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Abstract

This paper presents a procedure for testing the global
properties of functional forms which recognizes their specific role
in economic equilibrium modelling. This procedure is employed to
investigate the regularity and the third-order curvature properties
of three widely used flexible functional forms, the Translog, the
Generalized Leontief and the Normalized Quadratic functional forms.
We contrast the results from these flexible forms with a globally
regular flexible form, the Non-separable Nested Constant-Elasticity-
of-Substitution functional form. Our results indicate that

inherently regular representations are best suited for equilibrium

analysis.



1 Introduction

Flexible functional forms (FFFs) have been widely adopted for
empirical econometric work, but there have been relatively few instances in
which they have been employed to model production and consumption choices
in applied general equilibrium models (Hudson and Jorgenson, 1984;
Jorgenson and Slesnick, 1985; Reister and Edmonds, 1981). Few modellers
have adopted FFFs for the reason that, in spite of their superior local ap-
proximations, they generally exhibit poor global properties.

Research on the behaviour of functional forms in equilibrium models
has also been scant. Caves and Christensen (1980) built a number of
examples to compare the regular domains of the Translog (TL; Christensen,
Jorgenson and Lau, 1971) and Generalized Leontief (GL; Diewert, 1971)
functional forms. Performance was found to depend on the initial
specification of second order curvature conditions, with the TL being
preferable when the cross Allen-Uzawa elasticities of substitution (AUES;
Allen, 1938; Uzawa, 1962) are close to unity, and the GL being a good
choice for cross AUESs close to zero. Reister and Edmonds (1981) analyzed
the effects of replacing a Constant-Elasticity-of-Substitution (CES)
specification (Uzawa, 1962) with a TL form in a simple equilibrium model
and found substantial differences in their out-of-benchmark behaviour.
Comparing the properties of the TL and GL functions, Despotakis (1986)
concluded that the law of change of the AUES is different for these two
functions, and noted that these differences can have important consequences
for equilibrium analysis.

While in econometric modelling, functional forms are used to estimate
the local characteristics of technologies or preference orderings from a
given set of observations, in applied general equilibrium analysis
functional forms are used as a global representation of technologies and
preferences. Here, the information available to the modeller for the
specification of technologies and preferences is typically local, i.e.,
limited to a small region of production or consumption sets. This local
information is extrapolated to the full domain of the modelling exercise by

specifying production or utility functions that are locally consistent with



such information, an approach which is often referred to as “"calibration"
(Shoven and Whalley, 1992).

Thus, in applied general equilibrium applications the global
properties of functional forms become important. Lack of global regularity,
which may not be crucial for econometric estimation, may cause numerical
solution methods to fail even when functions are well behaved at the
equilibrium point. Furthermore, when analyzing discrete policy changes,
third-order curvature properties, which are of little consequence for the
purposes of econometric estimation, can crucially affect estimates of
welfare impacts, both in total and at the margin.

This paper explores the global properties of four different flexible
functional forms in order to assess their comparative performance and
suitability for use in applied equilibrium modelling exercises. We develop
a testing procedure which systematically investigates both the global
regularity and the third-order curvature properties of functional forms,
thus reflecting their specific role in applied general equilibrium
modelling vis a vis econometric applications. Summary measures of global
regularity are obtained by computing the area of the region in price space
over which a cost function is well behaved (i.e., non-negative, monotonic,
and concave in prices). We also obtain summary measures of global third-
order curvature properties by computing the area of the region over which
the function remains close, in a sense to be defined by the modeller, to a
given local specification of curvature conditions.

The functional forms we examine are the Translog (Christensen,
Jorgenson and Lau, 1971), the Generalized Leontief (Diewert, 1971), the
Normalized Quadratic (NQ; Diewert and Wales, 1987), and the Nonseparable
Nested CES (NNCES; Perroni and Rutherford, 1995). We choose to focus on the
homogeneous, three-input case, both because it represents a good compromise
between simplicity and generality and also because of its practical
relevance (e.g., in the modelling of substitution possibilities among
labour, capital and energy inputs).

Our tests uncover fundamental differences in the global behaviour of

different functional forms and lead us to conclude that inherently regular



representations are better suited for equilibrium modelling than

traditional FFFs.

2 Evaluating the global properties of functional forms

Our discussion will be focused on production technologies with N
inputs, one output and constant returns to scale. In most applications, a
sufficient and convenient representation of such technologies is given by a
continuous unit cost function, C{(p,1l), where p denotes the input price
vector and 1 is the production level. This will be hereafter referred to
simply as C(p) or C. The first derivatives of C, C,, represent conditional
input demands (Shephard's Lemma); these are homogeneous of degree zero in

prices and, by Euler's Theorem, satisfy the adding-up condition X, p, C, = C.

The matrix of partial second derivatives [Cy,] (the Hessian) is homogeneous

of degree -1 in prices and satisfies the Cournot aggregation condition

5,p,C, =0 (i=1,..,N).

3

In the following, we will normalize prices so that price vectors lie
in the unit simplex, S"' = {p | p,2 0; X, p, = 1}. We will also express
conditional demands in terms of input value shares 6, = p, ¢, / C, and the
Hessian of the cost function in terms of Allen-Uzawa elasticities of
substitution, which are defined as ¢, = C;; C / (C, C,). The AUES is a
dimensionless index of curvature, and is thus scale-invariant. The Euler

condition for the AUES matrix has the form X, ¢*, 6, = 0.

Regularity

A cost function is regular (well-behaved) at a point p if its value
C(p) is non-negative, its first-derivatives C,(p) (which correspond to
input demands) are non-negative (monotonicity), and if the Hessian [C(p)]

is negative semidefinite (concavity, a sufficient condition for the choice

of inputs C,(p) to minimize cost). Monotonicity implies 8,{(p) 2 0 and

negative semidefiniteness of [Cy{p)] implies the same for [Gﬂjuﬂ]4



We will refer to the range over which a function maintains
monotonicity as the Monotonic Domain (MD). This can be characterized as
2.1 MD = {pe S | C{p) 2 0; 6,(p) = 0}.
The range over which a function maintains concavity will be referred to as
its Concave Domain (CD):

2.2 CD

{pe s | cp) 20; [0,(p)] negative semidefinite}.
The region of the price simplex over which a cost function is regular,
which Despotakis (1986) termed the Outer Domain, is then simply

2.3 OD = MD n CD.

Third-order curvature properties

Despotakis (1986) defines the Inner Domain (ID) of a cost function as
the region of the price simplex where the function provides a good
approximation to the "true" technology. In applied modelling exercises,
however, the information available to the modeller is typically limited to
the calibration point p’, and the "true" technology is unknown. In the
absence of global information on the technology to be approximated, the
modeller must adopt, explicitly or implicitly, certain assumptions
concerning the out-of-benchmark characteristics of functions, on the basis
of the local information available. For example, when choosing a CES
representation, a modeller implicitly assumes that when moving away from
the benchmark point the first and second derivatives of the cost function
change in such a way as to ensure constancy of all cross AUESs. This
corresponds to a specific set of conjectures about the third-order
curvature properties of the cost function.

To make the notion of Inner Domain operational when only local

information is available, we can employ a distance function Z:

2.5 Z(p)

I E(p), E®) |
where E(p) is a vector of curvature measures (e.g., elasticities) at p, and
E(p’) represents the corresponding values at the benchmark point. The

definition of E is left to the discretion of the modeller.



Once Z has been specified, the Inner Domain can be defined as the

region of the unit simplex where the value of Z is less than or equal to a

pre-specified tolerance level §, i.e.,

2.4 ID(d) = {pe S| Z(p) £ 8}.

The choice of a particular curvature index implies certain
assumptions about the global characteristics of the cost function. For
example, if the modeller believes that the "true" cost function exhibits
constant value shares, then E(p) will be chosen to represent a vector of
value shares (in which case the best choice of functional form would
naturally be a Cobb-Douglas cost function). In the following, we will
restrict our discussion to a few second-order curvature indexes that have
been proposed in the literature,

A well known dimensionless index of second-order curvature is the

compensated price elasticity (CPE), which is defined as
2.5 c;=01nc¢ /d1lnp =C, p / C.

A related measure of second-order curvature is the AUES, which has been

already discussed. This can also be expressed as

2.6 o, =0o, /6.
The AUES is a one-input-one-price elasticity of substitution (Mundlak,
1968), since, as (2.6) makes clear, it measures the responsiveness of the
compensated demand for one input to a change in one input price. In

contrast, the Morishima elasticity of substitution (MES; Morishima, 1967)

constitutes a two-input-one-price elasticity measure, being defined as

2.7 6';=01n (¢, /¢ ) /d1lnp = o, -0,

1]

M M

£ O

Note that, in general, the MES is not symmetric, i.e., o', IS
A third measure of curvature is the represented by the class of two-

input-two-price elasticities of substitution, which take the form
d1n (Cc, / ¢ ) /d1ln (p, / p). One such index is the shadow elasticity of
substitution (SES; Frenger, 1985), which is defined as

2.8 o°. = (8

i3 i

', +0,0",) / (6 +86,).



When technologies are of the CES type, ¢, 0", , and ¢°, are all identical,
but they are generally different otherwise.

In our tests, we define the distance function Z as a weighted sum of
the square deviations from the benchmark elasticity of substitution matrix,
where weights are chosen to be equal to the combined share of inputs i and

J in total cost:

Z, 16,(p") + 6,(p)] [o,(p) - 6,(0)]°

2.9 Z(p) =
., [6,(p") + 06,(p")] [o,(p)]°

We employ four different versions of the above norm, respectively based on

the CPE (6°), AUES (¢"), MES (¢") and SES (¢°).

3 Experimental design

We can obtain synthetic indexes, A, and A_, respectively for the
Monotonic and Concave Domains, by measuring the volume of these regions as

a proportion of the volume of the unit price simplex, i.e.,

Area (MD) / Area(S");

3.1 A,

3.2 A, = Area(CD) / Area(s").

For the Inner Domain we must also specify a tolerance level §:

3.3 A, (8) = Areal[ID(d)] / Area(s").

Our testing procedure is as follows. The function under investigation
is calibrated at a benchmark point p’' to a given specification of
derivatives up to the second order. The properties of the function
(monotonicity, concavity, and Z(8) for & = 0.25) are then systematically
evaluated over a triangular grid on the price simplex. The resulting
discrete mapping is then contoured to derive piecewise-linear
approximations of the various domains. Finally, the approximated contour
sets are used to compute the areas A,, A,, and A, (§).

In the tests reported here we focus on the case N = 3 and use a grid
containing 325 points. We choose p’ to be the center of the unit simplex

and consider two configurations of benchmark value shares: a symmetric



configuration with 6 = (1/3,1/3,1/3) and an asymmetric configuration with 0

= (0.35,0.60,0.05). For each configuration of value shares, we examine a
number of different benchmark configurations of second-order curvature
conditions belonging to the regular region, i.e., the set of benchmark
cross AUES configurations that are compatible with local concavity of the
cost function.

Because of symmetry and homogeneity, only H=N (N - 1) / 2
elements of the matrix [Gﬂj] are independent, which implies that we can

ignore the diagonal terms. Thus, the regular region Q is a subset of RY,
bounded by N - 1 conditions for negative semidefiniteness of the AUES
matrix. Q is a convex set, since a convex combination of two negative
semidefinite matrices is also negative semidefinite. Moreover, Q is a cone,
since multiplication of a negative semidefinite matrix by a positive scalar
results in a negative semidefinite matrix. The latter property enables us
to characterize the geometry of the regular region analyzing only the image
of a projection of Q in R"'. For this purpose we choose the following
projection: the AUES matrix is divided by its largest positive off-diagonal
element, so that the maximum off-diagonal element of the resulting matrix
is always unity. Without loss of generality, we will assume that the
element (1,2) is the largest cross AUES.

With N = 3 the regular region Q lies in R’, and the image of its
projection lies in R?, bounded by the following constraints ([cﬁj] denotes

the normalized AUES matrix):

3.4 o,<1;
3.5 o, <1 ;
3.6 o,2-96,/70,;

3.7 0,2-6,/0,;
3.8 6,/ 6,) o, + (8,/60,) 20 ;

3.9 0,0, + (8,/6,)d,+(6,/0,)c,20



The first two constraints follow from normalization. The remaining four are
the sign constraints on the first and second principal minors for negative
semidefiniteness.

We explore four "slices" through Q, those representing AUES matrices
with maximum off-diagonal values respectively equal to 1/2, 1, 2 and 4. For
each of these sections we examine a uniform grid of AUES configurations

with between 47 and 52 points depending on the benchmark value shares. The
resulting measures A, A,, and A, (0) are then averaged over all sample

points.

Our testing procedure was applied to four different functional forms:
TL, GL, NQ and NNCES. The TL and GL forms have been chosen because they are
the best known among FFFs. The NQ form is included because it is globally
concave (although it can lose monotonicity). The NNCES form is flexible and
globally regular, and belongs to a family of functional forms that have
been widely employed in the applied general equilibrium literature. All
four functional forms, and the formulae used for parameter calibration, are

described in Appendix A.

4. Test results

Results of Outer Domain calculations are summarized in Table 1, which
reports average measures of MD, CD, and OD as a percentage of the price
simplex for different specifications of maximum cross AUES values.

[ Table 1 about here ]

Our findings are consistent with earlier studies of the global
properties of the TL and GL functional forms. The TL is prone to loss of
concavity away from the benchmark point whenever the benchmark elasticities
depart from unity. The GL tends to lose monotonicity as benchmark
elasticities increase. The NQ remains concave over the entire domain, but
tends to lose monotonicity at higher elasticities, much as the GL does. The

Outer Domain for the NQ (as well as the TL and GL) falls below 50% of the

price simplex when ¢", = 4 and benchmark value shares are equal. When

benchmark shares are asymmetric and 0ﬁ2= 4, the TL, GL and NQ Outer Domain



shrinks to roughly 1/4 of the price simplex. In contrast, the NNCES form is
globally regular.

Table 2 reports corresponding results of Inner Domain calculations
based respectively on the CPE, AUES, MES, and SES norms. The CPE based norm
appears to be more volatile than the other measures, but the ranking of
functional forms is consistent across all norms. The NQ performs poorly in
all cases. In the symmetric case (upper panel), the TL form performs best
for benchmark cross AUES values close to unity, and the GL form performs
best for cross AUES values close to zero. In the asymmetric cases the TL
performs rather poorly, particularly for low cross AUES values. The NNCES
is the most consistent performer.

[ Table 2 about here ]

Comparison of Tables 1 and 2 suggests that the Outer Domain and the
Inner Domain of a cost function might be correlated. We formally
investigated this conjecture by computing the correlation coefficient
between the areas of the Outer Domain and the AUES Inner Domain over the
range of benchmark elasticity values (Table 3). These results confirm that
"ingtability" in second-order curvature behaviour is closely associated
with loss of regularity.

[ Table 3 about here ]

5 Summary and conclusion

This paper has presented a procedure for testing the global
properties of functional forms which explicitly recognizes their role in
equilibrium modelling. We have used this procedure to explore the
regularity and third-order curvature properties of four flexible functional
forms, and found that the Translog, Generalized Leontief and Normalized
Quadratic all can lose regularity over large regions of the price simplex,
particularly when the benchmark cross-elasticities are large. We also found
that globally regular functional forms, like the NNCES, are better at

preserving local calibration information over the domain of modelling



exercises. For these reasons, we conclude that globally regular functional
forms such as the NNCES are better suited for equilibrium analysis.

Further research should investigate the global properties of
alternative specifications of the NNCES, in order to provide practitioners
with some concrete guidance in the selection of nesting structure. A better
understanding of the properties of the functional forms used in applied
equilibrium exercises would improve transparency and ultimately contribute

to users’ understanding of model results.

University of Warwick

and

University of Colorado
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o

o

12

12

(max)

TL
GL
NQ
NNCES

(max)

TL
GL
NQ
NNCES

Table 1l: Average measured Outer Domain dimensions

Symmetric Value Shares: 6=(0.33,0.33,0.33)

Monotonic Domain

% of the price simplex

100 99
100 100
100 100

Asymmetric Value Shares: 0=(0.35,0.60,0.05)

Monotonic Domain

5 1
69 86
100 98
100 99
100 100

Concave Domain

27 62 73 60
93 93 93 93
100 100 100 100
100 100 100 100

Concave Domain

46 71 76 64
95 95 94 92
100 100 100 100
100 100 100 100

Outer Domain

93 92 &3 27
100 100 72 31
100 100 100 100

Outer Domain

100 100 100 100



Table 2: Average measured Inner Domain dimensions

% of the price simplex

Symmetric Value Shares: 6=(0.33,0.33,0.33)

Compensated AUES Morishima Shadow

L, (max) .5 1 2 4 .5 1 2 4 .5 1 2 4 .5 1 2 4

TL 3 43 20 5 6 62 35 8 12 61 50 12 13 58 47 12
GL 25 40 17 4 67 59 22 6 81 75 30 8 83 76 29 8
NQ 4 4 3 1 11 9 6 5 21 12 6 2 20 14 6 2
NNCES 14 40 13 3 67 71 59 41 71 67 61 52 70 67 59 47

Asymmetric Value Shares: 6=(0.35,0.60,0.05)

Compensated AUES Morishima Shadow

., (max) .5 1 2 4 .5 1 2 4 56) 1 2 4 .5 1 2 4
TL 7 63 18 4 9
GL 42 63 17 4 84 61 27 7 93 70 33 9 91 68 32 9
NQ 2 2 2 1 1
NNCES 35 78 20 4 0



Table 3: Correlation between the AUES Inner and Outer Domains

o', (max)

TL
GL
NQ

Symmetric Shares

06=(0.33,0.33,0.33)

0.92 0.92 0.84 0.90
0.51 0.67 0.79 0.91
na na 0.59 0.68

Asymmetric Shares

6=(0.35,0.60,0.05)

0.96 0.97 0.93 0.77
0.77 0.72 0.79 0.82
na na 0.29 0.34

na: the NQ is globally regular for these shares and assumed ¢" values,

and the correlation is therefore undefined.



APPENDIX A: Cost function definitions and calibration

In this appendix we summarize formulae for recovering parameters of

the functional forms we tested. Here, the cost function is denoted as F,
and the symbols ¢, 6 and ¢ denote the given cost, input shares and Allen-

Uzawa elasticities of substitution at the calibration point.

Translog
The TL form is defined as follows:

A.l In F(p)

In b, + X, b, Inp, + 1/2 Z,; &, 1In p, 1In p,

= 1ln b, + L(p).

Restrictions:

A.2 . b =1 ;

A.3 a, = a; , i=1,..,. N, j=1,..,N;

A.4 Z, a, =0, i=1,..,N .
Calibration:

A.5 a, =6,60, (6, - 1), i3

A.6 a, = -X, a,; . i=1,..,N;

A.7 b =6 -Z a, 1ln p,, i=1,..,N;

A.8 b, =cCe*™.
Generalized Leontief

The GL form is defined as follows:

A.9 F(p) = 1/2 %, a; (p; p,)"".
Restrictions:

A.10 a, = a; , i=1,..,.N, 7 =1,..,N .
Calibration:

A.11 a; =486,06 C (p, p)" 0, i#3;

A.12 a, =10, Ccp - 2%, a, (p, ;)" / b, i=1,..,N.
Normalized Quadratic

The NQ form is defined as follow:

A.13 F(p) = 1/2 (£, a;, b, p;)/ (X b, p, ).
Restrictions:

A.14 a,= a; ., i=1,..,N, j=1,..,N;

A.15 b, 20, i=1,..,N;

A.1l6 Z b =1
Calibration:

A.17 a,=CI[(Z b p) O 6o, +Db p 6 +bp 6]/ (pp).

1]



We examined two alternative specifications, one in which b, = 6, , and

another in which b, = 1/N . The first specification produces larger Inner

Domain estimates and is used in the tests for Table 2.

Nonseparable Nested CES

We restrict our discussion to the case N = 3 (for the general N-input
case see Perroni and Rutherford (1995)), and focus on a particular nesting

structure, which we call "Lower Triangular Leontief" (LTL). Let us
rearrange indices so that the maximum off-diagonal AUES element is ¢,,. Then

the three-input NNCES-LTL cost function can be described as

A.18 F(p) = 9 [(a p+ a p)""
+ (b, pz(l’ Moy b, p3“' SR NESIACH AU

Restrictions:

A.19 Y20 ;

A.20 p 20 ;

A.21 @20 ;

A.22 a 20, i=1,..,N;

A.23 b, 20, i=1,..,N.
Calibration:

Let us denote with s, the fraction of the total input of commodity 3 which
enters the first subnest of the structure described by (A.18) (with 1-s,
representing the fraction entering the second subnest). Let us also assume

that all prices at the calibration point are unity. If we select
A.24 Y = 0O, :
A.25 pn = (0,0,- 0,0,)/(0,- C,) :
it can be shown that
A.26 s, = (0,- 6,)/{0,~- OC,)
The remaining parameters can then be recovered as follows:
A.27 ¢ =C ;

A.28 a

1 = 61 6, + s, 03) B

A.29 a, = s,0, (8, + 5,08,) """ ;

A.30

(o2
I

2 8, [0, + (1 - 5,)6,] a-wiee

A31 b, =(1-35) 6,106+ (1-s) 6] 7",



