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1. Introduction

In a series of papers (Crafts, Leybourne & Mills, 1989a,
1990, 1991), we have analysed British industrial production over
the period 1700 to 1913 using various time series approaches to
decompose an index of this series into its trend and cyclical
components.

The publication of these papers, along with related work by
Crafts (1983, 1987, 1989) and Harley (1982), has prompted numerous
responses, in which our work is criticised in three basic areas.
The first two criticisms, that our estimates of industrial
production are incorrect and that our view of the industrial
revolution is misconceived, have been the subject of detailed
responses and rebuttals by Crafts & Harley (1992) and Harley &
Crafts (1994). It is the third area of criticism, the appropriate
way of modelling the process generating industrial production,
that forms the basis for the present paper. The two major
critiques of our econometric work are Newbold & Agiakloglou (1991)
and Greasley & Oxley (1994), to which we have provided detailed
responses in Crafts & Mills (1992, 1994a). We do not repeat these
debates in detail here: rather we attempt, very much in the spirit
of a progressive research strategy, to extend and develop the
existing models of industrial production. This 1is in response
both to our critics and to recent developments in time series
econometrics, and enables us to provide a framework that
encompasses previous models and which allows us to present further

evidence in support of our views on the timing and extent of the



industrial revolution and on the presence or otherwise of the
climacteric of the late nineteenth century (see Crafts, Leybourne
& Mills, 1989b).

Section 2 thus outlines the approach that we have taken in
our initial work and briefly discusses the recent critiques on
this that have been made by Newbold & Agiakloglou (1991) and
Greasley & Oxley (1994). The general theme of these critiques is
that the process generating industrial production has undergone
various shifts during the period and it is this insight that acts
as the point of departure for our present analysis. Employing a
slightly revised index of industrial production, Section 3
investigates the question of structural breaks using, inter alia,
some recently developed unit root tests. These tests strongly
suggest that both difference stationary and segmented linear trend
models are inadequate processes for explaining the behaviour of
industrial production and this leads us in Section 4 to
investigate the usefulness of an alternative model, that of a
segmented quadratic trend plus a shifting cyclical component.
This does indeed provide a satisfactory representation of the data
and explains the models of our critics. An interpretation of the
results in terms of the historiography of British economic growth

is provided in the concluding Section 5.



2., Trends and Cycles in Industrial Production Revisited

The approach that we have favoured in our previous work is
that of the basic structural model (BSM: see Harvey, 1985, 1989),
in which the logarithm of industrial production, Yy Say, is

additively decomposed into a trend, Ty and a cycle, wt’
Ye = Hp ¥, (1)
such that the trend is modelled as

Be = Mg + Bpop ¥ g (2a)
The cycle may be modelled as an AR(2) process,

Ve = Pi¥e_y + Po¥p_g T 0 (2¢)

This is, of course, stationary if pl+p2<1, and displays
pseudo-cyclical behaviour if p§+4p2<0. The period of the cycle

may be calculated as
p = 2m/cos™ (|py1/21051™7)

Alternatively the cyclical component may be modelled as an
explicit sinusoidal process:
wt - cosA sina wt—l . W, o
-si *
vE sSinA cosA -1 wg
where Y¥ appears by construction and where the parameters 0=a=m
and O0Osp=l have direct interpretations as the frequency of the

cycle (A=2m/p) and the damping factor on the amplitude,

respectively. This process is stationary if p<l.



The errors L Et' W, and wg are independent white noise

disturbances with variances ai, 02, ai»and 052 (usually assumed to

equal 03 in estimation). The trend component is thus modelled as
a stochastic linear trend, which would collapse to a deterministic
linear trend if the wvariances 0% and oé were both zero, and to a
random walk with drift if only a§=0. If 0£=0 then the cycle is
deterministic.

In Crafts, Leybourne & Mills (1989a, henceforth CLM), we
fitted this model (using the autoregressive cyclical process (2c))
to the full sample of industrial production data and to two
subsamples, 1700-1783 and 1815-1913, finding that the parameter
estimates altered substantially across samples. For the full

sample all variances were significantly different from zero,

2
3

implying that trend growth was constant, and P and p, were

whereas for the earlier ’'pre-take-off’ period o was zero,
insignificantly different from zero, so that there was no cycle in
the data. For the post-Napoleonic period, however, U%=0, so that
permanent changes in the level of the series were brought about
entirely by changes in trend, and the positive estimate for 05
combined with significant estimates of the p’s implied a
stochastic cycle with a period of approximately 7.5 years.

Since it is well known that the BSM implies that Y has a
0§=0, an

ARIMA(2,1,3) representation, we also undertook a Box-Jenkins

(restricted) ARIMA(2,2,4) representation and, if

analysis, finding that for the full sample conventional
identification led to an ARIMA(O0,1,1) model. Since the

first-order autocorrelation of VY is negative, this is consistent



with the structural model (1) with

and wt=w i.e. constant trend growth and no cyclical component.

t:
This was also consistent with standard unit root tests, which for
all samples could not reject the difference stationary null in
favour of a (linear) trend stationary alternative.

However, the ARIMA(2,2,4) model, although fitting
substantially worse than the ARIMA(0,1,1), was able to model the
overall autocorrelation structure of the series much more
satisfactorily, for Ljung-Box portmanteau statistics calculated
over 36 lags were 51.7 for the latter (significant at a marginal
significance level of less than 3%) but only 27.3 for the former.
This, we argued, was consistent with Harvey’s (1985) argument that
structural time series models are not intended as parsimonious
representations of the underlying data generation process but, in
the present context, aim to present the historiography of the
series in terms of a decomposition that is of interest to
economists and economic historians. We might also profitably
recall Cochrane’s (1988) arqument that ARIMA models are designed
to fit the low order autocorrelations of the data as closely as
possible at the expense of accurately fitting the higher orders,
an important consideration for short-term forecasting but not
necessarily so in the present context.

Notwithstanding these arguments, Newbold & Agiakloglou (1991)
took issue with our use of BSMs, preferring themselves to remain

within the ARIMA framework. They demonstrated that unit root

tests on Vyt conclusively reject the presence of the two unit



roots implied by the BSM for the different subsamples and that,
within this framework, the case for evolving (non-constant) growth
rates and a cyclical component in the post-1815 period was rather
weak. Our defence of BSMs within the present context is already
contained in Crafts & Mills (1992), but what is clear from both
CLM and Newbold & Agiakloglou is that the assumption of a constant
model structure throughout the entire sample is very difficult to
maintain.

Greasley & Oxley (1994) also focus on the issue of structural
stability: on considering three subsamples, 1700-1780, 1781-1851
and 1852-1913, they find that unit root tests reject the null 6f
difference stationarity in favour of (linear) trend stationarity
for the first and third subsamples, but cannot for the second.
Their interpretation of these findings, that the implied
persistence of innovations to industrial production during the
period from 1781 to 1851 marks this out as a ’‘distinctive
macroeconomic epoch’, has been criticised in Crafts & Mills
(1994a), but what is important here is Greasley & Oxley’s
additional evidence of instability in the process g¢generating
industrial production, an instability that obviously requires
further investigation and which acts as a point of departure for

our own analysis.



3. Structural Breaks in Industrial Production

Crafts & Harley (1992) present some revisions to what has
become known as the CLM index. In what follows we thus use their
Revised Buest Guess index of industrial production, described in
Appendix 3 and reported in Table A3.1 of Crafts & Harley (1992).
The logarithms of the index are plotted in Figure 1.

Given the evidence presented above that the index may contain
structural breaks, the BSM was estimated over both the full sample
1700-1913, and various subsamples 'suggested by the literature.
These estimates are shown in Table 1, from which it would appear
that 02 was close to zero for subsamples containing the middle
part of the nineteenth century, while o% was close to zero for the
latter part of the sample, this being the only time when ai was
positive and there was a significant cycle, its estimated period
being approximately 8 years. Although for all other subsamples
0£=0, implying a deterministic cycle, the estimated periods were
all in excess of 20 years and examination of the sample
autocorrelations for VY. showed cut-offs at lag 2 rather than
cyclical behaviour (cf. Harvey, 1985: all estimations were
performed using the sinusoidal process (2d) for the cycle wt).

It is clear from these estimates that a single BSM fitted
over the full sample is unlikely to provide a completely
satisfactory fit and further evidence that this is the case can be
provided from another source. The full sample estimates show that

although a%

is reliably positive, 02 is very small and could be
taken as being essentially zero. Although ag=0, for the reasons

given above, there is no cycle in the error component.
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Table 1

BSM estimates for Subperiods

0'2 0‘2 0‘2
LS £s ©_,
(x10 ) (X10 ) (X10 )
1700-1913 2.26 0.55 0
(10.03) (0)
1700-1780 3.04 2.70 0
(5.98) (0.96)
1781-1829 1.90 4.50 0
' (4.47) (0.94)
1781-1850 2.11 0.18 0
(5.76) (0)
1813-1913 1.91 2.66 0
(6.61) (1.19)
1830-1913 1.66 4.31 0
(5.87) (1.26)
1830-1872 1.83 0.77 0
(4.40) (0.72)
1851-1913 0 0.10 6.67
(0) (0) (4.85)
1873-1913 0 8.03 4.51
(0) (1.52) (3.37)

t-ratios in parentheses.

Thus, with o§=0 and Y modelled as a noncyclical AR(1)
process, it is easy to show that Vy, must follow an ARMA(1,2)

process with drift. Fitting such a model obtains

Vy, = .018 - .691vy + a, + .570a - .214a

(.001) (.125) ¢t Tt (l129)t1  (l11s)

Although this model appears to be quite satisfactory on the
basis of standard diagnostic checks, on further analysis we find

that VY contains a significant time trend, for including t as an



additional regressor in (3) yields a t-statistic of 3.23. This
implies that Vyt is nonstationary; szt is stationary though,
albeit around a nonzero mean and with a unit root in its moving
average part. The presence of such a nonzero mean has the
important implication that Ye cannot be regarded as being
generated from a BSM. Moreover, the presence of a linear trend in
VY. implies a quadratic trend in Ye- Newbold & Agiakloglou (1991)
are thus incorrect in claiming that the rejection of two unit
roots in favour of there being only one precludes there being
evolving trend growth rates: their unit root tests excluded a time
tren& and led them to conclude that Vyt was stationary around a
constant mean rather than, as we have found, around a linear
trend.

Given these twin findings of structural instability in the
BSM and of a full sample ARMA process for VY that does not admit
a BSM representation but contains a linear trend, it would seem
fruitful to consider an alternative approach to modelling trends
and cycles in the Revised Best Guess index.

An obvious possibility is that the presence of a linear trend
in the full sample model for Vyt is compensation for the trend
component e being a segmented linear function: a ‘changing
growth’ model in the terminology of Perron (1989). The timing of
such a shift in trend, which is here being ’approximated’ by a
quadratic in t buried in nonstationary noise, will not be known
precisely, so that Perron’s analysis, which assumes a single,
known, break point, will not be appropriate. Banerjee, Lumsdaine

& Stock (1992), however, have developed a set of recursive and



sequential tests for detecting such a break when its timing is
unknown.

Thus we may consider the model
Y, = Uy + u,t + pu,t (K) + ay +zp B.Vy . + a (4)
t 0 1 2°t t-1 i=1"i"“t-1 t

for t=1,...,T, where p is known, a, is a martingale difference

t
sequence, and tt(k)=(t—k)-l(t>k), where 1(¢) is the indicator
function. tt(k) is thus a deterministic regressor capturing the
possibility of a shift in the trend at time k.

Banerjee, Lumsdaine & Stock (1992), henceforth BLS, consider
various tests for structural breaks in this model. With Ko
assumed to be zero, (4) becomes a standard Dickey-Fuller (1979)
regression, so that when it is estimated by OLS using the full
sample t=1,...,T the t-statistic testing o=1, Emﬂ is their %t
test for a unit root against a linear trend stationary
alternative. Such a test is well known to be incapable of
rejecting the unit root null when the alternative is that of a
shifting trend. The test can, however, be computed recursively,
i.e. using subsamples t=1,...,k, for k=k0,...,T, where k0=[80T] is
a start up value, thus leading to the set of statistics EDF(k/T)
(noting that EDF(1)=EDF, the full sample statistic). BLS show
that functions of this set of statistics can have power against
trend-shift alternatives of the form (4).

The statistics can also be computed from rolling regressions,

i.e. using subsamples that are a constant fraction §,., of the full

0
sample, rolling through the sample. Thus the regression (4) is

estimated over the subsamples k-k0+1,...,k, for k=k T,

.
yielding the set of statistics t_(k/T).

10



BLS provide asymptotic critical values and examine the size
and power of various functions of these sets of unit root
statistics. Their simulations suggest that the most useful
statistics for examining the possibility of shifting roots and
shifting trends are the maximal and minimal Dickey-Fuller
statistics 5" =max,t (k/T) and E s =min £ (k/T), with similar
definitions for ﬂ“x and tmin

With Ko allowed to be nonzero, equation (4) corresponds to
Perron’s (1989) ‘changing growth’ model in which there is a
segmented linear trend with the break at time k. We may now
consider sequential Dickey-Fuller statistics calculated over the
full sample but which allow k to move through the range ROSKST-RO,
dencted tg;k/T). BLS focus attention on t;';"* and also on two
further statistics: the maximum of the sequential F statistics,
.f“ﬁ testing the hypothesis u2=0, and the associated
Dickey-Fuller statistic evaluated at the value of k, k, that
maximises F, t* (k).

A related sequential statistic considered by BLS is the
Quandt (1960) likelihood-ratio (LR) statistic, which tests for a
break in any or all of the coefficients. This entails estimating
(4), with u2=0, over pairs of subsamples 1,...,k and k+1,...,T,
for ROSRST-kO, computing Quandt’s LR statistic for each each break
point and considering the maximum of these, Q.

These statistics were computed for the Revised Best Guess
Index after setting the number of lags of Vy, entering the
regression (4) at p=3, the number that were found to be

significant in the full sample regression. A variety of settings

11



of the ’'trimming’ parameter 80 were investigated, and the set of

statistics are reported in Table 2. Precise inferences are

difficult because BLS only report critical values for a limited

range of T and 3 values. However, the recursive and sequential

Dickey-~Fuller statistics are constant across 60 and are clearly

insignificant. The rolling statistics do vary and, although Eﬁf
Smin

is certainly insignificant, tm_ appears to be significant for low

values of §;, as does Q _. It is of interest to note that ™,

~min
t

oF and Q , occur at very different years: 1775, 1827 and 1870

respectively.
These various pieces of evidence suggest that, although there
is certainly evidence of structural instability, it is unlikely to

be characterised by a single shift in a linear trend function.

Table 2

Recursive, Rolling and Sequential Test Statistics

for Shifting Roots and Trends

Recursive Rolling Sequential
30 Gr Epe T Epe ot FUUT e (R) o
2 2.12  -2.67 1.23 -5.21 -3.45 9.07 -3.45 41.32
: 2.12 -2.67 1.43 -5.22 -3.45 9.07 -3.45 41.32
: 2.12 -2.67 1.01 -4.10 -3.45 9.07 -3.45 32.33
2 2.12  -2.67 1.14 -3.74 -3.45 9.07 -3.45 25.63

12



4. A Segmented Quadratic Trend Model

The likely presence of more than one structural break, plus
the visual evidence from Figure 1 of nonlinearity in the evolution
of the Revised Best Guess index, suggests that a segmented
polynomial trend might profitably be considered. Segmented (or
piecewise or grafted) polynomials have a long history in fitting
smooth trend functions to time series and have a firm mathematical
foundation (see Fuller, 1969, 1976). They have been used in a
similar context by Hausman & Watts (1980) and also by Crafts &
Mills (1994b) in fitting trends to real wages. Although cubics
are popular in curve fitting, we felt that, given the evidence of
a time trend in VVer @ segmented quadratic was the appropriate
function to consider.

The received historiography plus the evidence from Section 3
suggests that major changes in the growth rate of the index took
place during the years 1765-1785, 1815-1835 and 1855-1875. The
first of these intervals is quite generally thought to mark the
start of the ‘industrial revolution’ and an associated upturn in
the rate of growth; authors who write in these terms include
Fisher (1982), Hoffman (1955), Hudson (1992), McCloskey (1981},
Mokyr (1993) and Rostow (1960). The second interval takes in
suggested terminal dates for the industrial revolution from
several writers, including Hudson and Mokyr, when growth might be
held to have entered a mature phase and acceleration of the growth
rate would be expected to have ceased. Others, including Fisher,

Hoffman, McCloskey and Rostow, have placed this point later,

13



argiung that it was located in the third quarter of the nineteenth
century, while a more pessimistic 1literature deals with a
climacteric in growth arriving in the 1870s (Saul, 1985). Our
third proposed interval captures these alternative views.

Given this argument, we thus chose to model the index as
having three breaks, denoted Tl’ T2 and T3, respectively, so that

the following trend component was considered:

2 3 2
e = kg Mgt Fopptt 4 )T wiTl (3)
2 _ 2
where tit—(t-Ti) -I(t>Ti) and 1764<T,<1786, 1814<T,<1836 and
1854<T3<l876. The times of the breaks were determined by

minimising the residual sum of squares from the regression
yt=ut+wt, with wt assumed to be white noise (i.e. wt=wt), for all
possible combinations of T

T, and Ty (for a justification of

1!
this approach, see Gallant & Fuller, 1973). The minimising

combination was found to be Tl=l776, T2=1834 and T,=1874, which

3
are relatively close to the breaks points informally suggested by
the analysis of Section 3. Indeed, the fit of the model with
break points at 1775, 1827 and 1870 was not drastically worse, the
residual standard error being 5.10% as opposed to 4.90%.

Table 3 presents the OLS estimates from fitting this model.
In line with the approach of Campbell & Perron (1991), a unit root
test on the fitted residuals @t produces a test statistic of
-8.10. Approximate critical values, conditional on the estimated
break points, were obtained via Monte Carlo simulation, from which

it was found that the 1% critical value was -5.23. Even allowing

for pre-testing bias, such a large value of the test statistic

14



Table 3

Segmented Quadratic Model

OLS GLS
Est t-rat Est t-rat
T 0.730 50.20 0.725 41.70
Ky 0.0064 9.47 0.0070 25.23
uyx107* 0.006 0.99 - -
alxlo'f 2.499 20.58 2.628 35.74
9,x107" -4.395 -23.95 -4.550 -16.85
$x107%  1.422 3.66 1.675 2.62
p - 0.520 8.76
&w 4.90% 4.18%
dw 0.96 1.92
t -8.10 -

DF

points strongly to rejecting the hypothesis of a unit root, and
this is confirmed by restimating the equation by GLS assuming an
AR(1) process for wt’ the estimates of which are also shown in
Table 3. Extending the order of the autoregressive error process
did not produce significant coefficients, thus confirming that,
for the full sample, there is no cyclical behaviour about trend.
In this GLS estimation the insignificant variable t2 was omitted:
this has the effect of forcing the first segment to be linear, but
the significance of the t% terms confirms that the remaining two

segments are both quadratic in t.

15



However, as we have seen from the subsample BSM estimates,
there is strong evidence of a cycle in the later years of the
sample. We thus investigated the possibility of there being a
shifting autoregressive error process, with the same break points
being used as above. No breaks in the process were found at 1776

or 1834, but an important break was isolated at 1874, leading to

the model
- 0.533y, . + a t = 1874
v, = Loor , G, = 3.93%  (6)
0.533y, , - 0.486y, , + a, t > 1874

where Jt are the residuals obtained as yt—at’”ﬁt being the trend
fitted from the GLS estimates. The complex roots in the post-1874
AR(3) process yield a period of 9 years, which accords well with
the estimated cycle from the BSM model fitted over a similar
subsample.

The segmented trend ﬁt is shown superimposed on Yy in Figure
2, while the cyclical component is shown in Figure 3. Trend
growth, Vﬁt, is shown in Figure 4 and is a very smooth curve, with
the major changes in curvature occuring in the ear;y part of the
nineteenth century. Trend growth presents a pattern very similar
to those reported in Crafts, Leybourne & Mills (1989a, 1990, 1991)
and Crafts & Harley (1992), there being modest and constant growth
of 0.65% per annum for most of the eighteenth century, an
acceleration between 1776 and 1834, where a maximum of
approximately 3.7% per annum is reached, and a deceleration until
1874, from whence growth gently declines to 2% per annum by 1913.

It should be recalled that Feinstein, Matthews & 0dling-Smee

(1982) have suggested that there was an Edwardian climacteric in

16
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output growth. Although we have previously rejected the
hypothesis of a climacteric after 1899 (Crafts, Leybourne & Mills,
1989b), we nevertheless estimated the fitted model (5) with an
additional break in the interval from 1895 to 1905 and failed to
find any significant break point, the t-statistics on the
additional variable always being greater than -0.5.

The above pattern of trend growth may be compared with that
implied by the methodology of Greasley & Oxley (1994). Greasley &
Oxley report only the Dickey-Fuller test statistics for the
subsamples 1700-1780, 1781-1850 and 1851-1913, but it is of some
interest to report the models underlying their calculation. Using
our framework, their models can be written as

I L
and

=
e = Yi=1Ti¥e_; + ©p

Table 4 presents estimates of this model for the three
subsamples, reporting Dickey-Fuller statistics for the unit root
hypothesis n1+n2+n3=1. The linear trend stationary models for the
first and third subsamples yield constant trend growth of 0.065%
per annum frém 1700 to 1780 and 2.24% per annum from 1851 onwards.
Imposing a unit root on the model for the 1781-1850 period reveals
that an MA(l) model provides an adequate fit to Vyt, i.e.

Vy,=6,*a,-6;a,_,, where §,=0.0260 and §,=0.444.

1

A trend component can be computed from such a model using the
technique of signal extraction on the assumption that My follows a
random walk with drift, i.e. ut=eo+ut_l+nt (the special case of

the BSM with a§=0), and that the cycle wtis white noise. In this

17



Estimates of Model

Table 4

(1)

1700-1780 1781-1850 1851-1913
o 0.738 -2.645 -0.190
(0.022) (2.127) (0.092)
Ky 0.0065 0.0373 0.0224
(0.0005) (0.0119) (0.0005)
T, 0.493 0.573 0.923
(0.098) (0.092) (0.118)
n2 - - -=0.382
(0.116)
g - 0.375 -
(0.092)
&w 4.80% 4.03% 3.28%
I, 0.493 0.948 0.541
E -5.20 -1.07 -5.09

Zni=nl+n2+n3; t, tests the hypothesis Zni=l.
Standard errors are shown in parentheses.

case the trend is estimated as

2
L Y
He = 702 D
-0 -
l i=-w

Truncating this computation at i=8 yields a trend component
that, as implied above, has a mean of 2.60% per annum, but there
is considerable variability about this mean value, the standard
deviation being 1.47% with a maximum value of 6.20% and a minimum
of -0.24%. Modelling industrial production as an I(l) process

over the period 1781-1850, so that innovations have a permanent

18



effect on the series, does not lead to a trend component having
the degree of smoothness that we would commonly wish for in such a

situation.

5. Implications for the Historiography of British Economic Growth

Obviously the details of our modelling of industrial output
growth has been determined by econometric criteria. At the same
time, our strategy has been informed by the historiography of
British industrialisation and we believe that our results
reinforce some important aspects of economic historians’ accounts
of eighteenth and nineteenth century growth. This section sets
out these features of our research.

The most important insights into growth which provide the
background to our approach come from the literature on the
economic history of technological change, particularly as
organised and interpreted by Mokyr (1990, 1993). Mokyr suggests
that "a technological definition of the industrial revolution is a
clustering of macroinventions leading to an acceleration in
microinventions" (1993, p. 22).

"Macroinventions’ are defined as "those inventions in which a
radical new idea, without clear precedent, emerges more or less ab
nihilo" (Mokyr, 1990, p. 13). 'Microinventions’, which account
for a very high fraction of all productivity increases, are
influenced by economic factors and come about notably through
learning by doing and 1learning by using. The process of
microinvention within any particular technology is subject to

diminishing returns. Without macroinventions, productivity growth
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would eventually dry up, yet macroinventions cannot be predicted
and often result from strokes of luck or genius (Mokyr, 1990, p.
13). Macroinventions of the eighteenth century were crucial to
the growth of the Victorian staples, including cotton, coal and
iron & steel.

Several aspects of this view are reflected both in our
modelling strategy and in our results. These include the

following:

(i) The growth process was disturbed by technological

surprises which could change the trend rate of growth.

(1i) We would expect that productivity and output growth
would not be fully endogenous in the sense of Rebelo (1991).
Instead, major technological shocks would be followed by rising,

but then falling, rates of output growth.

(iii) In general, there will be no strong priors about the
precise path of the growth process. Even dating of famous
macroinventions does not help since their impact on growth will

not be immediate and might be quite long delayed.

We therefore wanted to model changing trend growth allowing
break points not to be precisely specified and to subject any
apparent failure to reject the unit root hypothesis to close
scrutiny.

In the present case, it is fairly straightforward to sketch
out an account which puts historical flesh on the econometric

bones. First, there is no doubt that contemporaries did not
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foresee the industrial revolution nor did they immediately
appreciate the significance of what, with hindsight, were
macroinventions with major consequences. For example, Adam Smith
did not understand the importance of the inventions by James Watt,
James Hargreaves and Richard Arkwright and "did not suppose that
England was about to embark on a period of unprecedented gain in
output per head" (Wrigley, 1987, p. 21).

Second, the full impact of technological developments built
up over time. For example, the steam engine (invented in 1765)
supplied 1less than 35,000 HP in 1800 but 2 million in 1870
(Kénefsky; 1979, pp. 373-5). The importance of learning by doing
and the relatively lengthy diffusion of the improved versions of
famous inventions have been clearly laid out for both the cotton
(Chapman, 1972, David, 1975, and von Tunzleman, 1978) and iron
industries (Allen, 1983, and Hyde, 1977).

Third, the experience of slowdown following the erosion of
growth possibilities of tecnological breakthroughs is a familiar
one in nineteenth century British economic history. It is, in
fact, precisely the vision embodied in the seminal paper of
Phelps-Brown & Handfield-Jones (1952), which first put forward the
idea of a late nineteenth century climacteric. The slowing down
of total factor productivity growth based on the classic
industrial revolution technologies in both cotton and iron is well
known (Lazonick & Mass, 1984, and McCloskey, 1973). We have shown
in an earlier paper that slowdown in industrial growth was
relatively pronounced in the staple industries (Crafts, Leybourne

& Mills, 1991, p. 140). For the whole economy, a common feature

21



of growth accounting exercises for the nineteenth century is a
pattern of steadily rising and then declining total factor
productivity growth (Crafts, 1993).

In the end, the estimates graphed in Figure 4 are consistent
both with this account of technological change and also with the
description of trend growth in our earlier work, as we noted in
Section 4. We still find a long period of rising trend growth to
the mid-1830s and we still see the beginnings of declining trend
growth starting relatively early. We also continue to find much
stronger trend growth in late Victorian_ Britain than in the
pre-industrial revolution phase of Smithian growth.

Finally, as our discussion of technological change
anticipated, we reject the hypothesis of a unit root in industrial
output which would be predicted by endogenous growth models of the
Rebelo (1991) type. We prefer to retain the notion of exogenous
technological shocks rather than to work with models which seek

completely to endogenise productivity change.
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