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Abstract: The solution of a reputational equilibrium is given for a class 

of linear, quadratic, gaussian dynamic games with noisy control. 

Although there is imperfect monitoring, a sequential equilibrium is 

found where the uninformed agents always smoothly learn the type of 

the informed agent, there is no sudden switch in agents' strategies; a 

common feature of reputation models. Reputation effects are 

temporary in the infinite horizon case for positive discount rates, as the 

discount factor tends to unity there is a permanent reputation. 

1  Thanks are due to Norman Ireland, Gareth Myles, Jonathan Thomas and a 
seminars at Southampton University and the CentER for Economic Research, Tilburg, 
for helpful comments and suggestions, the remaining errors are all mine. 



1. Introduction 

Here we attempt to show that linear quadratic gaussian (LGQ) models and the 

reputation effects of game theory can be linked. We focus on the reputation models 

introduced by Kreps & Wilson (1982), Milgrom & Roberts (1982) and applied in many 

well known papers; for example Backus & Driffill (1985), Benabou & Laroque (1988). 

There has been work on imperfect monitoring in reputational models; Benabou & 

Laroque (1988), Fudenberg & Levine (1988, 1989), there has also been work on 

models with a continuum of types Milgrom & Roberts (1982). We show how 

reputation results can be established in LGQ games, which are dynamic with imperfect 

monitoring, a continuum of types, and contain actions sets which are a continuum. 

Thus it is possible to combine these various features in a tractable framework and prove 

a result on reputational equilibria when strategy sets are non-finite. The results 

presented characterize the sequential equilibrium strategy of the informed agent and 

establish the convergence to full information in infinite horizon games. We argue that 

for any positive discount rate reputation effects will be temporary in infinite horizon 

games when action sets are large. We show that the length of these temporary 

reputations will increase as discount rates tend to zero and become permanent only in 

the limit. We also show that the lower bound on payoffs to Nash equilibrium, derived 

by Fudenberg & Levine, applies in our model although there is always revelation of a 

player's type. 

Fudenberg & Levine (1988,89) have established that in an infinite horizon reputation 

game, as the discount factor tends to unity, any type's payoff at a Nash equilibrium is 

bounded below by the payoff to masquerading as a dominant strategy type. This result 

holds in the model below. A necessary condition for the Fudenberg & Levine 

conclusion is that the dominant strategy type receives strictly positive probability in the 

priors of the short term agents. This is not true in our model as there is only one type 

(in the continuum) with a dominant strategy. There is, however, a strictly positive 

probability that the long term player's type lies in an arbitrarily small interval around the 

dominant strategy type. Thus it appears that the Fudenberg & Levine result persists in 

the limit. If dominant strategy types are surrounded by a neighbourhood of similar (but 
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non-dominant strategy types) the lower bound on equilibrium payoffs survives. 

The behaviour at a sequential equilibrium of our reputation-type game differs in two 

ways from the process of reputation building and sudden destruction exhibited in Kreps 

& Wilson (1982), Milgrom & Roberts (1982,1982), Backus & Driffill (1985). First, 

the results below show that there is always smooth convergence of play to a position 

where the long term player's type is revealed. The models of Fudenberg & Levine and 

Benabou & Laroque show that in games with imperfect monitoring the process of 

reputation building and destruction is considerably smoother than in games without 

such noise. It is clear that it is the presence of imperfect information transmission that 

smooths the abrupt deterioration in reputation. The second distinction between the 

results here and those of Kreps & Wilson is the behaviour of play in the infinite time 

horizon case. Here the long-term player's type is revealed when play continues 

indefinitely. This differs from the results of Kreps & Wilson, which show that players 

acquire a reputation and never lose it, by masquerading as a dominant strategy type. 

One simple explanation for the absence of a long term reputation building in our model 

is that the dominant strategy type is of measure zero in the priors, so it is impossible for 

other types to credibly acquire a reputation. This explanation is suspect, because the 

behaviour of other types in the early periods does appear to be an attempt to imitate the 

dominant strategy type; there is an attempt at reputation building. 

There has been some debate on how the form of the set of types may affect the type of 

outcomes sustainable as a sequential equilibrium in a reputation game, see for example 

Vickers (1986). In particular it has been noted that agents have incentives to take 

actions which reveal their type early on in the play; to self-screen. This incentive to 

screen will not operate effectively if the strategy sets of agents are very limited; different 

types will select the same actions if constrained in their choice. (For example, the 

model of Milgrom & Roberts does have a continuum of types but has two-element 

strategy sets.) In our model strategy sets are the continuum and there are a continuum 

of types, this provides much greater opportunities for self-screening by different types 

and the tendency to do this is much larger. Self-screening will also explain why it is 

impossible for types to permanently masquerade as the dominant strategy type, but it is 

possible to gain a short-term reputation. The imperfect monitoring of actions means 

that it takes time for types to self-screen, so they can enjoy a temporary reputation while 

this is going on. The pressure to self-screen can also provide an explanation for the 
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results of Benabou & Laroque; there are two types but actions are a continuum. In 

spite of a positive measure for both types in this case the masquerade is not permanent 

and in infinite time there is full revelation of types. 

The introduction of noise in strategies has the effect of ensuring that every information 

set in the game is reached with a non-zero probability, this eliminates the need to 

describe off-the-equilibrium-path beliefs at the sequential equilibrium found below. 

There is no source of multiple equilibria from different specifications of these beliefs. 

One could view the introduction of noise into strategies as forcing agents to play a 

particular form of mixed strategy or of imposing a particular sort of tremble, which is, 

of course, undesirable. The presence of noise, however, seems natural for many 

economic environments where there is a discrepancy between planned and actual 

events. 

The sequential equilibrium strategy of the long-term agent has a particularly simple 

form in this model. The action chosen by the long-lived agent in each period is a linear 

function of its type. The strategy is not responsive to past shocks or noise; the actions 

selected in any period are the same whatever the past history of shocks. So it is 

possible that the short-run agents in the model over estimate the long term agent's type 

after a particular sequence of shocks and subsequently revise this estimate downwards. 

Thus the beliefs, or assessments, of the short term players are not revised 

monotonically, but nevertheless converge to full information on the type. As the long 

term player's strategy converges to its limiting levels. 

Section 2 below outlines the class of models we consider and examines the properties 

of the game when the type is common knowledge. In section 3 we characterize a 

sequential equilibrium for this game and show how it behaves as time tends to infinity. 

In sections 4 show how the structure developed here can be applied to two economic 

problems, one of limit pricing, the other from the optimal policy literature. 



n 

2. The Model 

Player (A) is infinitely lived and aims to maximize the discounted sum of period by 

period payoffs. The player (Bt) has a one period life and receives its payoff at the end 

of period t=0,1,2,..; its period of existence. Player A plays a game against a sequence 

of identical players; one type Bt  in each period. This structure is common to most of 

the literature on reputation models. The Bt's have no incentive to choose actions to 

affect the rate of information acquisition from A. This is because Bt's will cease to 

exist after the current period is over, so they do not care about better information in the 

future. 

The type of player A is described by a parameter zE IR. The prior beliefs of the Bt's on 

z are described by a normal distribution N(µ,6z2), this assumption is necessary to 

enable a signal-extraction approach to the revision of priors. Player A observes its type 

before play begins and z enters as a parameter in A's preferences. The value z is 

unobservable by B. The period t payoffs to player A and Bt  (UAt, UBt  ) are quadratic 

and are defined below 

	

UAt  = z[ alat  + a2bt  + a3xt  ] - (0.5)a4(at)2, 	 (l) 

where; 	at  = apt  + nt. 

	

UBt = 01(at)2  + P2atbt  - (0.5)P3(bt)2  + f(xbat), 	 (2) 

where; bt  = bPt  + mt. 

(We assume that; (x4h > 0 for concavity.) The model is univariate to preserve the 

simplicity of structure, however, there is no reason why the results cannot be 

generalized to the multivariate case. Here atP represents A's action in period t. Also 

btP is B's action and xt  is a state variable in period t. The actions are subject to random 

error terms nt, mt  each period, which are normal, independent and identically 
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distributed through time with distributions N(O,6n2) and N(0,6m2) respectively. The 

players have a noisy control over their actions, this means Bt  is unable to monitor A's 

actions precisely as it can only observe the realization at. The noise in Bt's strategy is 

not essential to the results but is included for generality. Player A's payoff each period 

is almost linear, but does have a quadratic term in the control variable which has a 

negative sign to preserve concavity. It is not necessary to restrict A's preferences to 

only one quadratic term for the optimal strategy to be linear. Indeed they can be 

generalized considerably, but to solve for the time path of the optimal strategy some 

restriction is necessary. The player Bt has preferences which are quadratic in the two 

controls. They also have an arbitrary function of the state variable and A's control 

variable f(.) as an additively separable term. The state variable evolves according to the 

linear relationship given below: 

xt+1 = ylat  + y2bt  + y3xt, 	 x0 = x, 	-1< y3 < +1. 	 (3) 

Play in the game evolves in the following manner. At time t = -1 player A observes the 

value z and the initial value of the state variable is observed by both players. In period 

t=0 the players A and B0 respectively choose aP0 and bP0 simultaneously. The the 

values n0 and m0 are determined and then players receive their payoffs. In each 

subsequent time period player A, and its opponent in that period Bt, observe xt  then 

choose apt  and bPt  respectively. The information available to both players at this point 

in time consists of the past history of the state variable and the sequences of observed 

disturbed actions (a0,..,at-1; b0,bl,...,bt-1). This game is repeated a finite or an 

infinite number of times, then play ends. Player A's payoffs accumulate as play 

progresses and the player Bt  of each period collects its final payoff at the end of the 

period in which it acts. 

The dominant strategy type is parameterized by z=0. In this case (1) becomes 

independent of the state variable and Bt s action. The type z=0 payoff is maximized by 

setting aPt=O whatever the actions of the other agents; this is a dominant strategy. All 

other types will in general prefer to vary their actions in response to the state of 

information of their opponents. 

The full information game has a simple structure, it is only the presence of uncertainty 

about types that complicates play. When A's type is known to the Bt's their reaction 
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function will be 

bPt  = (02/03)aPt. 

Thus player Bt  chooses bPt  as a linear function of apt. When we consider the full 

information repeated game the form of player A's optimal choice must maximize the 

discounted sum of its payoffs. Solving the appropriate dynamic programming problem 

gives 

at = alz  + (X3871-13 z.  
a4 Q 

(The term 0<8<1 is player A's discount factor.) Player A's choice is linear in z and 

independent of bPt. This means that every type of player A has a dominant strategy in 

the full information game. The first term reflects the optimal level of apt  in the one shot 

game. The second term reflects the benefit from the effect apt  has on future state 

variables. It is clear that in the full information game the form of the equilibrium 

behaviour is very simple; all types of player A have a dominant strategy and player B 

correctly predicts this when choosing its action. 

The play in the game of asymmetric information is far from simple. All types of player 

A, except z=0, do not have an action which they prefer to play in every period. This is 

because their actions today affect Bt's behaviour tomorrow and hence the future 

payoffs of all types, other than z=0. As play evolves and Bt's beliefs alter there is a 

shift in the optimal action for player A. Player A's actions in each period will thus vary 

as the state of Bt's information varies. Also, player A's actions in any period will 

affect future payoffs via the information of Bt. Player A will prefer low levels of bPt  if 

za2<0 and high levels if zoc2>0. Low levels of bPt  can be achieved by encouraging 

player Bt  to have respectively low (high) expectations for of apt  if, 02>0 (02<0). 

Thus, if player A educates player Bt's to expect low values of apt, then it will benefit in 

the future from lower values of bPt. In choosing its action player A must trade off the 

benefit from future events against the present payoff. There are two possibilities we 

must consider; the first possibility is that player A wants to curtail bPt, this is achieved 

by lower (higher) levels of apt  in the early stages of play if 02>0 02<0). The second 

possibility is that player A wants higher bPt s and to achieve this the reverse policy is 

followed. In the proofs below characterizing the sequential equilibrium of the 

reputation game these two separate possibilities will feature as the two cases of a 
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3. Equilibrium 

A sequential equilibrium in this model is now described. Player A's information set 

consists of the following pieces of information ht  ={z; a0,al ,..,at-1 ;b0,bl,-..,bt-1; 

aPO,aP 1,..,aP t-1 }, and B's information set consists of kt  = I aO,al ,..,at-1 

;b0,bl,•••,bt-1 ;bPO,bPl,••,bPt-i 1. Let HAt  denote the set of all possible ht's and HBt 

denote the set of all possible kt s. A strategy for player A consists of a sequence of 

functions IIA  :={ aPt(ht) I t=1,2...1, which selects a value apt  for every possible 

history. Similarly, a strategy for each Bt  is a sequence IIB  := {bPt(kt) I t=1,2...1, 

which selects a value bPt  for every possible history. Let E denote the set of probability 

measures on the real line. Then Bt's beliefs or assessments on A's type can be 

described by a function rt:HBt—)E. An equilibrium consists of a pair of strategies 

IIA*,IIB* and assessments r*t, which result from the application of Bayesian revision 

of Bt's priors to the strategy IIA* and the observable data kt, such that 

T 

IIA* Maximizes 	EAt (1-8)1 SS  US I ht 	For all ht, t. 
S=t 

given xt+l = ylat + y2bt  + y3xt, and HBt*- 

IIB* Maximizes EBt  [ UBt  I kt  ] 	For all kt and t. 

given xt+l = ylat + y2bt + y3xt,, and IIA* 

Here EAt  represent expectations taken relative to A's information set at time t and EBt 

represents expectations relative to assessments T*t. Also, 0 < S < 1, denotes player 

A's subjective discount factor, which is used to weight future payoffs. This definition 

ensures that the strategies HA*,IIB* form a sequential equilibrium for the game 

outlined above. At each possible information set the strategy employed by a player is 

an optimal response to the opponent's strategy. 



The method of solving for a sequential equilibrium in the game outlined in Section 2 

proceeds in two stages. The first step requires us to postulate a form for player A's 

equilibrium strategy and then deduce the nature of player Bt's knowledge about the 

private information z, given its knowledge of A's strategy.That is we describe how Bt  

determines its assessments r*t. Once this is completed we will show that given the 

agent B's form their beliefs about z in this way, then it is indeed optimal for player A to 

choose a strategy of the form first postulated. To describe the strategy in greater detail 

we must solve for the coefficients of such a strategy. This approach to solving the 

model derives from the "method of undetermined coefficients", which is widely used in 

the macroeconomics literature. The approach applied here also has a much closer 

resemblance to that taken in Cukierman & Meltzer (1986). 

First, assume that the Bt's believe that agent A sets apt  = zCt; for some fixed sequence 

( Ct  I t=0,1,.. ] of real numbers. Given the agent B's believe that A abides by such a 

policy, we must show that A does indeed then prefer to use this strategy. This is how 

we construct an equilibrium. Note, we do not restrict player A to use a linear strategy 

in any of this. We show that provided the B's believe that A follows a linear strategy, 

then, it is best for A to behave in this way even if it can choose any strategy it likes. 

This is sufficient for the solution here to be a sequential equilibrium. That is not to say 

that other equilibria do not exist, indeed in general there may be a great number of 

sequential equilibria for any game. A general characterization of the set of all Nash 

equilibria in repeated games with incomplete information of this type has been provided 

by Hart (1985). 

If player A follows the strategy suggested above we can deduce that Bt's beliefs on A's 

type continue to be a normal distribution. This is because the Bt's will face a signal 

extraction problem when they are forming their expectations of z. That is, they observe 

a sequence a0,al,..at_l,( where as  = zCs  + ns) and using this must estimate a value for 

z. The mean of the distribution of beliefs on z is the only moment used by Bt's in 

deciding how to behave and we now will present a result which shows that the mean of 

the distribution of beliefs is a linear function of past data. The solution to this signal 

extraction problem is given by a well known result. 

PROPOSITION 1: Given, as  = zCs  + ns, then EBt  [ z I kt  ] satisfies; 



M 

t-1 

Ciai + rµ 
E[ z I k,] = 	i=O 	

t-1 	 r  ~2 . 62 	 ( 

	

r + I Ct 	
4) 

 
i=o 

PROOF: This result can be proved in a number of ways, we will establish it in the 

appendix using a property of least squares projections. 

This completes the description of player Bt's beliefs or assessments C*t, if it believes 

that player A follows the linear strategy as  = zCs  + ns. At equilibrium player Bt  

maximizes its payoff given these assessments. Take the first order condition for (2) 

and substitute for E[zl kt] from (4) 

0 = EBt[ 02at - 03(bt) I kt ] 

=* bPt  =(P2/P3)E[ at  I kt] =(P2/P3)E[  zCt  + nt  I kt  ] 

t-1 	 t-1 	-1 

	

bPt  = W I a,Ci + rµ ; 	where Wt  = R~ r + Ct 	(5)  
i=0 	 03 	i=1 

Bt's behaviour is in turn a linear function of E[ z I kt  ], which is a linear function of A's 

actions. We now characterize A's optimization problem. First write down A's 

objective function at time s substituting the above expression for B's actions and 

solving for the state variable by repeated substitution. To write down the conditions for 

A's equilibrium strategy we must maximize the expression below. At any time s, given 

any past history ht  player A selects current and future actions [aPs,aPs+l,aPs+2.... } 

to maximize; 

T 	 t-1 
(1-5)1 8  t  zalat + za2W E Ciai + rµ za~nt  - a~ 0.5)at 

t=s 	 i=0 

EAs 
t-1 	 i-1 

+za Y3xo+I 7s1 i (Y jai  + -ffiE C.>al+ -an) 
i=o 	 j=o 

where at  = apt  + nt. 	 (6) 
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At every information set in the game player A will choose aPs  to maximize the (6), 

given the information ht  and A's knowledge about the form of B's behaviour (5). To 

optimize (6) we apply dynamic programming, a solution to this problem is given by the 

Euler equations, for example see [Sargent (1979) Chapter XIV]. In effect we must 

differentiate (6) with respect to aPs  and to set it equal to zero. Notice that a lot of the 

disturbance terms mt,nt  vanish from the derivative by linearity. So current and past 

disturbances are irrelevant to the form of A's optimal response to (5). The Euler 

equation is given below. 

	

T-t 	 T-t 
0 = - a4 aP + (X1 +a2Qs 	k;+i ) + a3 711(Y36)1+ 	 (7) 

	

L i=1 	 i=1 

	

l
T-t-1 	

l 	
T-t-2 	 l 

YZY3a 82Csl Ws+lI (Y36/ + 
8 
Ws+21 1Y3811 +.... +ST  WT /l  I 

i=0 	 i=0 	 J 

This equation has the same structure as that postulated for player A's strategy: it solves 

to give aPs  linear in z. This indicates that we have found a sequential equilibrium, 

provided we equate the coefficient of z in the equation above with Ct  and then solve for 

the sequence Ct. We will consider two possible cases below; an infinite time horizon 

or a finite horizon with no-state variable 71=72=73=0. First assume an infinite 

horizon. Now equating Cs  with the coefficient of z in the Euler equation gives 

Cs  = 1 a1  +  a3YiY3s + 1 a.2+  a3M8  Cs1 S1Ws+i (8) 
a4 1-Y38 a 1, i=1 

The first term on the right is precisely the value Cs  would take if z was common 

knowledge. The second term is the effect from the Bt's learning of z on A's choice of 

strategy. We will simplify this expression in the following way 

1  Cs+i  . 	a3YiY3s  . 	R2 	a3Y27  
Cs  = CO+ OCsj b 	, where COw =,4  al  + 	 = 	a2  + 

M Vs+i 	 a4 	1-Y3b 	03X4 	1—Y3S 
t-1 

Vt :=r +E C?. 
i=0 

Now assume a finite horizon and no state variable, this gives an Euler equation 

(9) 
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T-t 
CS = 

a  a
l  + a2CsE 8Wt+i 	 (10) 

4 	 i=1 

The solution to (6) is not characterized solely by the Euler conditions, but also requires 

a transversality condition. This is 

lim t—)T  St Et[ za4Ct  - alz ] = 0. 

At this juncture we have established that the form of agent A's strategy in this game is 

linear. Provided (9),(10) can be solved for a sequence Ct  we have a sequential 

equilibrium. This equilibrium strategy is not a consequence of any form of restriction 

on A's actions, the optimization problem (6) is completely general in the scope of 

actions it allows A. The form of the equilibrium is a consequence of the linearity of 

Bt's signal extraction problem and the restricted quadratic form of A's preferences. 

Linearity eliminates many of the effects of noise and shocks: these simply disappear as 

a consequence of differentiation. The form of the strategy is linear with no effects from 

shocks during the course of the game. This does appear to be a very special result, 

which cannot be generally true. In general the past history of shocks will have effects 

on the equilibrium strategy in such a game. 

We can go no further in characterizing the strategy of player A without considering the 

case of an infinite and finite time horizon separately. As the infinite time horizon case 

is simpler to treat we begin with this. The following result solves (9) for the optimal 

strategy and shows how it converges as the T tends to infinity. 

PROPOSITION 2: There is a unique sequence of real numbers (Ct  I t=0,1,.. }, which 

satisfy (9) and the transversality condition. There are four possible forms for these 

sequences, but in each case Ct  tends to co as t tends to infinity; 

(i) c0>0,0<0:0<Ct<Ct+l, 
	 (iii) c0>0,0>0:0<Ct+1<Ct, 

(ii) w<0,0>0: 0>Ct>Ct+1, 
	 (iv) w<0,0<0: 0>Ct+1>Ct• 

PROOF: Divide (9) through by Ct. Take the resultant equation lead it once, multiply 

by 8 and then take the difference 
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0 = ( 80/Vt+1)Ct[Ct+1]2  + Ct+l [CO  — (1-8)Ct) - SwCt. 	 (11) 

This is a relatively simple equation determining two values of Ct+l  for every pair Ct, 

Vt. Also, note that either Vt  tends to a finite positive number, or to infinity. We now 

show that the sequence Ct  cannot tend to zero and hence that the sequence Vt  must tend 

to infinity; recall Vt=(r+ CO2+..+Ct_12). Suppose otherwise and Ct  tends to zero, then 

the solution to B's signal extraction problem (4) gives increasingly less weight to new 

observations, so future variables are less sensitive to current values of B's information. 

Consequently the Euler conditions (7) and the derived relation (8) converge to apt  = 

wz, this is a contradiction (w # 0), so Ct  does not converge to zero. This implies that 

Vt tends to infinity. Now rewrite (11) noting that Vt+1 = Vt +Ct2. 

0 = 8$CtCt+12 + Ct+1[CO —(1-S)Ct ](Vt +Ct2) - SwCt(Vt  +Ct2). 	(12) 

This is a quadratic in Ct+l  and has the following solutions; 

Ct+1= -1 (w-(1-S)Ct ) (VC+CC) ± (co-(1-S)C~2(Vt+Ct)2+ 4~S2u~Ct  (Vt+Ct) 
2wt  

(13) 

We will now use this relation between Ct  and Ct+l  to determine a solution to the 

equations (7) and the transversality condition. Now consider the two possible cases 

Ow<0, 0w>0. 

Case 1: Ow<0. (13) defines a value Ct+l  for every Ct  apart from those in a small 

neighbourhood about the point w/(1-8). If w>0 (w<0) a value of Ct  greater (less) 

than w/(1-8) in (13) will give Ct+l  negative (positive), because the first term in braces 

always dominates the second. For Ct<0 (Ct>0) the solutions are always negative 

(positive) for similar reasons, whilst for 0 <— Ct  <— w/(1-6), (0 > Ct  >— (o/(1-6)) the 

solutions are all positive (negative). As Ct  becomes unboundedly large (negative) so 

does Ct+l  either becomes unboundedly negative (positive), or it asymptotes to a 

negative (positive) constant. Similar properties hold as Ct  tends to negative (positive) 

infinity. The relationship between Ct  and Ct+l  for Ocw<0, and w>0 is depicted in 

Figure 1. (If (o<0 this figure must be reflected in the Ct  axis and then reflected in the 

Ct+l axis.) 

Figure 1 about here. 
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Henceforth we will only consider co>O, the proof with w<O is equivalent mutatis 

mutandis. Any negative value for Ct  will lead to the sequence of Ct's converging to 

zero or tending to infinity. This will violate the transversality condition above and thus 

provide a contradiction. If Ct  <0, then on the higher branch of the map Ct<Ct+1<0 and 

Ct  tends to zero which is a contradiction. Note: (13) may intersect the line Ct=Ct+1  for 

some negative value, such a point of intersection will occur on the lower branch AB of 

the map. These points cannot be a candidate for an equilibrium as the lower branch of 

the map AB is bounded above by Vt(1-8)/50 <0. This bound tends to minus infinity 

and will violate the transversality condition. Therefore, if Ct<0, then either Ct  tends to 

zero, or the sequence Ct  contains values tending to minus infinity. Hence no solution 

to the optimization problem of agent A can have negative values for Ct. 

As the sequence { Ct  } has no negative values we eliminate all sequences which 

eventually have negative Ct's. Thus, any solution must have 0 < Ct  < co/(1-6) for all 

t. We concern ourselves with the behaviour of Ct  on this interval and the segment OX 

in the figure. This segment intersects Ct=Ct+1  twice: at Ct=O and at some intermediate 

value. The second intersection is from below because the slope of OX at Ct=O is S. If 

Vt  >-2 this is a monotonic increasing function described by; 

Ct+1= 
2

-1  (((O-(l-8)Cj(Vt+ Cr) - (w-(1-S)CJ2(Vt+Ct)2+4~S2coCt (Vt+Cr) 
$Ct 

(14) 

(The monotonicity of this function follows from differentiation of (14) with respect to 

Ct  and that 2(co — (1-8)Ct  - COVt/Ct2  <0 for 0 < Ct  < co/(1-8), if Vt  >— 2.) The 

differentiation of (14) with respect to Kt  shows that as Vt  increases so the segment OX 

shifts downwards, because 

Y 	
2 2 

(Vt+C2 2 
[
(1-S)C,(0] + 482 OCt4Vt+Cr) > (Vt+C2 (1-S)Ct-co] + 2S wt  

This holds provided Ct<w/(1-8). Therefore let the function Ct+l(Ct,Kt) describe 

(14), where defined, on (0 ,w/(1—S)), this is invertible in Ct  and shifts down if Vt  

increases. 
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Figure 2 about here. 

Let C*(Vt) define the point where Ct+l(C,Vt) = C. As 0 < Ct+l(Ct,Vt) < Ct  for all Ct  

< C*(Vt), any sequence which has a value Ct  which satisfies this will subsequently 

decrease and converge to zero; this is a contradiction. The only sequences { Ct  ) which 

do not yield a contradiction are those for which w/(1-8) > Ct  > C*(Vt) for all Ct. 

There is a unique sequence of points Ct  satisfying (11), such that Ct  tends to w. Define 

X0  = C*(VO), then let x l  be the initial value for a sequence [Ct) such that Cl = 

C*(V1), and x2  be the initial value of the sequence such that C2 = C*(V2). Proceed in 

this way to define a sequence of initial values {Xt) for sequences which after t periods 

satisfy Ct  = C*(Vt). There is a unique Xt  for all t because the function Ct+l(Ct,Vt) is 

monotone and continuous in Ct  and Kt  over the relevant domains. The sequence {Xt) 

is increasing and bounded above therefore it converges to a point X0. By iterating (14) 

generate an entire sequence [Xt ) with an initial value X0. This sequence converges to 

w, because for all t; C*(Vt) < Xt  < co, and as Vt  tends to infinity so must C*(Vt) tend to 

co, from (11). This sequence is the unique sequence satisfying (11) with this property. 

Any other initial value for a sequence in [O,w/(1-8)] must violate one of the 

inequalities C*(Vt) < Ct  < w/(1-8). It suffices to observe that as the inverse of the 

function Ct+1(Ct,Vt) has a derivative less than unity so the set of initial values which 

generate sequences to satisfy C*(Vt) < Ct  < co/(1-8) must be an interval with a length 

which shrinks as Vt  tends to zero. This completes the proof of case 1. 

Case 2: a4>0. We will again concentrate on the case co>O, the proof for the case w<0 

is analogous to the one given below with a change in signs. The map defined by (13) 

for this case is depicted in Figure 3. 

Figure 3 here. 

The plus and minus signs on the various branches of the map describe which of the 

solutions to (13) generate the arc of the map. The branches of the map which 

correspond to (+) for Ct  <-0, and (-) for Ct  >-0 are of little interest here. They are 

bounded below by 0-1(1-5)Vt  and above by -0-1(1-6)Vt  respectively; any solution 

which lies on them must become unboundedly large or unboundedly small. The 
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remaining section of the map for Ct  <— 0 will lead to values for Ct  which converge to 

zero and provide a contradiction. The section of the map in the positive quadrant is the 

only possible candidate for a stationary long run equilibrium as it contains the only 

values for which Ct =Ct+1  apart from the origin. (This follows from setting Ct  =Ct+1 

in (11) and examining possible solutions to this.) As above the section of the map 

shifts upwards over the range 0 5 Ct  as Vt  increases. Hence the map shifts in the 

reverse manner to the case above. We can still employ a similar technique to that above 

to establish the existence of a decreasing sequence [Ct  : t =0,1,2,.. ) which converges 

to co. The details of this are identical so they are left to the reader. This completes the 

proof of Proposition 2. 

A sequential equilibrium for the infinite horizon game outlined in section (2) has now 

been found. There exists a sequence of numbers {Ct) such that, if player Bt  believes 

that player A acts according to the rule apt  = zCt, then it is optimal for the type z player 

A to follow this strategy at every information set. This has been established by first 

showing that the optimal response to these beliefs is linear in the type and then finding 

the sequence ( Ct) which is a fixed point in the map from beliefs to response. 

The equilibrium strategy for all types of player A is described in this Proposition. The 

most obvious feature of the strategy is its convergence to a limit apt  = zcu. This implies 

that the player A's type is slowly revealed to the Bt's, since the least squares projection 

(4) converges in probability to z if the Ct's are static. It is not surprising to learn that 

the limit apt  = no is the dominant strategy for player A when z is common knowledge. 

(The game of complete information is analyzed above.) As information is slowly 

revealed, so the play in the game of incomplete information settles down to the 

equilibrium of the game where z is common knowledge. This is shows how the full 

information game is also the limit of play in a game where z is not known. 

The result does differ from those in other infinite horizon models where certain types 

permanently masquerade as others and there is never full revelation of types. For 

example, if 71=72=73=0, 1Xl=a4=X32=(33=1,a2=-1 we have w=1, 0=-1. The 

payoff for type z=0 converges to -0.56n2  as the Ct's converge to w. The expected 

payoff for type z=1 converges to -0.5((Yn2  +1). In this example the Ct's are an 

increasing positive sequence converging to w, (as 0<0, (o>0). This shows that there is 
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a temporary reputation to be gained from play in this game. Play commences with 

players of all types imitating z=0 by setting low values for apt  =Ctz; thus they attempt 

to build a reputation. But as time passes Ct  increases to the level w and this period of 

temporary imitation dwindles away as play tends to the full information limit. Thus the 

process of convergence to the play in the full information game can be interpreted as a 

period of temporary reputation. The reasons players are able to build a temporary 

reputation in the game stem from the way information is processed by the Bt's in their 

signal extraction procedure. Early observations on at  are very highly weighted in (4), 

so these will be important to the Bt's when they are forming their beliefs. All types of 

player A realize that in the early periods their actions reveal a lot of information on their 

type, so it is quite credible for them to prefer to imitate the z=0 type by reducing the 

absolute value of aPt. The imitation also ensures them a higher future payoff by 

reducing the expectations of the Bt's on the A's type. This process of convergence to 

the full information steady state also reduces the rate at which the Bt's learn the type of 

the A's. Low values of at  increase the relative size of the noise nt  in the Bt's signal 

extraction problem. It therefore takes longer for the B's priors to converge to correct 

information on A's type, than it would take if the A's had always set aPt=w. Thus the 

route of the sequence Ct  is selected to make learning of types much harder. 

In answer to the question: why don't other types choose to permanently masquerade as 

z=0 in this example? There is the reply: it takes so long for another type to convince the 

Bt's that it is z=0, that any long run benefit from this is outweighed by the cost, in 

opportunities foregone, of acquiring such a reputation. Other types prefer instead to 

benefit from a short run, temporary reputation. The answer to this question also 

explains why the bound derived by Fudenberg & Levine continues to hold. As the 

discount factor tends to unity, so the equilibrium alters to make it harder to acquire a 

reputation as a z=0 type. Thus, the costs to such a masquerade exceed its benefits and 

pretending to be a z=0 type yields a payoff less than our equilibrium. In the limit the 

payoff from masquerading and the payoff from following our equilibrium strategy here 

become identical: this is explained in 3.1. 

In the example above we examined the case w>0,0<0; the process of convergence to 

full information in the case co<0,0>0 is similar. In this class of games each type of 

player A prefers to masquerade as a z=0 type, but in the full information game it selects 
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a negative action, aPt=zco<0. The path to the steady state starts with the building of a 

temporary reputation since Ct  is small in absolute value. As time passes ICtl grows and 

more information on A's type is revealed. 

The cases where w>0,0>0 or w<0,0<0 are also similar in their path to full 

information, so we will examine these cases together. Consider for example 

71=Y2='3--O, al=a4=(32=a3=a2=1 this gives w=1, 0=1. In the full information one 

shot game the payoff type z=0's payoff is -0.56n2, whilst type z=1 sets aPt=1 and 

receives a payoff of 1 - 0.5an2. When co>0,0>0 or co<0,0<0 there are no benefits to 

masquerading as a dominant strategy type. Instead player A's payoff is increasing in 

the size of bPt, so player A prefers to encourage the Bt's to believe that their type is 

large. In the early periods of play in our example this is precisely what happens. The 

sequence Ct  is positive and decreases in size until it reaches the level w. Thus play 

begins with all types of player A imitating types with larger values of z and acquiring a 

temporary reputation as large types. As the Bt's learn the player's type play converges 

to the full information game, and the values of Ct  decline. The large values for Ct  in 

the early periods of play do speed the rate at which the Bt's learn from the signal 

extraction process (4). This is in the interest of the A's, however, as the Bt's are 

temporarily being convinced that player A's type is higher than it actually is. The path 

to the equilibrium in the game where 0<0,co<0 is the mirror image of the example. 

Instead play is converging to a negative steady state. 

The role of the noise is to make it more difficult for particular types to unambiguously 

signal their information. It is therefore interesting to examine what happens as 6n2  

tends to zero. If co>0,0<0 the points C*(Kt) shift to the left, hence the values Ct  will 

decrease in the infinite horizon case. As a result there will indeed be a longer period 

where player B has less information on z. Less noise therefore encourages player A to 

take more care in hiding its type. 

We can now proceed to characterize the outcomes in a finite horizon game. The 

solution in this case is not entirely general because of the endpoint problems which 

arise when attempting to solve the relation (7) for a sequence Ct. In this case we are 

forced to entirely remove the dynamics from the model, to generate a soluble relation. 

This gives a condition (10) which can then be manipulated in the steps described in 

(11,12,13). In this case the relationship between Ct  and Ct+1  is identical to those 



given in Figures 1 and 3. We will only consider the case where co>0,0<0 the results 

for the other three possibilities are very similar. 

PROPOSITION 3 : If T is finite and if co>0,0<0, yl=y2=0,  then there is a unique 

sequence {Ct  I t=0,1,.. ,T } of real numbers which satisfies (10) and the transversality 

condition CT = al/a4; such a sequence increases. 

Proof: It is possible to repeat the argument used to derive (13) in Proposition 1 when 

T is finite. The relation (10) will govern the sequence Ct  in the finite case under the 

assumptions above. The Euler condition in period T gives 0 = alz - N aPt, hence we 

have CT = OCOX4 = co, which ties down behaviour in the terminal period. As CT > 0 

we can be certain that 0 < Ct  < co, for t <— T-1, as otherwise all subsequent values of Ct  

must be negative (see Figure 1). The fact that there is a unique terminal value implies 

that there is a unique sequence on the interval [0, w/(1-8) ] which satisfies the terminal 

condition and (10). From Proposition 2, we have shown that if Ct  < C*(Vt) then 

subsequently the sequence {Ct} decreases, but whilst Ct  > C*(Vt) the sequence 

increases. But co>C*(Vt) for all Vt, if CT=co it must be the case that the sequence {Ct I 

in [0, w/(1-8) ] satisfying (10) increases. 

Player A's strategy is linear in z for both the finite and the infinite horizon models. 

Moreover, the stochastic events in the model have no effect on the terminal position in 

either case; the presence of noise or its magnitude do not alter the long run outcomes. 

In the infinite horizon case players B learn the parameter z, by solving the successive 

signal extraction problems posed in Proposition 1, so the noise plays no role here. In 

the finite horizon case the terminal condition is independent of the stochastic structure. 

There are important differences here because of the multiplicity of types, actions and the 

presence of noise. There is a smooth process of convergence to full knowledge, unlike 

the sudden loss of reputation observed in many reputational models. The equilibrium 

has a period of temporary reputation building but it always eventually collapses, in 

some cases Player A does take actions to slow B's learning of z. We now will show 

that the bound derived by Fudenberg & Levine does apply in this model with a 

continuum of types. 
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3.1 Discounting and the Length of Reputations 

We have calculated a sequential equilibrium for the model set out above. We will now 

investigate how the length of the temporary reputation changes as discount factors tend 

to unity. We can also verify whether as discount factors become large the expected 

payoff to all types of player A is bounded below by the payoff to masquerading as a 

dominant strategy type. First take C =Ct =Ct+1  in (12) and rearrange 

s0  C2  = (C - w) (V + Cl 
1-S 

This allows us to investigate the properties of the intersections of the map (13) with the 

450  line. If 0>0,co<0; 0<0,co>0, the intersection between the origin and co approaches 

zero as S tends to unity. Whilst, for the cases 0>0,co>0; 0<0,co<0 the intersection on 

the other side of w becomes unboundedly large as S tends to unity. We can use these 

properties of the intersections to deduce the changes in the equilibrium strategy as S 

tends to unity, because our method of constructing the solution (see figure 2) relies on 

the properties of these intersections. In particular, as S tends to unity the above implies 

that ICtl approaches zero if $>0,co<0; 0<0,w>0 and ICtl approaches infinity if 

0>0,co>0; 0<0,co<0. Thus, in both pairs of cases we have the result that as discount 

rates shrink, so does the sequential equilibrium strategy approach the dominant strategy 

type's play. As players become more far sighted the equilibrium we have found that 

play in all periods become closer to the masquerade. 

Nevertheless, in the repeated game of incomplete information we have shown that 

players' strategies converge to those they employ in the full information game. Player 

A's expected payoff in each period will therefore tend to a value which is less than that 

received by the dominant strategy type for any positive rate of discount. It is not 

worthwhile to permanently masquerade as the dominant strategy type, because it takes 

so long to acquire such a reputation. As S tends to unity the types become 

progressively more far sighted. To ensure that it is still not worth engaging in the 

permanent masquerade the benefits from following our equilibrium strategy are 

increased. As S increases the terms in the sequence (Ct ) decrease, thus the period of 

temporary reputation grows longer. The temporary reputation achieved by the other 

types lasts longer and is more profitable as the discount factor tends to unity. In the 
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limit the temporary reputation is permanent as Ct  either approaches zero, or becomes 

large, and all types successfully masquerade as the dominant strategy type. Thus the 

bound produced by Fudenberg & Levine is correct in the limit too, because in the limit 

the payoffs are equivalent. But for any positive discount rate it is more profitable to not 

masquerade permanently. 

4. Possible Applications of the Results 

The class of games analyzed above seem to have a number of possible applications to 

economics. One can think of the work on policy games and on entry as possible fields. 

A variant of the model proposed in Cukierman & Meltzer (1986) can be included in our 

framework and hence the technique described above can be applied in this context, this 

is done in greater depth in Cripps (1988). Agent A is the government choosing its 

monetary policy, and agent B is the private sector, which attempts to form correct 

inflationary expectations. The propensity of the government to benefit from 

inflationary surprises is the unknown parameter in the government's preferences. Let 

apt  be the planned rate of money supply growth and bPt  be the private sector's expected 

rate of planned money supply growth, then the standard form for preferences in this 

game are; 

UAt  = z(at  - bt) - at2, 

UBt  = - (at  - bt)2. 

These fit exactly the preferences described in Backus & Driffill (1985). Simple 

calculation reveals that 0 < 0 so that the optimal policy is a slow increase in the rate of 

growth of the money supply until the government's propensity to create inflation is 

revealed. The reputation type analysis applied in the finite horizon models of Backus & 

Driffill generalizes to the case where the uncertainty is generated by a normal 

distribution and there is noisy information transmission. The diversity of information 

and the size of the action sets generate a solution which is partially separating. It is not 

possible for certain types to screen themselves fully, because the noise prevents this. 

Instead there is smooth convergence to a position where the government's type is 

known. 
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Another possible application is to the field of entry deterrence. There are many results 

on reputation effects in this context, but these show that entry is always deterred if the 

time horizon is sufficiently long. Let aPt, bPt  represent the output of incumbent and 

entrant respectively, then some natural restrictions on the parameters would be 

al>O,a2<0,P2<0 this gives w>0,0>0. If z describes market conditions which are 

only known to the incumbent, then the results above tell us that the entrants gradually 

get to learn the incumbent's private information. The incumbent's output starts at a 

high level and gradually declines, whilst the entrants' output starts low and gradually 

increases the more it discovers about the market. 

7. Conclusion. 

We have established that reputation effects can be found in linear quadratic gaussian 

(LGQ) models. Many of the results which are found to hold in the more familiar game 

theoretic environment will generalize to such a framework. We show that the variety of 

the types together with the noise prevents a large jump in agents' strategies from 

complete ignorance to complete knowledge. Moreover, the presence of noise 

considerably smooths the nature of the optimal strategy of the long lived agent, because 

it is now harder for agents to completely signal their types. The presence of noise also 

allows agents to create temporary reputations in infinite horizon games. They are 

eventually forced to abandon these reputations as their actions ultimately reveal their 

type to the short term players. This effect is due to the action sets which are a 

continuum. The continuum of actions does not undermine the lower bound on payoffs 

at Nash equilibria of repeated games derived by Fudenberg & Levine. In fact as 

discount factors tend to unity so does the temporary reputation become permanent. To 

sum up: the strong predictions obtained from earlier models are tempered into gradual 

adjustment processes where reputation is only ever a temporary event. The general 

form of payoff functions allows us to address dynamic models with asymmetric 

information and to investigate the reputation effects in these models. 
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APPENDIX 

PROOF OF PROPOSITION 1. We begin by forming a linear combination of the 

available data (ao,al,..at-1) which minimizes the mean squared error, this by the 

properties of the normal distribution will be the true value for EBt[ z I k  ]. Let ys  = 

as/Cs, then if as  = zCs  + ns, we have; 

ys = z + VS, 	where Vs  = ns/Cs  , and yes  is N(0,6Nfs2), and 6Vs2=  6n2/Cs2. 

t-1 

To calculate EBt[ z I kt  ] we must take the linear form Ctµ + I eityi, and find weights 
i=0 
t-1 

C,eit  such that they minimize the expectation E[(z -Ctµ— I eitYi )2  ], these will 
i=0 

t-1 

generate the correct value for the expectation, that is E[ z I kt ] =Ctµ+ 1eityi- 
i=0 

	

t-1 	 t-1 	 t-1 

E[(z - I gityi )2  ] = E[ z( 1-1 eit ) - Ctµ+ I eitVi ]2 

	

i=0 	 i=0 	 i=0 
t-1 	t-1 	 t-1 

_ (6z
2 + µ2)( 1-E eit )2+ 1 eit 2((yyri)2  + 0tµ)2-2Ctµ 2( 1- I eit ) 

i=o 	i=o 	 i=o 

Differentiating with respect to Ct,eit  gives the following first order conditions for a 

minimum; 

t-1 

0 = ((Yz2  + µ2)( 1-1 eit) - eitun2/Ci2  - tµ2  
i=0 

t-1 

0 = tµ2  — µ2( 1-1  eit) 	note ((yVi)2  = 6n
2/Ci2. 

i=o 
Substitute the from the second equation inot the first for Ct  and rearrange indicates that 

eit=utCi2. Substitution allows us to solve for ut  and hence for eit. Now re-write yi in 

its original form and we have; 

	

t-1 	 2  
E[ z I k,] = 	1 	Ciai + 	

rµ 	
r = -6n-. 

t-1 	 t-1 	 2 

	

2 i=0 	 2 	 6z 

	

r+ 	Ci 	 r+ E C;  
i7--O 	 i=o 

This completes the proof. 
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