback

effects of  on ENSO. As found for temperature anomalies and ENSO, given the

significance of the trigonometric term, also the linkage between  on  appears to

be highly nonlinear.

As shown in Table 2, Panel B, the noteworthy in sample performance of the Adaptive-

X-AR and Adaptive-Xmodels is genuine not due to overfitting; both models in fact largely

dominate the AR model also in terms of out of sample forecasting accuracy. We have

considered two types of forecasting exercises, using 2/3 of the sample for estimation (1984-

2006) and 1/3 for forecasting (2007-2017); in the first exercise parameters are estimated

over the period 1984-2006 and then one-step ahead forecasts are generated over the period

2007 trough 2017 (without re-estimating the parameters); in the second exercise, one-step

ahead forecasts are generated over the period 2007 trough 2017, updating at each step

parameter estimates; for both cases, we also report results when the last observation in

the sample, i.e. 2017, is omitted from the forecasting horizon, due to its outlying behavior.

As shown in the Table, results are robust to the type of exercise undertaken, pointing to

40% and 50% reductions in  yield by the adaptive models relative to the AR

and random walk/naive forecasting models, respectively. The forecasting performance

of the adaptive models is similar, with the Adaptive-X-AR model slightly outperforming

the Adaptive-X model when forecasts are generated recursively.

In Figure 6 (second plot from below and bottom plot) we compare actual ACE values

with the forecasted figures obtained from the Adaptive-X-AR model, for the case of re-

cursive estimation. In the comparison we also consider (spline) smoothed ACE figures in

order to highlight the ability of the Adaptive-X-AR model to track trend developments

in ACE, consistent with the view that  might also affect the long-term behavior

of natural phenomena. Visual inspection provides clear-cut confirmation of the statistical

evidence of predictability of trend Atlantic hurricanes intensity (and disruptions), based

on climatological information. Hence, in the light of current climatic developments, the

risk of natural disruptions stemming from  , as for instance extremely severe hurri-

canes, appears to be on a raising trend. Then, on a raising trend would also be cat bonds

risk, at least for that (very sizable) portion of outstanding capital facing some exposure

to climate change and  . This is also consistent with the raising trend and volatility

shown by the Atlantic hurricanes Loss/Risk ratio, and its record high in 2017 (Figure 1;

bottom plot, RHS). Whether the falling trend in average cat bond risk premia and their

record low value scored in 2017 are consistent with accurate pricing of natural disasters

risk is then an open issue, which we address in the following Section.

5 Assessing risk premia in the cat bonds market

As shown in Figure 1 (bottom plot, RHS), falling risk premia are a feature shared also

with more standard bond classes, as for instance corporate bonds. In the literature, the

latter pattern is often associated with the expansionary monetary policy stance pursued

by the Fed to counteract the deflationary effects of the dot-com and subprime financial

crises, and therefore to the falling trend in the federal funds rate () and the 

policy.
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However, coherent with the different risk exposure, trend dynamics in cat bond mul-

tiples ( ) and corporate rate spreads also show some differences. For instance,

multiples have been much less affected by the subprime financial crisis. Indeed, the co-

movement between AA and BBB corporate bond spreads (, ) is much stronger

than between AA or BB spreads and multiples. In addition to monetary policy, changes

in investors’ perception about the characteristics of cat bonds, i.e. from exotic to standard

diversification instruments, might then have also contributed to the observed contraction

in multiples.

In the light of the nonstationarity properties of multiples and corporate spreads (Table

3, Panel A), we have then first assessed their cointegration properties and then estimated

an error correction model to investigate risk premia short-run dynamics. As shown in

Table 3 (Panel A), concerning the specification of the unrestricted reduced form model, a

parsimonious first order VARmodel yields residuals consistent with white noise properties

(not reported).17 Within this framework, we have then tested for cointegration using

the Johansen Trace test. According to the Trace statistics there is evidence of two

cointegrating relationships (10% significance level) and therefore of two common trends

accounting for the long-term evolution of risk premia and the federal funds rate. The

identification of the cointegrating vectors yields two irreducible homogenous cointegration

relationships: the former relates multiples to the federal funds rate; the latter relates the

AA and BBB spreads.18

Also consistent and clear-cut are the error correction properties of the spreads. In fact,

according to the estimated loadings, multiples correct their disequilibrium with ,

which, on the other hand, is weakly exogenous. Moreover, also corporate spreads correct

relative to the MULT/FFR disequilibrium. Hence, following a contraction in , and

therefore a widening in the MULT/FFR disequilibrium ceteris paribus, multiples and

corporate spreads would tend to decrease, consistent with the view that associates the

declining trend in bond spreads to expansionary monetary policy.

Moreover, the AA spread corrects also relative to its disequilibrium with the BBB

spread, pointing to some contagion in the corporate bonds market. In particular, following

an increase in the BBB spread, and therefore in the default risk for BBB bonds, the AA

spread, i.e. default risk for AA bonds, would also raise. On the other hand, no response

to the BBB/AA disequilibrium can be noted for cat bonds, consistent with the fact that

cat bonds are not sensitive to business cycle risk.

Given the aim of this study, error correction modeling has then focused on multi-

ples only. In addition to lagged values (in changes) for cat bond multiples ( ),

the federal funds rate (), and the spreads for AA and BBB corporate bonds (,

), we have also considered lagged changes for the 10-year US Treasury bond rate

(10 ), the 3-month US Treasury Bills rate (3) and the BB spread (), in

order to investigate portfolio diversification effects related to changes in investors’ prefer-

ences. Moreover, in order to assess investors’ perception of evolving climate change risk,

we have also considered past values for radiative forcing ( ), temperature volatility

(), accumulated cyclones energy () and the Atlantic hurricanes Loss/Risk ratio

17The p-value for the Vector AR 1-2 test is 0.084; the p-value for the Vector Heteroskedasticity test

is 0.200; the p-value for the Vector Normality test is 0.107.
18The analysis was repeated including also the BB spread and the US Treasury bills (TB3M) and

bonds (TB10Y) rates. The empirical results confirm the separation of the cointegration space into three

homogenous bivariate relationships involving FFR, TB10Y, TB3M and MULT, and into two bivariate

relationships involving AA, BBB and BB. Details are available upon request from the authors.

13



(damages in 2017 constant US$ to ACE ratio; ).19

In Table 3, Panel B, we report some alternative specifications for the error correction

model, allowing to evaluate the incremental explanatory power of conditioning informa-

tion relative to the inclusion of the error correction term alone. Hence, our econometric

analysis of cat bond risk premium dynamics is based on the error correction model

()∆ = + 0 [−1 − −1] + ()∆ +  (17)

where  ∼ (0 2) () and () are polynomials in the lag operator with all

the roots outside the unit circle, [−1 − −1] is the error correction term, and
∆ = ∆, ∆, ∆, ∆, ∆3, ∆10, ∆, , , .

Given the small sample available, the analysis has considered up to five lags for each

of the conditioning variables  at the time and a general to specific procedure for model

reduction. As shown in the Table, all the models appear to be well specified according

to standard misspecification tests, but only the inclusion of financial information yields

a sizable increment in explanatory power relative to the benchmark model, particularly

lagged BBB and BB spreads. In this respect, multiples appear to react to their disequi-

librium with the FFR in the very short-term (within 1 year), then to corporate bonds

spreads at the 2/3-year horizon, and then to Treasury bills and bonds rate changes at

longer horizons (5-year). The above pattern is then consistent with the view associating

falling multiples to the expansionary monetary stance pursued by the Fed, as well as

to changes in the investors’ preferences and portfolio shifts. Moreover, concerning the

contribution of climate change variables, the latter either is not statistically significant,

as for  and  , or is significantly negative, as for  and . Hence, it appears

that climate change-related risk has not accurately been incorporated in cat bonds risk

premia so far. In this respect, an increase in temperature volatility or in Atlantic hurri-

canes Loss/Risk ratio would be even followed by falling, rather than raising multiples in

the medium-term. This appears to be inconsistent with the cat bonds market correctly

pricing climate change risk.

In order to consider the contribution of the various conditioning variables jointly, a

final error correction model has been specified by including all the lagged variables which

were found significant in the partial error correction analysis above, i.e.

∆ = + 0 [−1 − −1] + θ
0∆g + 

where ∆g = [ ∆−2 ∆−3 ∆−3 ∆3−5
∆10−5 ∆−5 −2 ∆−5 ]0 and θ is the corresponding vector of

parameters, i.e. θ =[ 2 3 3 53 510 5 2 5 ]
0.

Its final specification, obtained through a general to specific reduction strategy, is

reported in Table 3, Panel C. As shown in the Table, the final econometric model is very

parsimonious, well specified and accounts for about 65% of  variability.

In order to asses whether the latter performance might be due to overfitting, the

model has been reestimated leaving out the last five observations (2013-2017); out of

sample forecasts have then been generated by keeping constant the estimated parame-

ters, and assessed by means of the RMSFE statistic; as reported in the Table, the final

econometric model shows much higher forecasting accuracy than the model including

the error correction term only; it also performs better than many of the other candidate

19Additional ADF test results are avaialble upon request from the authors.
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partial specifications. We regard the latter results as evidence of stability and reliability

of the estimated dynamic relationship.

In terms of determinants of  short-run dynamics, the implications of the joint

error correction analysis are consistent with the results of the partial one. In fact, a

contraction in  would lead to a contraction in  due to disequilibrium correc-

tion (monetary policy stance effect); moreover, an increase in the 3 − spread

would lead to a contraction in their return and risk premia ceteris paribus, possibly due

to higher cat bonds demand. Some complementarity, rather than substitutability be-

tween Treasury Bills and cat bonds is however revealed by the joint analysis. Finally,

the negative linkage between  and  is also confirmed. Accordingly, climate

change-related risk appears not to have been accurately priced in the cat bonds market

so far.

6 Conclusions

Since their introduction in the mid-1990s, the market for cat bonds has developed rapidly,

achieving over US$ 30 billions of outstanding capital in 2017. Owner composition of

cat bonds has also been changing over time: while in the early 2000s cat bonds were

largely owned by hedge funds and reinsurance companies, currently institutional investors,

including pension funds and mutual funds, own about 30% of total assets. These changes

have also been coupled by a steady decline in the return per unity of risk ormultiple, from

a value of 8 in the early 2000s to a record low of 2 since 2015. Whether the latter pattern

is consistent with current trends in natural disasters risk is an open question. This is

particularly in the light of the large share of outstanding risk capital in the cat bonds

market which faces some exposure to Atlantic hurricanes, a risk that climate change,

among other disruptions, is expected to enhance (IPCC, 2012).

Hence, cat bonds risk assessment appears to require the investigation of the global

warming phenomenon and of its potential implications for natural disasters severity. By

means of a novel econometric framework, allowing for accurate modelling of first and

second conditional moments of temperature anomalies, we find supporting evidence for

the global warming hypothesis and for the existence of feedback effects for the natural

environment. In particular, we find that the warming trend in temperature anomalies

since the 1980s is driven by radiative forcing. We also find support for the view that global

warming might affect the pattern of natural oscillations and enhance their disruptive

effects. In this respect, we find that radiative forcing also drives the trend in SOI and

ACE, and detect a sizable increase in SOI volatility since the mid-2000s, concurrent

with the steepening in the radiative forcing trend and raise in temperature anomalies

volatility. Hence, more intense and unstable ENSO phenomena and more disruptive

Atlantic hurricanes activity can be expected as a consequence of global warming.

In the light of the ongoing contributions of human activity to radiative forcing and

global warming, i.e., carbon dioxide, methane and aerosols emissions, natural disasters

risk appears to be on a raising trend. Similarly on a raising trend is then also cat

bonds risk, at least with reference to that sizable portion of outstanding capital exposed

to climate change-related risk. Yet, the latter does not appear to have been properly

incorporated in cat bonds multiples so far. In fact, while we find that falling cat bonds

risk premia should be related to the expansionary monetary stance pursued by the Fed,

as well as to some portfolio effects, we also find evidence of significant undervaluation of
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natural disasters risk.

As an implication, it appears that cat bonds might not be a suitable diversification

instruments for risk-adverse investors, such as pension funds. Moreover, due to risk

undervaluation, the overall sanity of the market, as well as whether, in a not too far

future, the cat bonds market might become a trigger for a new phase of generalized

financial instability, appear to be important issues for investigation, which we leave for

future research.

7 Appendix A1. Estimation of the SP-DCC model

Consistent and asymptotically Normal estimation is obtained by , following a multi-step procedure

similar to Engle (2002). Hence, consider the Gaussian log-likelihood for the model in (1)-(2)

 = −1
2

X
=1

¡
 log (2) + log |H|+ ε0H

−1
 ε

¢
 (18)

which, following Engle (2002), is written as

 = −1
2

X
=1

 log (2) + 2 log |D|+ ε0D
−1
 D−1 ε)

−1
2

X
=1

(−z0z + log |R|+ z0R−1 z) (19)

where

D = 
³

12
1   

12



´
and the conditional correlation matrix R is defined as

R = D
−1
 HD

−1
 

The log-likelihood function in (19) can then be decomposed into the sum of a volatility part

(θ) = −1
2

X
=1

¡
 log (2) + 2 log |D|+ ε0D

−1
 D−1 ε

¢
(20)

and a correlation part

(θφ) = −1
2

X
=1

¡−z0z + log |R|+ z0R−1 z
¢
 (21)

and estimation is performed in the following steps. Firstly, the mean equation model in (1) is estimated

equation by equation by , i.e. the misspecified likelihood

(ϑ) = −1
2

X
=1

X
=1

log (2) + log 2 +
2

2
(22)

is maximized by separately maximizing each term.

Then, using the estimated conditional mean residuals ε̂, the volatility part of the likelihood (20)

is maximized with respect to the conditional variance parameters; since (20) is the sum of individual

GARCH likelihoods, i.e.

(θ) = −1
2

X
=1

X
=1

log (2) + log  +
̂2


 (23)
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the volatility part is maximized by separately maximizing each term.

Finally, rather than maximizing the correlation part in (21), conditional to the estimated mean

residuals and conditional variances delivered by the former two steps,  − maximizes the sum of

individual GARCH likelihoods for the aggregate series + and −, i.e.

 (φ) = −
X
=1

X
=1

X


Ã
log (2) + log + +

̂+2

+

!

−
X
=1

X
=1

X


Ã
log (2) + log − +

̂−2
−

!
(24)

which is jointly maximized by separately maximizing each term. Hence, the conditional variances for the

aggregates +, 
−
,   = 1   ,  6= , are estimated equation by equation by means of , using

the aggregates of the conditional mean residuals ̂+ = ̂ + ̂ and ̂− = ̂ − ̂. The conditional

covariances are then estimated by means of the polarization identity, i.e. the off-diagonal elements of

H, ,   = 1   ,  6= , are computed as

̂ =
1

4

h
̂+ − ̂−

i
  = 1    6=  (25)

The conditional correlation matrix R is finally estimated as

R̂ = D̂
−1
 ĤD̂

−1
 (26)

where

D̂ = 
³
̂
12
1   ̂

12



´
(27)

and the correlation part in (21) can be evaluated provided R̂ is positive definite at each point in time

(see Morana (2015, 2017) for ex-post corrections that can be implemented in the case of a non positive

definite correlation matrix).

Hence, the proposed approach to maximize the log-likelihood function is to find

ϑ̂ = argmax { (ϑ)} (28)

θ̂ = argmax { (θ)} (29)

φ̂ = argmax { (φ)} (30)

and then use these values to evaluate (θφ).

It can be conjectured that, under standard regularity conditions, the asymptotic distribution of the

 estimator is

 12
³
ψ̂ −ψ0

´
→ {0A(ψ0)−1B(ψ0)A(ψ0)−1} (31)

where ψ0 =
¡
ϑ00θ

0
0φ

0
0

¢0
denotes the true value of the vector of parameters, A(ψ0) is the Hessian and

B(ψ0) is the outer product gradient evaluated at the true parameter values. In fact, while the procedure

does not maximize the joint log-likelihood in (19), consistent and asymptotically Normal estimation is

however granted by the  principle, under the standard assumptions. See Engle (2002) for additional

details concerning the asymptotic distribution of the multi-step estimator; see also Morana (2017) for

additional details on the asymptotic properties of the  −  estimator. As shown by the Monte

Carlo exercise reported below, SP-DCC yields a similar or even superior performance to both  and

 in various parametric cases which are relevant for real data applications. Hence,  − model

represents a simple and valid candidate regardless of the fact that it is an approximate model in general.
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8 Appendix A2: Small sample performance of SP-

DCC

This section explores the performance of semiparametric DCC model ( -) of Morana (2015),

together with other standard estimation methods. Hence, consider the following bivariate GARCH(1,1)

model ∙
1
2

¸
= 

1
2



∙
1
2

¸ ∙
1
2

¸
∼ (0 2) (32)

where

 =

∙
1 12
12 2

¸
(33)

The conditional covariance matrix follows the following bivariate system

∙
1 12
12 2

¸
=

∙
1 2
2 3

¸
+

∙
1 2
2 3

¸ ∙
1−1 12−1
12−1 2−1

¸
+

∙
1 2
2 3

¸ ∙
21−1 1−12−1

1−12−1 22−1

¸
(34)

That is, in its VECH form

⎡⎣ 1
12
2

⎤⎦ =
⎡⎣ 1

2
3

⎤⎦+
⎡⎣ 1 0 0

0 2 0

0 0 3

⎤⎦⎡⎣ 1−1
12−1
2−1

⎤⎦+
⎡⎣ 1 0 0

0 2 0

0 0 3

⎤⎦⎡⎣ 21
12
22

⎤⎦ (35a)

As already shown by Bollerslev et al. (1988), it is possible to substitute  = 2 −  into (33) in

order to obtain the VARMA representation for the squared processes⎡⎣ (1− (1 + 1)) 0 0

0 (1− (2 + 2)) 0

0 0 (1− (3 + 3))

⎤⎦⎡⎣ 21
12
22

⎤⎦ =

=

⎡⎣ 1
2
3

⎤⎦+
⎡⎣ (1− 1) 0 0

0 (1− 2) 0

0 0 (1− 3)

⎤⎦⎡⎣ 1
2
3

⎤⎦
(36)

where

2 = (2 − 1)22 =
( − 1)2

©
1− ( + )

2
ª

(1− 2 − 2 − 2)

and  = 
¡
4
¢


The contemporaneous aggregation of model (36) leads to an ARMA(3,3) unless we observe that, for

some  and , ( + ) = ( + ), i.e. unless we have the case of root cancellation. For example,

consider the process (1 + 2) and assume (1+1) = (2+2); then the contemporaneous aggregation

of model (36) leads to an ARMA(2,2) for the squared aggregate (1 + 2)
2
, that is

£
1− ((3 + 3) + (1 + 1))+ ((3 + 3) (1 + 1))

2
¤ ¡
21 + 212 + 22

¢
=  +

£
(1− (3 + 3)) (1− 1) 1

¤
+
£
(1− (3 + 3)) (1− 2) 22

¤
+
£
(1− (1 + 1)) (1− 3) 3

¤


where  = (1− (3 + 3)) (1 + 22) + (1− (1 + 1))3

In addition, when (1 + 1) = (2 + 2) = (3 + 3) = , the aggregate process for the squared

aggregate (1 + 2)
2
is an ARMA(1,1)
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[1− ]
¡
21 + 212 + 22

¢
= + [1− 1] 1 + [1− 2] 22 + [1− 3] 3

where  = 1 + 22 + 3

Similar findings hold for other combinations of (36), such as the squared difference process as con-

sidered by  −. Therefore, although the  − model represents an approximation for this

framework (DVECH-GARCH(1,1)), when the case of root cancellation arises this approximation gets

more accurate. This seems to be the message from the following Monte Carlo simulation.

We generated model (32)-(33) using the following three parameters structures

()   = 1 2 3

ω =

∙
1 2
2 3

¸
=

∙
01 0

0 01

¸
α =

∙
1 2
2 3

¸
=

∙
1 1

1 1

¸
+

∙
(0− ) (0− )

(0− ) (0− )

¸
β =

∙
1 2
2 3

¸
=

∙
9 9

9 9

¸
−α+

∙
(0− ) (0− )

(0− ) (0− )

¸
 1 = 001 2 = 003 3 = 006

We generated these models 2500 times. At each repetition, the matrices α and β are randomly

generated summing up a constant matrix and a random matrix whose elements have a random uniform

distribution ranging from 0 through 0.01, 0.03 and 0.06 for MODEL(1), MODEL(2) and MODEL(3),

respectively. This has been done in order to measure the impact of the departure from the possible

root cancellation case on the small sample properties of  −. It is relevant to note that, when

generating α and β, we allow only positive definite matrices since this condition guarantee that  is

positive definite. We considered one sample size of 1000 observations. The simulation employed three

alternative estimators: The multivariate (i.e. bivariate) GARCH ML estimator (), the ML-DCC

(Engle, 2002; ) estimator and  −. In the Monte Carlo exercise we assess the ability of the

various models to estimate the conditional correlation process 12 = 12
12
1 

12
2   = 1  1000

Results for the  of the conditional correlation, i.e.  =
³
1


P1000
=1 (̂12 − 12)

2
´12

,

are reported in the box-plots in Figure A1. Not surprisingly, has the best performance.  shows

also a very good performance, comparable with ; the performance of  − is also comparable

with the other methods, depending on the parameterization choice. This is notwithstanding  −

is an approximation for this specific framework. It is interesting to observe the change of performance

across the different models. In particular,  − tends to suffer when the gap between the  + 
gets wider as in MODEL(3). On the other hand, for MODEL(1) the performance of  −  and

 are very close, for MODEL(2) are similar, while some deterioration of  − performance can

be noted for MODEL(3). As the case of root cancellation is rather frequent in empirical applications, we

expect MODEL(1) and MODEL(2) being indicative of the empirical performance of  −  with

real data, where the sums  +  might even tend to approach one.

The Integrated GARCH process arises when (+) = 1. For this case, the  − model is no

more an approximation. Indeed, for this case, any combination of model (36) preserve the ARMA(1,1)

parametrization and therefore any combination of 1 and 2 also preserve the IGARCH(1,1) structure.

As a consequence  −  uses the correct specification to estimate the conditional correlations.

These considerations have been tested through some Monte Carlo simulations.

We generated model (32)-(33) assuming that the conditional covariance matrix follows an Integrated

GARCH dynamics (IGARCH(1,1)). We considered a single decay factor driving the dynamics of the

conditional covariance such that the following three parameters structures are considered:

()   = 4 5 6

ω = 00001 ∗
∙
1 1

1 1

¸
+

∙
(0− ) 0

0 (0− )

¸
α =

∙
005 005

005 005

¸
+

∙
(0− ) (0− )

(0− ) (0− )

¸
 β =

∙
1 1

1 1

¸
−α

 4 = 001 5 = 003 6 = 006
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The exercise compares the performance of four different competitors: 1) the pseudo-ML estimator

as discussed in Zaffaroni (2008) that estimates a single decay factor (), 2) the ML estimator

that does not impose a single decay factor (), 3)  −  and 4) . The reason for the

inclusion of  is that both  −  and  do not impose the single decay factor; we can

then compare the performance of three estimators that do not know the data generation process. The

empirical results are also reported in Figure A1. Since the performance of the models is unaffected by

the selected parameterization, for reason of space we omit to report the results for the intermediate case

(0.03). Beside  showing the best results,  − always performs better than  and even

. This confirms that when the IGARCH(1,1) framework arises,  − represents a fully valid

candidate in estimating the conditional correlations.

Now consider model (32)-(33) with the following unrestricted VECH representation:⎡⎣ 1
12
2

⎤⎦ =
⎡⎣ 1

2
3

⎤⎦+
⎡⎣ 1 2 3

4 5 6
7 8 9

⎤⎦⎡⎣ 1−1
12−1
2−1

⎤⎦+
⎡⎣ 1 2 3

4 5 6
7 8 9

⎤⎦⎡⎣ 21
12
22

⎤⎦ (37)

In this case neither the marginal processes 21, 
2
2, 12, nor a combinations of them follows

an ARMA(1,1) process. In addition, also the GARCH specifications of 1 and 2 do not follow a

GARCH(1,1) model. For comparison purposes we generate the bivariate process as shown in Hafner

(2008) p.476, in order to assess the performance of different competitors as above. Results comparing

the  of the conditional correlations are shown in Figure A1. Note that the model in (37) has 21

parameters and this represents a challenge for ML estimation. Indeed, given the problem of convergence

faced by the numerical optimization, due to the high number of parameters, we employ the true values of

α and β as initial values for the likelihood. This explains why the boxplot for the  is far below the

others. Also in this exercise  is the bivariate maximum likelihood estimator of a Diagonal VECH (as

used before). In this framework is then an approximate ML or a QML estimator, as it estimates only

the diagonal elements of model (37). Interestingly,  − seems to slightly outperform both 

and  in this latter case. This is a very interesting and promising result, given that this framework

represents the most unrestricted case.

Overall the Monte Carlo results are very promising:  −  model represents a simple and

valid candidate regardless of the fact that it is an approximate model in general. Relative to competing

approaches, such as the Engle (2002)  model,  −  has the advantage that can be imple-

mented regardless of the cross-sectional sample size, i.e. also for the case of vast set of conditionally

heteroskedastic time series.
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Table 1: Adaptive-X-AR-GARCH models 

Panel A: MX - Adaptive-X-AR model; Radiative forcing specification plus Bai-Perron break process
 GL NH SH Trpcs NoExt SoExt NoPol SoPol SOI

0c  
-0.088 
(0.041) 

-0.111 
(0.039) 

-0.092 
(0.020)

-0.083 
(0.073) 

-0.674 
(0.191)

-0.495 
(0.152)

-1.299 
(0.361)

- - 

1c  
0.264 

(0.055) 
0.329 

(0.055) 
0.216 

(0.039)
0.206 

(0.096) 
0.263 

(0.064)
0.088 

(0.048)
0.281 

(0.113)
- - 

2c  
- - - - 0.411 

(0.144)
0.323 

(0.113)
0.812 

(0.275)
- - 

3  
- - - - - - 0.156 

(0.050)
- - 

5  or 4 (*) 
0.078 

(0.032) 
0.096 

(0.036) 
- 0.139(*) 

(0.036) 
0.141 

(0.032)
0.069 

(0.024)
0.165 

(0.053)
- -0.436(*) 

(0.188)

5  or 3 (*) 
- - 0.094 

(0.025)
0.132(*) 
(0.076) 

- - - - - 

1  
0.564 

(0.047) 
0.500 

(0.050) 
0.497 

(0.045)
0.859 

(0.025) 
0.368 

(0.050)
0.334 

(0.044)
0.184 

(0.056)
0.335 

(0.047)
0.455 

(0.055)

2  
0.240 

(0.045) 
0.222 

(0.046) 
0.174 

(0.044)
- 0.160 

(0.047)
0.106 

(0.047)
- - 0.204 

(0.057)

3  
- - - - - - - - 0.116 

(0.053)

  0.990 
(0.010) 

0.990 
(0.012) 

0.990 
(0.012)

0.990 
(0.014) 

0.990 
(0.012)

0.990 
(0.011)

0.990 
(0.014)

0.990 
(0.021)

0.990 
(0.022)

  0.010 
(-) 

0.010 
(-) 

0.010 
(-) 

0.010 
(-) 

0.010 
(-)

0.010 
(-)

0.010 
(-)

0.010 
(-)

0.010 
(-)

Specification statistics 
R2 0.752 0.682 0.600 0.796 0.595 0.359 0.273 0.110 0.498
AIC -1.5000 -0.8889 -1.0787 -0.9869 -0.3558 -0.5907 1.5408 1.7911 2.1068
BIC -1.4549 -0.8438 -1.0336 -0.9599 -0.3016 -0.5365 1.5949 1.8001 2.1429
(20)Q  0.9353 0.9135 0.6127 0.0275 0.8735 0.7869 0.3675 0.3565 0.3509 

2(20)Q  0.6489 0.2659 0.7329 0.5170 0.0707 0.8722 0.1407 0.5623 0.0008 

BJ 0.0312 0.0000 0.9880 0.0321 0.0107 0.3185 0.0000 0.1198 0.0000
Joint Bias 0.8749 0.5416 0.9806 0.1417 0.3203 0.2965 0.3068 0.6440 0.1412
 
Panel B: MXR - Adaptive-X-AR model; Radiative forcing specification
 GL NH SH Trpcs NoExt SoExt NoPol SoPol SOI

0c  
-0.897 
(0.205) 

-1.059 
(0.201) 

-0.594 
(0.170)

-0.632 
(0.391) 

-1.431 
(0.142)

-0.758 
(0.109)

-1.956 
(0.244)

- - 

2c  
0.632 

(0.135) 
0.747 

(0.133) 
0.416 

(0.109)
0.437 

(0.255) 
0.996 

(0.094)
0.526 

(0.070)
1.356 

(0.163)
- - 

3  
- - - - 0.121 

(0.029)
0.046 

(0.022)
0.217 

(0.045)
- - 

5 or 4 (*) 
0.084 

(0.034) 
0.104 

(0.039) 
 0.131(*) 

(0.074) 
0.166 

(0.032)
0.078 

(0.035)
0.176 

(0.055)
- -0.436(*) 

(0.188)

5  or 3 (*) 
- - 0.064 

(0.028)
0.143(*) 
(0.075) 

- - - - - 

1  
0.574 

(0.047) 
0.512 

(0.049) 
0.521 

(0.046)
0.862 

(0.024) 
0.370 

(0.050)
0.331 

(0.044)
0.206 

(0.056)
0.335 

(0.047)
0.455 

(0.055)

2  
0.234 

(0.046) 
0.229 

(0.046) 
0.191 

(0.043)
- 0.157 

(0.049)
0.104 

(0.046)
- - 0.204 

(0.057)

3  
- - - - -  - - 0.116 

(0.053)

  0.990 
(0.022) 

0.990 
(0.010) 

0.990 
(0.012)

0.990 
(0.013) 

0.990 
(0.016)

0.990 
(0.011)

0.990 
(0.014)

0.990 
(0.017)

0.990 
(0.022)

  0.010 
(-) 

0.010 
(-) 

0.010 
(-) 

0.010 
(-) 

0.010 
(-)

0.010 
(-)

0.010 
(-)

0.010 
(-)

0.010 
(-)

Specification statistics 
R2 0.751 0.680 0.593 0.796 0.596 0.355 0.263 0.110 0.508
AIC -1.4967 -0.8843 -1.0596 -0.9742 -0.3958 -0.5935 1.5502 1.7911 2.1068
BIC -1.4516 -0.8391 -1.0145 -0.9291 -0.3416 -0.5393 1.5953 1.8003 2.1429
(20)Q  0.9232 0.8964 0.6648 0.0265 0.8914 0.7290 0.2659 0.3565 0.3509 

2(20)Q  0.3807 0.0482 0.7132 0.5139 0.0292 0.8184 0.1987 0.5623 0.0008 

BJ 0.0443 0.0000 0.9143 0.0110 0.0062 0.3246 0.0000 0.1198 0.0000
Joint Bias 0.8330 0.6376 0.9832 0.1217 0.6360 0.5083 0.0622 0.6440 0.1412

Panel A reports the selected Adaptive-X-AR-GARCH models with radiative forcing control variables plus Bai-Perron step dummy variable (MX). Panel B reports 
the selected Adaptive-X-AR-GARCH models with radiative forcing control variables (MXR). R2 is the coefficient of determination. AIC and BIC are the Akaike and 

Bayes-Schwarz information criteria. (20)Q  and 
2(20)Q are the Box-Ljung test for serial correlation up to the 20th order in the standardized and squared 

standardized residuals, respectively. BJ is the Bera-Jarque normality test, Joint Bias is the Engle-Ng joint test for asymmetry in variance. The series investigated 
are average land and ocean temperature anomalies for the entire globe (GL; 90S-90N) and seven zones, namely the Northern Hemisphere (NH; 0-90N), the 
Southern Hemisphere (SH; 90S-0), the Tropics (Trpcs; 20S-20N), the Northern Extratropic (NoExt; 20N-90N), the Southern Extratropic (SoExt; 90S-20S), the 
Northern Polar (NoPol; 60N-90N), the Southern Polar (SoPol; 90S-60S). 

 

 

 

 



Table 2: Dynamic models for Accumulated Cyclone Energy: 1984-2017  

Panel A: Estimated dynamic models 
AR  A-X-AR A-X
     Long-run solution Long-run solution 
  

2  0.718 
(0.168)

  0.185 
(0.105)

 
2  0.643 

(0.163)
  0.141 

(0.132) 
  

3  -0.495 
(0.168)   

0.160 
(0.108)

 
3  -0.504 

(0.171)   
0.139 

(0.126) 
  

2  -0.517 
(0.158)   

0.338 
(0.171)

 
2  -0.518 

(0.162)   
0.511 

(0.175) 
  

5  0.710 
(0.152) LR  0.561 

 
5  0.657 

(0.151) LR  0.694 

  
2  0.409 

(0.184)
  

 
2  0.511 

(0.175)
  

1  0.306 
(0.196) 2  -0.211 

(0.142)
  

   
  

  1.044   0.680      0.694   
2R  0.07 2R  0.71    2R  0.59   

AIC 2.9069 AIC 2.2786 Wald 0.023 AIC 2.2423 Wald 0.017 
BIC 2.9967 BIC 2.5748  BIC 2.4667
Log-Lik -47-417 Log-Lik -20.204  Log-Lik -33.119
     
Q(5) 0.757 Q(5) 0.391  Q(5) 0.897
ARCH(1) 0.676 ARCH(1) 0.221  ARCH(1) 0.183
BJ 0.097 BJ 0.802  BJ 0.51

 

Panel B: Out of sample forecast statistics
 2007-2017 Rec. 2007-2017 2007-2016 Rec. 2007-2016
RMSFE naive 1.104 1.104 1.085 1.085
    
RMSFE AR 0.888 0.890 0.768 0.762
Rel. RMSFE 0.804 0.806 0.708 0.703
    
RMSFE A-X-AR 0.703 0.550 0.674 0.535
Rel. RMSFE 0.637 0.499 0.621 0.493
    
RMSFE A-X 0.679 0.694 0.612 0.606
Rel. RMSFE 0.615 0.628 0.564 0.559

Panel A in the Table reports the estimated AR, A-X-AR and A-X models for ACE in standardized units. SE are reported in round brackets. 
2

R is the coefficient of 

determination; AIC and BIC are the Akaike and Schwarz-Bayes information criteria, respectively; Log-Lik is the value of the log-likelihood function. The 
misspecification tests reported are the Box-Ljung serial correlation test (Q), the Engle ARCH test (ARCH), the Bera-Jarque Normality test (BJ). The specification 
test reported is the Wald test for the joint significance of the regressors in the solved static long-run equation.  Panel B reports the root mean square forecast error 
(RMSFE) for eleven one-year ahead out of sample forecasts, from 2007 through 2017, computed using parameters estimated over the interval 1984-2006 (2007-
2017) or by means of recursive estimation of the models, starting from the fixed sample 1979-2006, through the final sample 1979-2016 (Rec. 2007-2017); we 
also report the same statistics for the case of ten one-year ahead out of sample forecasts, from 2007 through 2016, i.e. excluding the forecast for (the outlying ) 
year 2017 observation. In addition to the actual RMSFE figures, we also report relative RMSFE figures, obtained by dividing actual RMSFE figures by the RMSFE 
of the naïve (random walk) forecasting model (Rel. RMSFE). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3: Cointegration properties and error correction modelling of cat bonds multiples. 

Panel A: Integration and cointegration properties of cat bonds multiples
ADF tests MULT AA BBB FFF
no constant -1.0456 -1.0215 -0.7960 -1.7574

constant -1.3480 -2.3273 -2.6233 -1.7475
trend -2.5126 -2.1607 -2.3906 -3.9245

 
I(1) cointegration analysis 
Eigenvalues Log-Lik for Rank Trace test Trace test (T-nm)

 -97.8181 0 85.10 [0.000] 68.08 [0.000]
0.9187 -72.7283 1 34.92 [0.011] 27.93 [0.082]
0.6000 -63.5649 2 16.59 [0.032] 13.27 [0.105]
0.4687 -57.2402 3 3.940 [0.047] 3.150 [0.076]
0.1789 -55.2691 4  

 
Unidentified cointegrating vectors (scaled on diagonal) 
MULT 1.000 0.133 -2.660 5.665
AA 27.801 1.000 3.139 2.826
BBB -31.042 -0.053 1.000 -3.699
FFR -3.405 -0.037 2.077 1.000
 
Identified cointegrating vectors Loadings 
MULT 1.000 0.000 MULT -0.164 (0.078) -0.182 (0.309)
AA 0.000 -0.887 (0.079) AA -0.126 (0.034) 0.715 (0.133)
BBB 0.000 1.000 BBB -0.195 (0.072) -0.077 (0.287)
FFR -1.359 (0.199) 0.000 FFR 0.177 (0.110) -0.802 (0.435)
LR test 0.0237   
 
Restricted identified cointegrating vectors Loadings 
MULT 1.000 0.000 MULT -0.275 (0.093) 0.000
AA 0.000 -1.000 AA -0.186 (0.038) 0.878 (0.069)
BBB 0.000 1.000 BBB -0.249 (0.080) 0.000
FFR -1.000 0.000 FFR      0.000               0.000
LR test 0.1174     

 

Panel B: Error correction models Panel C: Final model
 own AA BBB BB FFR TB3M TB10Y ACE hGL RF LR  

c  0.187 
(0.254) 

0.171 
(0.299) 

0.299 
(0.191)

0.270 
(0.250) 

0.400 
(0.232)

0.371 
(0.240)

0.416 
(0.255)

0.246 
(0.255)

-0.128 
(0.253)

1.039 
(1.020) 

0.161 
(0.227) 

c  0.265 
(0.195)

0  
-0.182 
(0.088) 

-0.165 
(0.107) 

-0.231 
(0.067) 

-0.274 
(0.102) 

-0.238 
(0.079) 

-0.229 
(0.081) 

-0.211 
(0.081) 

-0.163 
(0.089) 

-0.180 
(0.076) 

-0.176 
(0.090) 

-0.167 
(0.079) 0  

-0.204 
(0.068) 

1  - - 
-  -  -  - -

- 
- - - 

5,LR  
-0.373 
(0.129) 

2  - 
0.474 

(0.088) 
-  -  -  - -

- 
-0.742 
(0.308) 

- - 5, 3TB M  
-1.324 
(0.534) 

3  - - 
0.243 

(0.071) 
0.555 
(0227) 

-  - -
- - 

-1.339 
(1.551) 

- 5,FFR  
1.324 

(0.534) 

4  - - 
-  -  -  - -

- 
- - - 

 
 

5  - - 
-  -  0.239 

(0.097) 
0.228 

(0.105) 
0.536 

(0.267) 
-0.202 
(0.172) 

- - -0.316 
(0.152)   

 

        
2R  0.246 0.476 0.617 0.583 0.497 0.458 0.436 0.324 0.492 0.289 0.445 2R  

0.644 

AIC 1.9373 1.7053 1.3941 1.4786 1.6649 1.7408 1.7804 1.9612 1.6762 2.4685 1.7640 AIC 1.4534
BIC 2.0317 1.8469 1.5357 1.6202 1.8065 1.8824 1.9220 2.1028 1.8178 2.7136 1.9056 BIC 1.6422
        
Q(3) 0.164 0.0483 0.409 0.280 0.638 0.499 0.227 0.229 0.022 0.096 0.323 Q(3) 0.634
ARCH(1) 0.600 0.648 0.045 0.076 0.165 0.148 0.826 0.700 0.551 0.891 0.671 ARCH(1) 0.847
BJ 0.672 0.414 0.213 0.171 0.929 0.935 0.819 0.943 0.620 0.936 0.388 BJ 0.570
        
RMSFE 0.414 0.145 0.468 0.504 0.408 0.228 0.230 0.497 0.529 0.830 0.368 RMSFE 0.326

Panel A reports the results of the ADF non-stationarity test and of the Johansen cointegration analysis. The ADF test is reported for three different specifications 
of the deterministic component, i.e. no constant, constant, constant and trend. The Johansen Trace test statistic is reported with (T-nm) and without degrees of 
freedom correction, with p-values in squared brackets. Panel A finally reports the unidentified, identified and restricted identified cointegrating vectors and 
corresponding loadings. Standard errors are reported in round brackets. LR test is the LR test for overidentifying restrictions. Panel B reports error correction 

models including up to five lags of candidate financial and climatological conditioning variables (
t

z ) one at the time. The financial conditioning variables are the 

first differences of the AA, BB and BBB corporate spreads (AA, BB, BBB), the federal funds rate (FFR), the three-month Treasury bills rate (TB3M), the ten-year 
Treasury bonds rate (TB10Y), and the (standardized) Atlantic hurricanes Loss to Risk ratio (LR; damages in 2017 US $ to ACE ratio); the climatological variables 
are the accumulated cyclone energy intensity (ACE), radiative forcing (RF), and the global temperature anomaly volatility (hGL). Panel C reports the final 
econometric model, whose starting specification includes, in addition to the constant and the error correction term, the eight significant variables as reported in 

Panel B. In the Table we also report the coefficient of determination (
2R ), the Akaike and Bayes-Schwarz information criteria (AIC, BIC), the Box-Ljung serial 

correlation test (Q), the Engle ARCH test (ARCH), the Bera-Jarque Normality test (BJ), and the RMSFE for 1-step ahead out of sample forecasts generated over 
the period 2013-2017, using parameters estimated over the period 1997-2012. 



 

 

 

 

 

 
 

 

Figure 1: Catastrophe bonds and insurance‐linked securities market. The top plot on the left‐hand side reports figures for risk capital issued & 

outstanding per year. The center plot on the left‐hand side reports figures for risk capital outstanding in year 2017 by type of exposure. The top 

plot on the right‐hand side reports  figures for the average multiple per year.   The center plot on the right‐hand side reports the cat bonds 

average multiple versus the effective federal funds rate (FFR) and various corporate spreads, i.e. the BofA Merrill Lynch US Corporate AA Option‐

Adjusted Spread (AA) and the BofA Merrill Lynch US Corporate BBB Option‐Adjusted Spread (BBB). In all cases, the source for cat bonds figures 

is Artemis.  The bottom plot on the left‐hand side reports figures for investors in the cat‐bonds market by ownership shares (Source: Aon Benfield 

Securities). The bottom plot on  the  right‐hand side  reports  the Loss  to Risk  ratio  for Atlantic hurricanes, as measured by  the ratio of  total 

damages (in 2017 constant US$) to accumulated cyclone energy (ACE in 10⁴kt2). 
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Figure  2:  Temperature  anomalies  for  the  entire  globe  (GL;  90S‐90N)  and  seven  zones,  namely  the Northern Hemisphere  (NH;  0‐90N),  the 

Southern Hemisphere (SH; 90S‐0), the Tropics (Trpcs; 20S‐20N), the Northern Extratropic (NoExt; 20N‐90N), the Southern Extratropic (SoExt; 

90S‐20S), the Northern Polar (NoPol; 60N‐90N), the Southern Polar (SoPol; 90S‐60S). The Southern Oscillation Index is also plotted (SOI). For all 

series RF denotes the nonlinear trend associated with radiative forcing. 
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Figure 3: Estimated conditional variances of temperature anomalies for the entire globe (GL; 90S‐90N) and seven zones, namely the Northern 

Hemisphere (NH; 0‐90N), the Southern Hemisphere (SH; 90S‐0), the Tropics (Trpcs; 20S‐20N), the Northern Extratropic (NoExt; 20N‐90N), the 

Southern Extratropic (SoExt; 90S‐20S), the Northern Polar (NoPol; 60N‐90N), the Southern Polar (SoPol; 90S‐60S), the Southern Oscillation Index 

(SOI). 
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Figure 4: Boxplots for the p‐values of the Box‐Ljung tests carried out using standardized and squared standardized residuals.   
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Figure 5: Conditional correlations of various temperature anomalies: the Northern Hemisphere versus the Southern Hemisphere (SH/NH), the 

Northern Extratropic versus the Southern  Extratropic (SoExt/NoExt), the Northern Polar versus the Southern Polar (SoPol/NoPol).  
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Figure 6: Accumulated cyclone energy (ACE) in standardized units: actual, fitted and forecasted values. The top plot reports actual values vs. 

radiative forcing (RF); the second plot report actual vs. Adaptive‐X‐AR (A‐X‐AR) fitted ACE values; the third plot shows actual vs. A‐X‐AR 

forecasted ACE values; the bottom plot shows (spline) smoothed ACE values vs. A‐X‐AR forecasted ACE values. The shaded areas denote 

selected record high ACE episodes. 
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Figure A1: Monte Carlo results. SP‐DCC (SP) vs. Exact Maximum Likelihood (ML, MLT, MLC) and Engle DCC (DCC).  
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1 Forecasting and monthly interpolation of radiative

forcing data

As radiative forcing data ( ) are available at the annual frequency and up to 2011

only, implementation of the Adaptive-ARMA-X models requires forecasting of radiative

forcing data through 2016 and monthly interpolation. Concerning sample extension, fore-

casts over the period 2012 through 2016 have been generated by means of structural time

series models specified for each of the various radiative forcing components; forecasts for

total radiative forcing are then computed by aggregating the forecasts for the various

components. Following Hansen et al. (2005), radiative forcing has been decomposed in

various categories, i.e., Well-Mixed Greenhouse Gases (; carbon dioxide (CO2),

methane (NH4), nitrous oxide (N2O) and chlorofluorocarbons (CFCs)), Ozone (3),

Stratospheric Water Vapor (2), Reflective Tropospheric Aerosols (), Tro-

pospheric Aerosol Indirect Effects (), Black Carbon Aerosols (), Snow Albedo

(), Stratospheric Aerosols (), Solar Irradiance (), Land Use (includ-

ing irrigation; ). As we are interested in the modeling of the trend in radiative

forcing, the Stratospheric Aerosols (StrAer) component is omitted from the forecasted

aggregate. The latter series, over the sample of interest, is in fact heavily influenced by

the major volcanic eruptions occurred in 1991 in the Philippines (Mt. Pitanubo) and in

1982 in Mexico (El Chichon), which lead to a sizable, temporary temperature "cooling"

around the globe. Summary results for the estimated structural time series models and

forecasted values for the radiative forcing components are reported in Table A1, Panel

A. In all cases, apart from , a local level linear trend model has been employed, i.e.

 =  +   ∼ (0 2)  = 1 2  

 = −1 +  +   ∼ (0 2)

 = −1 +   ∼ (0 2)

where  = , 3, 2, , , , , , ;

,  and  are independent of one another. For  the local linear trend model has

been augmented by a stochastic cyclical component, i.e.

 =  +  +   = 1 2  ∙


∗

¸
= 

∙
cos sin
− sin cos

¸ ∙
−1
∗−1

¸
+

∙

∗

¸
 ∼ (0 2)

∗ ∼ (0 2)

where  and ∗ are mutually independent. The above models can be estimated by 

and the Kalman Filter (see Harvey, 1989 for details). Forecasted values are reported in

Figure A1.

Concerning monthly interpolation, we exploit the optimal approximation properties of

the Fourier series. A monthly step function is then firstly constructed by holding constant

the annual figures across the corresponding twelve months. Then, the step function series

 is regressed on the Gallant (1981) deterministic specification below by OLS

 = 0 + 1+
X

=1
 sin (2 ) +

X

=1
 cos (2 ) (1)

where 0 is an intercept term and  = 1   is a linear time trend. Estimation results

are repored in Panel B.
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The fitted process ̂ yields the interpolated monthly radiative forcing series shown

in Figure A2 (bottom plot, RHS), which has then been employed for the estimation of

the Adaptive-ARMA-X models. As shown in the plot, forecasted values point to ra-

diative forcing increasing through 2016, yet at slow pace; hence, the scenario might be

considered conservative, potentially avoiding an upper bias in the estimated contribution

of radiative forcing to global warming over the forecasted period. Moreover, the non-

linearly interpolated series track very closely the trend evolution of the annual radiative

forcing series, supporting its use in the analysis. Additional support is provided by the

robustness analysis reported in the paper.

2 The econometric modeling of anomalies and global

warming: review of the literature

Persistence properties of temperature anomalies have been subject to careful assessment

in the literature. There are two main competing views, differing in terms of the statistical

model employed to account for the warming trend detected in the data, rather than for

its attribution to causing factors. In fact, while it is in general agreed that the warming

trend is determined by radiative forcing, both of natural and anthropogenic origin, its

stochastic or deterministic nature is contended. On the one hand, Kaufmann et al. (2013)

and Schmith et al. (2012) point to a stochastic trend in global and Northern (NH) and

Southern (SH) hemisphere temperature anomalies, as generated by (and therefore coin-

tegrating with) stochastic trends in radiative forcing components.1 Feedback effects from

temperature anomalies to radiative forcing have also been documented in this literature.

For instance, Kaufmann et al. (2006) document a feedback loop in which temperature

increases due to anthropogenic activities that emit greenhouse gases change flow to and

from the atmosphere in a way that the radiative forcing of greenhouse gases is increased,

generating a further increase in temperature. Schmith et al. (2012) also find that it is

surface air temperature to adjust to the average temperature of the upper ocean, con-

sistent with oceans’ larger heating storage capacity. The latter finding is also consistent

with the evidence of unidirectional Granger causality of temperature anomalies from SH

to NH (Kaufmann and Stern, 1997; Harvey and Mills, 2001), due to the larger water

content of SH relative to NH (and the different heating storage of water relative to land).

On the other hand, Estrada and Perron (2016) point to a common nonlinear de-

terministic trend in total radiative forcing and temperature anomalies, with significant

breaks in slope in the 1960s and 1990s, and stationary fluctuations about trend. More

precisely the first break is detected in 1962 (1968) and the second break in 1989 (1991)

for NASA (HadCRUT4) data. This finding updates earlier evidence of trend stationarity

and different timing in breaks for global and Northern and Southern hemispheres tem-

perature anomalies, as reported by Gay et al. (2009) and Mills (2013)2. According to

1Earlier evidence on integration and cointegration properties of temperature anomalies can be found

in Stern and Kaufmann (2000), Kaufmann and Stern (2002), Kaufmann et al. (2006), Mills (2006).

See also Chang et al. (2016) for recent evidence from nonstationarity analysis extended to the density

function of temperature anomalies.
2The break points detected by Gay et al. (2009) are 1977, 1985, 1911 for global, NH and SH tem-

perature anomalies, respectively. The break points are also associated wit Earth orbit changes, solar

irradiance and greenhouse gases concentrations. Mills (2013) updates the latter estimates to 1964 for

SH temeperature and 1976 for both global and NH temperatures. See also Bloomfield (1992) and Zheng

and Basher (1999) for earlier evidence of determininistic trends in temperature anomalies. See also Mills
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Estrada and Perron (2016), the latter feature would be accounted by the contribution of

natural variability oscillations such as the Atlantic Multidecadal Oscillation (AMO) for

the Northern hemisphere and the Antarctic Oscillation (AAO or SAM) for the Southern

hemisphere. Moreover, even the recent slowdown in the warming trend, i.e. the hiatus,

might be related to radiative forcing, i.e. mostly to chlorofluorocarbons and methane re-

ductions, rather than to natural variability factors such as AMO, PDO, ENSO, or lower

solar activity, as claimed by Kosaka and Xie (2013). See also Pretis et al. (2015) on

this issue. Estrada and Perron (2016) also update earlier evidence concerning persis-

tence properties of temperature fluctuations about deterministic trends, which would be

best described by a weakly stationary process. This contrasts with previous evidence

of Bloomfield (1992) and Chung and Baillie (2002), pointing to stationary long memory

fluctuations in global, NH and SH temperature anomalies about a linear deterministic

trend. While long memory in temperature fluctuations might be an artifact due to a

neglected slowly varying nonlinear trend function and/or alternating regimes/structural

breaks as claimed by Mills (2006)3, there also are valid reasons for this feature to be

genuine, for instance, due to cross-sectional aggregation (Granger,1980) or to shocks of

stochastic magnitude and duration (Parke, 1999). In the current framework, long mem-

ory could be determined by the cumulative effect of various radiative forcing mechanisms

and/or the contribution of natural variability oscillations, such as ENSO, particularly in

their most extreme manifestations.4

3 Testing for deterministic versus stochastic nonsta-

tionarity

In Table A2 we present the results of the persistence analysis for temperature anomalies.

In the light of the available results in the literature, we test for stochastic nonstationarity

versus trend stationarity/structural breaks. The analysis is carried out by means of the

 test, also augmented with a nonlinear trend components (Enders and Lee, 2012);

moreover, we implement the Perron et al. (2016) linearity Wald test and the Bai and

Perron (1998)  − and  structural break tests.

As shown in Panel A, the null of stochastic nonstationarity is rejected by the ADF

test for all the temperature anomalies and the SOI index at the usual significance levels,

independently of the deterministic specification (no constant, constant, linear trend, non-

linear trend modelled by the Gallant (1981) trigonometric functional form). This finding

is against earlier evidence of a unit root in temperature anomalies generated by I(1) trends

in radiative forcing components, as for instance reported in Kaufmann et al. (2013) and

Schmith et al. (2012); however, it is consistent with Estrada and Perron (2016), where a

common nonlinear deterministic trend is found for temperature anomalies and radiative

forcing. We have then implemented the Perron et al. (2016) Wald test for the presence

of a nonlinear temporal trend (modelled by the Gallant (1981) functional form), which

(2006) for evidence of a more pronounced warming trend in NH temperatures since the 1970s, robust to

stochastic or deterministic trend modeling.
3See Diebold and Inoue (2011) and references therein for a more general discussion on distinguishing

deterministic nonstationarity and long memory. See also Rea et al. (2011) and Mann (2011) for recent

views against the long memory feature.
4Pellettier and Turcotte (1997) also provides a theoretical explanation for the presence of long memory

in temperature anomalies, based on an advection-diffusion model of the vertical transport of heat and

water vapor in the atmosphere.
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is valid under the assumption of both I(0) and I(1) disturbances. As shown in Panel

B, the test rejects the null of no-nonlinearity for all the series, apart from Trpcs and

SOI, when the linear deterministic trend is omitted from the Gallant (1981) functional

form specification; on the other hand, less clear-cut evidence is found when the linear

trend is included in the specification, suggesting that the two parts of the specification,

i.e. the liner trend and the trigonometric component, might be substitute rather than

complementary.

Since the Fourier specification closely approximates various forms of structural change

(see Becker et al., 2006; Enders and Lee, 2012; Baillie and Morana, 2009, 2012; Perron et

al., 2016), in order to further assess the nonlinearity issue, we have then directly tested

for structural breaks using the Bai and Perron (1998) structural break tests. As shown

in Panel C, consistent with McKitrick and Vogelsang (2014), Estrada and Perron (2016)

and Gay et al. (2009), the  −  test points to a single break point. Similar to

McKitrick and Vogelsang (2014), the break would be located about the mid-/end 1990s

(1995 through 1998). The latter evidence is confirmed by the Bai and Perron (1998)

 test, which does not allow to reject the null hypothesis of a single break against

the alternative of two breaks. Given its timing, the detected break point could be then

related to the concurrent El Niño events (weak: 1995-1996; very strong: 1997-1998)

and fading away of the cooling effect of the vulcanian eruption in the Philippines (Mt.

Pinatubo in 1991).

Overall, the results of the persistence analysis are fairly clear-cut. In fact, the null of

unit-root nonstationarity is rejected for all the anomalies (and SOI), in favor of a nonlinear

deterministic (trend) component. Yet, whether the latter should be modelled by means

of an abrupt level shift (single break dummy) or a smooth transition (trigonometric

specification) requires further assessment, which is carried out below.

4 The specification of the conditional mean function

In the light of the results of the persistence analysis, we use a univariate Adaptive-ARMA

(Baillie and Morana, 2012) specification for each of the  elements in the mean vector

μ(δ),

 ()  =  +  ()   = 1   (2)

where  () and  () are polynomials in the lag operator with all the roots outside the

unit circle;  is a level component specified according to various models nested in the

general -order Fourier function

 = 0 + 1 + 2+
X

=1
 sin (2 ) +

X

=1
 cos (2 ) M0 (3)

where 0 is an intercept term;  is a step dummy variables with unitary values set

according to the Bai and Perron (1998) structural break tests, as discussed above;  =

1   is a linear time trend. The specification in (3) is very general and can approximate

several functional forms; notice that the five below specifications are nested in (3), and

obtained by imposing appropriate restrictions on the parameters:
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 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 1 = 2 =  =  = 0  = 1   M1

0 + 1 2 =  =  = 0  = 1   M2

0 + 2 1 =  =  = 0  = 1   M3

0 + 1 + 2  =  = 0  = 1   M4

0 + 1+
X

=1
 sin (2 ) +

X

=1
 cos (2 ) 2 = 0 M5

(4)

Hence, M1 is the constant level model, M2 is the constant level plus break dummy

model, M3 is the constant level plus linear trend model, M4 nests model M2 and M3,

and M5 is the Gallant flexible functional form (Gallant, 1981). The Adaptive-ARMA

model has the advantage of allowing for flexible modeling of low frequency fluctuations

and structural change, given the ability of the Gallant (1981) flexible functional form to

approximate a very general class of nonlinear functions (see Becker et al., 2006; Enders

and Lee, 2012; Baillie and Morana, 2009, 2012; Perron et al., 2016). The latter deter-

ministic specification has also been recently employed by Estrada and Perron (2016) with

the same purpose.

Rather than in the time trend variable , the -order Fourier approximation can be

expressed in terms of a variable believed to determine the overall level of temperature

anomalies; in our application the latter variable is represented by radiative forcing ( ),

consistent with the available evidence of a common trend in temperature anomalies and

radiative forcing (Kaufmann et al., 2013; Schmith et al., 2012; Estrada and Perron, 2016);

hence, the general -order Fourier approximation becomes

 = 0 + 1 + 2 +
X

=1
 sin (2

∗
 ) +

X

=1
 cos (2

∗
 ) MX

(5)

where  ∗ =
−min

max−min is  scaled to range between 0 and 1. Similarly to (3),

various models are nested in (5); in addition to the M1 andM2models above, in particular

one has

 = 0 + 2 +
X

=1
 sin (2

∗
 ) +

X

=1
 cos (2

∗
 ) 2 = 0 MXR

The Adaptive-X-ARMA specification yield by (2)-(5) shows the same desirable prop-

erties of the Adaptive-ARMA model yield by (2)-(3) in terms of flexible modeling of low

frequency fluctuations in temperature anomalies; it is however likely to better tracking

the trend in temperature anomalies, in the case the latter is determined by radiative

forcing.

4.1 Model selection results

The most general specifications of the mean model are the Adaptive-ARMA model in (2)

with level term  as in (3), i.e. M0, and the Adaptive-X-ARMA model, where the level

term  is as in (5), i.e. MX. Model selection is then carried out considering all the nested

deterministic specifications, i.e. M1 through M5 and MXR.

In all cases a parsimonious AR(2) model is selected according to a general to specific

model selection strategy, apart from Trpcs and SoPol (AR(1)) and SOI (AR(3)). More-

over, consistent with the results of the Perron et al. (2016) Wald test, only low order
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Fourier terms in the time trend variable are statistically significant. In particular, a first

order sine expansion appears to be appropriate for all temperature anomalies apart from

SoPol, for which a third order cosine term is selected. Moreover, for SOI no trigonomet-

ric term is significant (not reported).5 On the other hand, Fourier terms in the radiative

forcing variable of order three to five are selected for all models, apart from SoPol (see

Table 1 in the paper for details).

Since all the models are equivalent in terms of misspecification tests, model selection

is then performed by means of information criteria.6 As shown in Table A3, Panel A,

the Adaptive-X-AR models (MX or MXR) are always preferred to their corresponding

Adaptive-AR models (M0 or M5), apart from SoPol. The most general Adaptive-X-AR

model MX is selected by both the AIC and BIC information criteria for GL, NH, SH,

NoPol; it is also selected for Trpcs, yet by the AIC only. Moreover, the Adaptive-X-AR

model neglecting the break dummy, i.e. MXR, is selected for NoExt and SoExt by both

criteria, and for SOI by the AIC only. In only three cases the BIC selects the constant

intercept model M1 as best model (Trpcs, SoPol, SOI).

The clear-cut selection of the Adaptive-X-AR models appears to be consistent with

previous results in the literature, where structural breaks in temperature anomalies are

related to either the contribution of natural oscillations such as the Atlantic Multidecadal

Oscillation (AMO) for the Northern hemisphere and the Antarctic Oscillation (AAO

or SAM) for the Southern hemisphere (Estrada and Perron, 2016), or to the effects

of radiative forcing (natural or human made), such as changing solar irradiance and

greenhouse gases concentrations (Gay et al., 2009).

Finally, while no evidence of misspecification is detected for the homoskedastic version

of the Adaptive-AR and Adaptive-X-AR models (not reported), as shown in Table A3,

Panel B, allowing for GARCH effects in the conditional variance always leads to a better

model according to the BIC criterion. In this framework, the selection of the Adaptive-

X-AR models is even more clear-cut than before, as the Adaptive-AR model (M1) is only

selected for SoPol. The findings are consistent with the presence of a dynamic structure

in second moments, which, possibly due to observational noise, remains undetected by

standard misspecification tests.

5 ENSO teleconnection and changing anomalies pat-

tern

In Figures A2-A3 we plot the estimated (contemporaneous) conditional correlations across

temperature anomalies and SOI. For comparison we also include the Oceanic Niño Index

(ONI). The latter is the standard that the National Oceanic and Atmospheric Adminis-

tration - US Department of Commerce (NOAA) uses for identifying El Niño (warm) and

La Niña (cool) events in the tropical Pacific.7

As shown in Figure A2, interesting patterns are revealed by the correlation analysis,

yielding information on ENSO teleconnection and its evolving properties. Firstly, the

conditional correlation of SOI versus the Tropics is mostly negative in sign, consistent

5A full set of results is available from the authors upon request.
6Details about misspecification tests are available from the authors upon request.
7The ONI is computed as the running 3-month mean SST anomaly

for the Niño 3.4 region (i.e., 5N-5S, 120-170W). Data are available at

http://www.cpc.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml.
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with the effects of El Niño (La Niña) events. In fact, a contraction (increase) in SOI, i.e.

an El Niño (La Niña) event, is associated with an increase (reduction) in temperature at

the Tropics above (below) normal levels. Interestingly, the very strong El Niño events of

1982 and 1997-1998 have made the conditional correlation more negative (up to -0.2), i.e.

they have enhanced the heat transfer; this holds true also since the end of 2000s. The

latter findings are consistent with the general recognition that ENSO is an asymmetric

phenomenon and that extreme ENSO events are different from moderate events (Cai

et al., 2015a,b; 2014; Kim et al., 2014). The asymmetric feature of ENSO can be also

clearly detected globally and at the poles, i.e. for GL/SOI, SoPol/SOI and NoPol/SOI,

coherent with the working of the "atmospheric bridge", which also have become more

sizably negative during the episodes of interest.8

Moreover, as shown in Figure A3, a pattern consistent with ENSO teleconnection is

also shown by the conditional correlations relating Trpcs with the other zones. Condi-

tional correlations are in fact positive over the whole sample for Trpcs with NoExt and

SoExt (0.10); less clear-cut are the correlations with the poles; for instance, while the

correlation with NoPol is mostly positive, the opposite can be noted for SoPol, apart from

the last part of the sample, i.e. since about 2010. Overall, the pattern appears to be

consistent with a warming shock being transmitted from the Tropics to the other zones,

i.e. to the Extratropics and then the Poles. Coherent with the asymmetric feature of

ENSO, the transmission of heat shocks gets stronger with the magnitude of the shock.

See, for instance, the sizable increase in the correlations observed during the 2014-2016

very strong El Niño event.
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Table A1: Modelling, forecasting and interpolation of radiative forcing data 

Panel A: Annual structural time series models for radiative forcing
 WMGG O3 StrH2O ReflAer AIE BC snowAlb StrAer LandUse Solar 
Stand. Dev.      

   0.0055 
(0.0005) 

0.0055 
(0.0001) 

0.0000 
(-) 

0.0002 
(0.0000) 

0.0005 
(0.0001)

0.0002 
(0.0001)

0.0005 
(0.0001)

0.4529 
(0.028)

0.0001 
(0.0000) 

0.0043 
(0.0049) 

  0.0032 
(0.0006) 

0.0005 
(0.0001) 

0.0001 
(0.0000) 

0.0012 
(0.0001) 

0.0001 
(0.0001)

0.0011 
(0.0001)

0.0004 
(0.0001)

0.0000 
(-)

0.0002 
(0.0001) 

0.0006 
(0.0003) 

  0.0000 
(-) 

0.0001 
(0.0000) 

0.0003 
(0.0000) 

0.0004 
(0.0001) 

0.0001 
(0.0000)

0.0003 
(0.0000)

0.0001 
(0.0000)

0.0000 
(-)

0.0003 
(0.0001) 

0.0084 
(0.0014) 

  - - - - - - - - - 0.0081 
(0.0117) 

  - - - - - - - - - 0.981 
(0.007) 

2
dR  0.839 0.822 0.375 0.951 0.877 0.865 0.704 0.015 0.345 0.584 

Forecasts      
2012 3.065 

 (0.007) 
0.216  

(0.001) 
0.063 

(0.001)
-1.454  
(0.002) 

-1.025  
(0.001)

0.601  
(0.001)

0.204  
(0.001)

-0.114 
(0.455)

-0.093  
(0.001) 

0.213  
(0.018) 

2013 3.105 
(0.013) 

0.216  
(0.001) 

0.063 
(0.001)

-1.472  
(0.003) 

-1.038  
(0.003)

0.609  
(0.003)

0.206  
(0.001)

-0.115 
(0.645)

-0.093  
(0.001) 

0.223  
(0.025) 

2014 3.144 
(0.019) 

0.216  
(0.002) 

0.063 
(0.001)

-1.489  
(0.005) 

-1.050  
(0.004)

0.616  
(0.004)

0.209  
(0.002)

-0.116 
(0.793)

-0.093  
(0.001) 

0.212  
(0.031) 

2015 3.183 
(0.025) 

0.216  
(0.003) 

0.063 
(0.001)

-1.507  
(0.007) 

-1.063 
(0.006)

0.623 
(0.006)

0.212 
(0.003)

-0.117 
(0.920)

-0.093  
(0.001) 

0.185  
(0.034) 

2016 3.223 
(0.032) 

0.216  
(0.004) 

0.063 
(0.001)

-1.525  
(0.010) 

-1.076  
(0.008)

0.630 
(0.008)

0.214 
(0.003)

-0.114 
(1.032)

-0.093  
(0.002) 

0.150  
(0.036) 

 
 

 

 
 
Panel A reports the estimated standard deviation of the level, slope, irregular and cyclical components, the estimated damping parameter for the cyclical 
components, the coefficient of determination computed for the first difference of the series, and the forecasts over the period 2012 through 2016. The series 
investigated are the various radiative forcing components in W/m2, i.e. Well-Mixed Greenhouse Gases (WMGG), Ozone (O3), Stratospheric Water Vapor 
(StrH2O), Reflective Tropospheric Aerosols (ReflAer), Tropospheric Aerosol Indirect Effects (AIE), Black Carbon Aerosols (BC), Snow Albedo (snowAlb), 
Stratospheric Aerosols (StrAer), Solar Irradiance (Solar), Land Use (including irrigation; LandUse). Panel B reports the estimated parameter, with HACSE 
standard errors in round brackets, for the Gallant (1981) interpolating function. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Panel B: Gallant (1981) interpolating function 

0c   1.100 
(0.007) 1  0.039 

(0.005) 1  -0.055 
(0.002) 

1c  0.002 
(0.000) 2  -0.022 

(0.003) 2  - 

  
3  -0.045 

(0.003) 3  0.040 
(0.002) 

  
4  0.035 

(0.003) 4  -0.017 
(0.002) 

  
5  - 

5  -0.023 
(0.002) 

2R  0.994     



 

 

Table A2: Persistence analysis of temperature anomaly series 

Panel A: ADF tests 
 GL NH SH Trpcs NoExt SoExt NoPol SoPol SOI
Fourier  -5.780 -6.750 -7.220 -5.680 -8.250 -10.00 -12.20 -15.00 -6.720
Constant+Trend -5.737 -6.684 -7.200 -5.910 -8.141 -7.104 -9.243 -15.01 -5.877
Constant -4.493 -4.607 -4.738 -5.174 -4.637 -5.876 -6.126 -15.03 -5.780
No costant -4.418 -4.543 -4.684 -5.104 -4.583 -5.811 -6.024 -14.86 -5.699
 
Panel B: Nonlinearity Wald test 
Linear trend included GL NH SH Trpcs NoExt SoExt NoPol SoPol SOI
Order 1 0.212 0.153 0.388 0.244 0.470 0.377 0.454 0.239 0.753
Order 2 1.833 2.355 1.660 0.602 2.535 1.694 3.609 0.232 0.446
Order 3 0.446 0.619 0.507 0.118 0.723 2.271 0.410 2.419 2.216
Order 4 1.790 3.114 1.009 0.700 5.733 1.914 0.902 1.285 2.266
Order 5 1.377 0.831 2.169 0.682 0.436 3.245 3.359 4.033 0.462

Linear trend omitted GL NH SH Trpcs NoExt SoExt NoPol SoPol SOI
Order 1 5.346 7.228 5.018 1.704 6.349 5.202 24.371 0.188 1.618
Order 2 0.276 0.333 0.388 0.490 0.121 0.250 0.007 0.245 0.279
Order 3 0.714 0.697 1.223 0.319 0.412 2.553 0.020 2.647 2.604
Order 4 0.600 0.792 0.465 1.608 0.370 0.289 0.025 1.398 1.717
Order 5 0.282 0.077 0.475 0.313 0.029 0.501 0.087 4.499 0.305

Panel C: Structural break analysis 
 GL NH SH Trpcs NoExt SoExt NoPol SoPol SOI
UD-max 44.120 92.867 33.397 64.821 103.22 34.724 41.711 33.939 42.709
SupF(2|1) 9.087 7.124 9.793 7.677 8.724 11.431 10.227 3.023 12.855
Break dates 1997:6 1997:8 1995:3 1997:6 1998:1 1997:6 1995:3 1995:3 1995:3

Panel A reports the ADF non-stationarity tests for four different specifications of the deterministic component, i.e. constant, trend and first order Fourier expansion; 
constant and trend; constant; no constant and trend. The 5% and 1% critical values are -4.28 and -4.84, -3.42 and -3.98, -2.87 and -3.45, -1.94 and -2.57, 
respectively. Panel B reports the Perron-Shintani-Yabu nonlinearity Wald test for various orders of the Fourier expansion (from 1 to 5). The critical values are 
3.219, 4.605, 5.992, 9.210 for the 20%, 10%, 5% and 1% critical value, respectively. Panel C reports the results of the Bai-Perron (1998) UD-Max structural break 
test. The 5% and 1% critical values of the test are 9.63 and 13.58, respectively. It also reports the SupF test for the null of 1 break against the alternative of 2 
breaks; the 5% and 1% critical values of the test are 11.14 and 15.03, respectively. The date of the selected break point is reported in the last row of the table. 
The series investigated are average land and ocean temperature anomalies for the entire globe (GL; 90S-90N) and seven zones, namely the Northern Hemisphere 
(NH; 0-90N), the Southern Hemisphere (SH; 90S-0), the Tropics (Trpcs; 20S-20N), the Northern Extratropic (NoExt; 20N-90N), the Southern Extratropic (SoExt; 
90S-20S), the Northern Polar (NoPol; 60N-90N), the Southern Polar (SoPol; 90S-60S). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table A3: Adaptive-AR and Adaptive-X-AR models 

Panel A: Conditionally homoskedastic models 
  GL NH SH Trpcs NoExt SoExt NoPol SoPol SOI

M0 
AIC 
BIC 

-1.4943 
-1.4312 

-0.8864 
-0.8232 

-1.0570 
-0.9938

-0.9681 
-0.9140 

-0.3652 
-0.3020

-0.5681 
-0.5049

1.5457 
1.6089

1.8013 
1.8555

2.1169 
2.1801

M1 
AIC 
BIC 

-1.4748 
-1.4478 

-0.8569 
-0.8298 

-1.0325 
-1.0054

-0.9714 
-0.9533 

-0.3068 
-0.2685

-0.5270 
-0.4999

1.6295 
1.6566

1.7901 
1.8081

2.1100 
2.1462

M2 
AIC 
BIC 

-1.4970 
-1.4519 

-0.8876 
-0.8425 

-1.0595 
-1.0144

-0.9743 
-0.9382 

-0.3660 
-0.3209

-0.5702 
-0.5250

1.5592 
1.5973

1.7987 
1.8348

2.1128 
2.1670

M3 
AIC 
BIC 

-1.4945 
-1.4494 

-0.8871 
-0.8420 

-1.0568 
-1.0117

-0.9733 
-0.9373 

-0.3586 
-0.3134

-0.5699 
-0.5248

1.5502 
1.5953

1.7987 
1.8348

2.1164 
2.1705

M4 
AIC 
BIC 

-1.4974 
-1.4433 

-0.8898 
-0.8357 

-1.0587 
-1.0046

-0.9716 
-0.9264 

-0.3682 
-0.3141

-0.5709 
-0.5168

1.5453 
1.5994

1.8030 
1.8481

2.1169 
2.1801

M5 
AIC 
BIC 

-1.4850 
-1.4489 

-0.8742 
-0.8381 

-1.0447 
-1.0086

-0.9723 
-0.9453 

-0.3394 
-0.3033

-0.5539 
-0.5178

1.5595 
1.5956

1.7893 
1.8164

2.1100 
2.1462

MX 
AIC 
BIC 

-1.5039 
-1.4497 

-0.8970 
-0.8429 

-1.0798 
-1.0257

-0.9804 
-0.9263 

-0.4023 
-0.3391

-0.5913 
-0.5281

1.5321 
1.5953

1.7901 
1.8081

2.1031 
2.1482

MXR 
AIC 
BIC 

-1.5000 
-1.4460 

-0.8923 
-0.8382 

-1.0612 
-1.0070

-0.9778 
-0.9236 

-0.4027 
-0.3395

-0.5938 
-0.5309

1.5414 
1.5956

1.7944 
1.8215

2.1031 
2.1482

Panel B: Conditionally heteroskedastic models 
  GL NH SH Trpcs NoExt SoExt NoPol SoPol SOI

M0 
AIC 
BIC 

-1.4905 
-1.4364 

-0.8816 
-0.8274 

-1.0544 
-1.0002

-0.9649 
-0.9198 

-0.3593 
-0.3051

-0.5690 
-0.5148

1.5524 
1.6066

1.8028 
1.8480

2.1207 
2.1749

M1 
AIC 
BIC 

-1.4685 
-1.4415 

-0.8467 
-0.8196 

-1.0266 
-0.9996

-0.9647 
-0.9466 

-0.2979 
-0.2708

-0.5259 
-0.4988

1.6389 
1.6659

1.7911 
1.8001

2.1183 
2.1544

M2 
AIC 
BIC 

-1.4932 
-1.4571 

-0.8798 
-0.8437 

-1.0565 
-1.0204

-0.9713 
-0.9442 

-0.3599 
-0.3238

-0.5704 
-0.5343

1.5600 
1.5961

1.7996 
1.8267

2.1166 
2.1618

M3 
AIC 
BIC 

-1.4909 
-1.4548 

-0.8793 
-0.8432 

-1.0540 
-1.0179

-0.9702 
-0.9431 

-0.3526 
-0.3165

-0.5707 
-0.5346

1.5558 
1.5919

1.7996 
1.8267

2.1202 
2.1654

M4 
AIC 
BIC 

-1.4936 
-1.4484 

-0.8818 
-0.8367 

-1.0558 
-1.0107

-0.9684 
-0.9323 

-0.3621 
-0.3170

-0.5714 
-0.5263

1.5514 
1.5965

1.8039 
1.8400

2.1207 
2.1749

M5 
AIC 
BIC 

-1.4867 
-1.4415 

-0.8755 
-0.8303 

-1.0496 
-1.0045

-0.9659 
-0.9298 

-0.3506 
-0.3055

-0.5666 
-0.5215

1.5499 
1.5950

1.7993 
1.8355

2.1183 
2.1544

MX 
AIC 
BIC 

-1.5000 
-1.4549 

-0.8889 
-0.8438 

-1.0787 
-1.0336

-0.9869 
-0.9599 

-0.3558 
-0.3016

-0.5907 
-0.5365

1.5408 
1.5949

1.7911 
1.8001

2.1068 
2.1429

MXR 
AIC 
BIC 

-1.4967 
-1.4516 

-0.8843 
-0.8391 

-1.0596 
-1.0145

-0.9742 
-0.9291 

-0.3958 
-0.3416

-0.5935 
-0.5393

1.5502 
1.5953

1.7911 
1.8001

2.1068 
2.1429

The Table reports the Akaike (AIC) and Bayes-Schwartz (BIC) information criteria for the Adaptive-AR and the Adaptive-X-AR models for various parameterizations 
of the level component. The most general specification for the Adaptive-AR model includes switching intercept, linear time trend and Fourier terms (M0). Its five 
nested specifications are: the constant mean model (M1), the switching intercept model (M2), the linear time trend model (M3), the linear trend model with switching 
intercept (M4), and the linear time trend model with Fourier terms (M5). The most general specification for the Adaptive-AR-X model includes switching intercept, 
radiative forcing and Fourier terms (MX). Its nested specification includes radiative forcing and Fourier terms (MXR). Panel A reports the conditionally 
homoscedastic models; Panel B reports the conditionally heteroskedastic models. The series investigated are average land and ocean temperature anomalies 
for the entire globe (GL; 90S-90N) and seven zones, namely the Northern Hemisphere (NH; 0-90N), the Southern Hemisphere (SH; 90S-0), the Tropics (Trpcs; 
20S-20N), the Northern Extratropic (NoExt; 20N-90N), the Southern Extratropic (SoExt; 90S-20S), the Northern Polar (NoPol; 60N-90N), the Southern Polar 
(SoPol; 90S-60S). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table A4: Adaptive-X-AR-GARCH models; estimation sample 1978(12)-2011(12)  

Panel A: MX - Adaptive-X-AR model; Radiative forcing specification plus Bai-Perron break process
 GL NH SH Trpcs NoExt SoExt NoPol SoPol SOI

0c  
-0.093 
(0.037) 

-0.115 
(0.034) 

-0.093 
(0.032)

-0.093 
(0.072) 

-0.513 
(0.191)

-0.486 
(0.178)

-0.943 
(0.340)

- - 

1c  
0.237 

(0.051) 
0.294 

(0.049) 
0.217 

(0.043)
0.202 

(0.095) 
0.276 

(0.059)
0.089 

(0.049)
0.312 

(0.102)
- - 

2c  
- - - - 0.289 

(0.144)
0.315 

(0.132)
0.536 

(0.257)
- - 

3  
- - - - - - 0.188 

(0.045)
- - 

5  or 4 (*) 
0.082 

(0.031) 
0.105 

(0.033) 
- 0.137(*) 

(0.073) 
0.143 

(0.030)
0.063 

(0.025)
0.193 

(0.049)
- -0.519*) 

(0.201)

5  or 3 (*) 
- - 0.089 

(0.029)
0.109(*) 
(0.083) 

- - - - - 

1  
0.537 

(0.048) 
0.452 

(0.050) 
0.487 

(0.048)
0.853 

(0.028) 
0.324 

(0.052)
0.330 

(0.046)
0.119 

(0.053)
 0.317 
(0.048)

0.465 
(0.061)

2  
0.254 

(0.048) 
0.230 

(0.051) 
0.190 

(0.046)
- 0.166 

(0.051)
0.118 

(0.049)
- - 0.206 

(0.063)

3  
- - - - - - - - 0.112 

(0.058)

  0.990 
(0.010) 

0.990 
(0.012) 

0.990 
(0.012)

0.990 
(0.014) 

0.990 
(0.012)

0.990 
(0.011)

0.990 
(0.014)

0.990 
(0.021)

0.990 
(0.022)

  0.010 
(-) 

0.010 
(-) 

0.010 
(-) 

0.010 
(-) 

0.010 
(-)

0.010 
(-)

0.010 
(-)

0.010 
(-)

0.010 
(-)

Specification statistics 
AIC -1.5215 -0.9072 -1.0678 -0.9508 -0.4130 -0.5658 1.4774 1.7569 2.1171
BIC -1.4713 -0.8571 -1.0177 -0.9005 -0.3528 -0.5056 1.5376 1.7670 2.1573
(20)Q  0.6048 0.8413 0.4616 0.0375 0.8414 0.7296 0.3396 0.1029 0.5740 

2(20)Q  0.5219 0.0623 0.6742 0.4486 0.0397 0.7318 0.0264 0.5179 0.0017 

BJ 0.1467 0.0527 0.7360 0.0157 0.6470 0.2473 0.0000 0.0289 0.0001
Joint Bias 0.6780 0.7522 0.9136 0.1408 0.2949 0.5145 0.1126 0.8162 0.0725
 
Panel B: MXR - Adaptive-X-AR model; Radiative forcing specification
 GL NH SH Trpcs NoExt SoExt NoPol SoPol SOI

0c  
-0.806 
(0.231) 

-0.939 
(0.214) 

-0.637 
(0.198)

-0.615 
(0.422) 

-1.287 
(0.137)

-0.735 
(0.127)

-1.699 
(0.234)

- - 

2c  
0.565 

(0.156) 
0.658 

(0.145) 
0.448 

(0.132)
0.424 

(0.282) 
0.886 

(0.093)
0.509 

(0.085)
1.160 

(0.156)
- - 

3  
- - - - 0.137 

(0.027)
0.042 

(0.024)
0.256 

(0.041)
- - 

5 or 4 (*) 
0.083 

(0.034) 
0.106 

(0.037) 
 0.127(*) 

(0.075) 
0.178 

(0.029)
0.073 

(0.026)
0.207 

(0.051)
- -0.519*) 

(0.201)

5  or 3 (*) 
- - 0.063 

(0.032)
0.137(*) 
(0.081) 

- - - - - 

1  
0.556 

(0.049) 
0.479 

(0.050) 
0.512 

(0.048)
0.859 

(0.027) 
0.321 

(0.052)
0.330 

(0.046)
0.151 

(0.054)
 0.317 
(0.048)

0.465 
(0.061)

2  
0.254 

(0.049) 
0.251 

(0.051) 
0.207 

(0.046)
- 0.159 

(0.053)
0.118 

(0.050)
- - 0.206 

(0.063)

3  
- - - - -  - - 0.112 

(0.058)

  0.990 
(0.022) 

0.990 
(0.010) 

0.990 
(0.012)

0.990 
(0.013) 

0.990 
(0.016)

0.990 
(0.011)

0.990 
(0.014)

0.990 
(0.021)

0.990 
(0.022)

  0.010 
(-) 

0.010 
(-) 

0.010 
(-) 

0.010 
(-) 

0.010 
(-)

0.010 
(-)

0.010 
(-)

0.010 
(-)

0.010 
(-)

Specification statistics 
AIC -1.5095 -0.8890 -1.0477 -0.9463 -0.4190 -0.5660 1.4954 1.7569 2.1171
BIC -1.4594 -0.8388 -0.9975 -0.8961 -0.3588 -0.5058 1.5456 1.7670 2.1573
(20)Q  0.6408 0.7842 0.6038 0.0449 0.8448 0.6282 0.3317 0.1029 0.5740 

2(20)Q  0.3034 0.0043 0.7530 0.4693 0.0086 0.7267 0.0601 0.5179 0.0017 

BJ 0.1940 0.0556 0.6602 0.0071 0.4923 0.2537 0.0000 0.0289 0.0001
Joint Bias 0.4359 0.9402 0.9415 0.0995 0.4128 0.3068 0.0468 0.8162 0.0725

Panel A reports the selected Adaptive-X-AR-GARCH models with radiative forcing control variables plus Bai-Perron step dummy variable (MX). Panel B reports 
the selected Adaptive-X-AR-GARCH models with radiative forcing control variables only (MXR). AIC and BIC are the Akaike and Bayes-Schwarz information 

criteria. (20)Q  and 
2(20)Q are the Box-Ljung test for serial correlation up to the 20th order in the standardized and squared standardized residuals, respectively. 

BJ is the Bera-Jarque normality test, Joint Bias is the Engle-Ng joint test for asymmetry in variance, Stability is the joint Nyblom stability test. The series investigated 
are average land and ocean temperature anomalies for the entire globe (GL; 90S-90N) and seven zones, namely the Northern Hemisphere (NH; 0-90N), the 
Southern Hemisphere (SH; 90S-0), the Tropics (Trpcs; 20S-20N), the Northern Extratropic (NoExt; 20N-90N), the Southern Extratropic (SoExt; 90S-20S), the 
Northern Polar (NoPol; 60N-90N), the Southern Polar (SoPol; 90S-60S). 

 

 

 

 



 

Table A5: Adaptive-X-AR-GARCH models using RF in step function; estimation sample 1978(12)-2016(12)  

Panel A: MX - Adaptive-X-AR model; Radiative forcing specification plus Bai-Perron break process
 GL NH SH Trpcs NoExt SoExt NoPol SoPol SOI

0c  
-0.087 
(0.045) 

-0.112 
(0.045) 

-0.107 
(0.036) 

-0.070 
(0.069) 

-0.140 
(0.033)

-0.072 
(0.025)

-0.189 
(0.062)

- - 

1c  
0.263 

(0.059) 
0.323 

(0.061) 
0.253 

(0.048) 
0.199 

(0.078) 
0.391 

(0.048)
0.202 

(0.032)
0.486 

(0.078)
- - 

2c  
- - - - - - - - - 

4  or 2 (*) 
- - - - 0.077(*) 

(0.031)
- -0.135 

(0.058)
- - 

5  or 5  (*) 
0.059 

(0.032) 
0.058 

(0.039) 
0.060(*) 
(0.025) 

 - 0.045 
(0.021)

-0.148 
(0.071)

- - 

3  
- - - 0.090(*) 

(0.042) 
- - - - -0.243(*) 

(0.171)

1  
0.581 

(0.048) 
0.521 

(0.051) 
0.519 

(0.045) 
0.865 

(0.024) 
0.403 

(0.049)
0.358 

(0.044)
0.194 

(0.057)
 0.317 
(0.048)

0.464 
(0.055)

2  
0.241 

(0.045) 
0.231 

(0.045) 
0.186 

(0.043) 
- 0.185 

(0.046)
0.124 

(0.045)
0.086 

(0.048)
- 0.206 

(0.057)

3  
- - - - - - - - 0.117 

(0.053)

  0.990 
(0.010) 

0.990 
(0.012) 

0.990 
(0.012) 

0.990 
(0.014) 

0.990 
(0.012)

0.990 
(0.011)

0.990 
(0.014)

0.990 
(0.021)

0.990 
(0.022)

  0.010 
(-) 

0.010 
(-) 

0.010 
(-)

0.010 
(-) 

0.010 
(-)

0.010 
(-)

0.010 
(-)

0.010 
(-)

0.010 
(-)

Specification statistics 
AIC -1.5065 -0.8858 -1.0657 -0.9806 -0.3697 -0.5748 1.5423 1.7911 2.1119
BIC -1.4613 -0.8406 -1.0206 -0.9445 -0.3246 -0.5297 1.5965 1.8003 2.1480
(20)Q  0.9716 0.7963 0.5732 0.0130 0.7378 0.7518 0.2231 0.3565 0.3891 

2(20)Q  0.6342 0.0853 0.6790 0.4920 0.0700 0.8958 0.0360 0.5623 0.0002 

BJ 0.0746 0.0000 0.7937 0.1110 0.1216 0.2595 0.0000 0.1198 0.0286
Joint Bias 0.9295 0.4502 0.9810 0.4781 0.9736 0.8532 0.2190 0.6440 0.0310
 
Panel B: MXR - Adaptive-X-AR model; Radiative forcing specification
 GL NH SH Trpcs NoExt SoExt NoPol SoPol SOI

0c  
-0.180 
(0.103) 

-0.284 
(0.084) 

-0.226 
(0.071) 

-0.173 
(0.143) 

-0.331 
(0.067)

-0.209 
(0.047)

-0.364 
(0.127)

- - 

2c  
0.373 

(0.147) 
0.526 

(0.127) 
0.419 

(0.102) 
0.327 

(0.204) 
0.612 

(0.102)
0.383 

(0.067)
0.758 

(0.188)
- - 

3  or 2 (*) 
-0.093(*) 
(0.053) 

0.062 
(0.039) 

- - 0.087 
(0.033)

- -0.186 
(0.084)

- - 

5 or 3 (*) 
- - 0.035 

(0.027) 
0.083(*) 
(0.044) 

- 0.028 
(0.022)

-0.129 
(0.065)

- -0.243(*) 
(0.171)

1  
0.588 

(0.048) 
0.519 

(0.050) 
0.535 

(0.045) 
0.873 

(0.023) 
0.420 

(0.050)
0.359 

(0.044)
0.229 

(0.056)
 0.317 
(0.048)

0.464 
(0.055)

2  
0.243 

(0.045) 
0.238 

(0.046) 
0.198 

(0.043) 
- 0.208 

(0.046)
0.127 

(0.047)
0.117 

(0.047)
- 0.206 

(0.057)

3  
- - - - -  - - 0.117 

(0.053)

  0.990 
(0.022) 

0.990 
(0.010) 

0.990 
(0.012) 

0.990 
(0.013) 

0.990 
(0.016)

0.990 
(0.011)

0.990 
(0.014)

0.990 
(0.021)

0.990 
(0.022)

  0.010 
(-) 

0.010 
(-) 

0.010 
(-)

0.010 
(-) 

0.010 
(-)

0.010 
(-)

0.010 
(-)

0.010 
(-)

0.010 
(-)

Specification statistics 
AIC -1.4949 -0.8750 -1.0519 -0.9768 -0.3554 -0.5747 1.5680 1.7911 2.1119
BIC -1.4498 -0.8299 -1.0067 -0.9407 -0.3103 -0.5295 1.6221 1.8003 2.1480
(20)Q  0.8855 0.7895 0.5632 0.0143 0.8240 0.6310 0.0811 0.3565 0.3891 

2(20)Q  0.4816 0.1276 0.7661 0.4759 0.0733 0.9256 0.1120 0.5623 0.0002 

BJ 0.1136 0.0000 0.7446 0.1065 0.0331 0.6809 0.0000 0.1198 0.0286
Joint Bias 0.8283 0.4972 0.9058 0.3543 0.7049 0.3131 0.0919 0.6440 0.0310

Panel A reports the selected Adaptive-X-AR-GARCH models with radiative forcing control variables plus Bai-Perron step dummy variable (MX). Panel B reports 
the selected Adaptive-X-AR-GARCH models with radiative forcing control variables only (MXR). AIC and BIC are the Akaike and Bayes-Schwarz information 

criteria. (20)Q  and 
2(20)Q are the Box-Ljung test for serial correlation up to the 20th order in the standardized and squared standardized residuals, respectively. 

BJ is the Bera-Jarque normality test, Joint Bias is the Engle-Ng joint test for asymmetry in variance. The series investigated are average land and ocean 
temperature anomalies for the entire globe (GL; 90S-90N) and seven zones, namely the Northern Hemisphere (NH; 0-90N), the Southern Hemisphere (SH; 90S-
0), the Tropics (Trpcs; 20S-20N), the Northern Extratropic (NoExt; 20N-90N), the Southern Extratropic (SoExt; 90S-20S), the Northern Polar (NoPol; 60N-90N), 
the Southern Polar (SoPol; 90S-60S). 

 



 

Figure  A1:  Radiative  forcing  components  and  total  radiative  forcing:  actual  data,  forecasts  for  2012‐2016  (grey  shadow),  and  monthly 

interpolated series (Interpolated). Following Hansen et al. (2005), radiative forcing has been decomposed in various categories, i.e., Well‐Mixed 

Greenhouse  Gases  (WMGG;  carbon  dioxide  (CO₂),  methane  (NH4),  nitrous  oxide  (N2O)  and  chlorofluorocarbons  (CFCs)),  Ozone  (O3), 

Stratospheric Water  Vapor  (StrH2O),  Reflective  Tropospheric  Aerosols  (ReflAer),  Tropospheric  Aerosol  Indirect  Effects  (AIE),  Black  Carbon 

Aerosols (BC), Snow Albedo (snowAlb), Stratospheric Aerosols (StrAer), Solar Irradiance (Solar), Land Use (including irrigation; LandUse). In the 

plots, Total Radiative corresponds to the sum of the all the reported components; Total Radiative ex StrAer corresponds to the sum of all the 

reported components with Stratospheric Aerosols (StrAer) omitted. 
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Figure A2: Estimated conditional correlations of the Southern Oscillation Index (SOI) versus various temperature anomalies: the entire globe 

(GL/SOI), the Northern Hemisphere (NH/SOI), the Southern Hemisphere (SH/SOI), the Tropics (Trpcs/SOI), the Northern Extratropic (NoExt/SOI), 

the Southern Extratropic (SoExt/SOI), the Northern Polar (NoPol/SOI), the Southern Polar (SoPol/SOI). ONI is the Oceanic Niño Index, scaled to 

match means and ranges of the various conditional correlations. 
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Figure A3: Estimated conditional  correlations of Tropics anomaly versus  temperature anomalies of  various  zones:  the Northern Extratropic 

(NoExt/Trpcs),  the  Southern  Extratropic  (SoExt/Trpcs),  the  Northern  Polar  (NoPol/Trpcs)  and  the  Southern  Polar  (SoPol/Trpcs).  ONI  is  the 

Oceanic Niño Index, scaled to match means and ranges of the various conditional correlations. 
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