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SOLVING STOCHASTIC SADDLEPOINT SYSTEMS: 

A QUALITATIVE TREATMENT WITH ECONOMIC APPLICATIONS 

ABSTRACT 

We examine the effect of introducing stochastic shocks into a linear 

rational expectations model with saddlepoint dynamics generated by a 

forward-looking asset price. We derive the fundamental differential 

equation governing the path of the asset price as a function of the 

"sluggish" variable. The equation does not admit of closed form solutions 

in general, but we provide a complete qualitative characterization of the 

solution paths which are symmetric about equilibrium. These are the 

relevant solutions to consider in the presence of symmetric boundary 

conditions. 

We present two applications. The first analyzes how financial 

markets might react to the implementation of fiscal stabilization policy 

where public expenditures are only adjusted when GNP moves outside a 

threshold around a target level. Bond prices are perfectly flexible and 

move to satisfy an arbitrage condition. The second examines exchange rate 

behavior in the presence of a currency subject to a known realignment rule 

requiring an adjustment to monetary policy. 



I. INTRODUCTION 

Rational expectations models in which forward—looking financial 

markets correctly discount time—consuming processes of adjustment else—

where in the economy (and expected future changes in government policy) 

have been widely applied to interpret macroeconomic phenomena. Dornbusch 

(1976), for example, proposed that flexible exchange rates might overshoot 

in response to monetary tightness, as financial markets forecast the high 

interest rates needed to adjust sluggish goods prices. Later, in 

considering stock price movements, Blanchard (1981) noted that whether 

news of fiscal expansion was good or bad for Wall Street would depend on 

the balance between the mark—up it implied for dividends and for interest 

rates. In a Tobin's q model of equity prices, Summers (1981) took 

discount rates to be fixed, and focused instead on effects of capital 

accumulation on (after tax) dividends and the price of stocks. 

The essential tool of analysis used by these authors is a phase 

diagram whose saddlepoint structure reflects the conjuncture of the 

"no profit condition," as it applies to financial arbitrage and the slow 

dynamics of adjustment of non—financial variables (such as GNP and the 

capital stock) characteristic of these examples. The "stable branch" of 

the saddlepath is used to examine the process of adjustment towards 

equilibrium; but unstable trajectories are also used in considering 

anticipated future changes in exogenous conditions (cf. Wilson, 1979). 

In something of a contrast to this deterministic treatment, modern 

finance theory has emphasized the role of stochastic elements, asset 

values being seen as the present discounted value of the stochastic 

processes driving dividends, etc. Another contrast with the economic 

examples we have cited (where dividends and/or interest rates are 
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endogenous) is that finance theorists almost invariably adopt a partial 

equilibrium approach — so the parameters of the stochastic processes are 

independent of the asset prices they help to determine. 

Recently, however, interesting analytical results have been obtained 

by applying just such a stochastic approach to problems in micro— and 

macroeconomics (under the simplifying assumption that agents are risk 

neutral). Thus, for an industry with lumpy costs of joining and leaving, 

Dixit (1988) shows explicitly how the trigger prices for entry and exit 

are related to the (exogenous) rate of diffusion of the Brownian motion 

process driving prices in the industry. And Krugman (1987,1988) derives 

an exact exponential formula showing how the prospect of intervention at 

the edges of a currency band will bias the exchange rate inside the band, 

assuming fundamentals follow an exogenous Brownian motion. By applying 

Krugman's approach to the Dornbusch model (1976), the current authors 

(1988) showed that the partial equilibrium restriction is not necessary — 

although one will typically need to use numerical methods to obtain exact 

results in a setting where the parameters of the stochastic processes are 

endogenous. 

What is to be shown in this paper is that the essential qualitative. 

features of symmetric solutions to linear stochastic simultaneous equation 

saddlepoint systems can be obtained analytically, without recourse to 

numerical methods. This is done in the section that follows. Two 

economic examples of this qualitative analysis are then given by way of 

illustration. 
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II. QUALITATIVE ANALYSIS OF LINEAR SADDLEPOINT SYSTEMS WITa WHITE NOISE 

DISTURBANCES 

A. The Fundamental Differential Equation 

The analysis of this paper is restricted to linear saddlepoint 

systems; the solutions, nevertheless, turn out to be nonlinear when white 

noise is added. The essential features are a stochastic differential 

equation describing the evolution of the "fundamental," x, and an 

arbitrage condition specifying the expected change in a forward-looking 

asset price, y. The only source of randomness is the white noise 

disturbance term entering the first equation, so the price of the asset is 

random only through its dependence on fundamentals. 

To establish notation we write the system as 

	

dx 	 x dt 	a dz 
(1) 	 - r 	+ 

	

E dy 	 dt 	 0 

where 	x is the sluggish ("state") variable, 

y is the forward looking ("costate") variable, 

z is a Brownian motion process with unit variance, 

a is a positive constant scaling factor, 

r is a matrix of constant coefficients, 

E is the expectations operator. 
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The elements of r are denoted by the first four characters of the 

Greek alphabet, as follows: 

a ~ 
(2) 	r 

7 b 

so the characteristic equation is 

( 3 ) 	a2  - trace r + A - x2  - (a + b ) A + A - 0 

where A denotes a root and A - ad - 7P  is the determinant of r. For the 

saddlepoint property, it is necessary that A < 0. 

It turns out that the eigenvectors and stationary loci of the system 

without noise (i.e., where a - 0) play a central role in characterizing 

stochastic solutions. With an eye to the applications which follow, we 

will principally work with the case where these eigenvectors — the 

branches of the saddlepath — have slopes of opposite sign. (The 

qualitative analysis is essentially unchanged when the gradients have the 

same sign.) Without loss of generality, we assume that the requisite 

slopes are given by the following sign pattern of the coefficients of r, 

namely a < 0, 0 < 0, 7  <-0, S > 0. The gradient for the lines of 

stationarity for y and x follow immediately from (1), (2), setting a - 0, 

as 
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dx 	 - -y/b and dx  
dy/dt - 0 	 Idx1dr - 0 

as shown alongside the relevant angles in Figure 1. (Where o is nonzero, 

these lines become loci of "expected" stationarity.) The slopes of the 

stable and unstable eigenvectors, denoted Bs  and au, respectively, have 

the signs shown in the figure as Bs  - 7/(as-6) > 0 and su  - (")/,0 < 0. 

The slopes of these eigenvectors are obtained as the roots of a 

quadratic equation in the parameters of r ;  and as this quadratic plays a 

role in the proofs that follow, it is given explicitly at this juncture. 

Let an eigenvector, normalized on its first element, be written as 

1 l; it must, by definition, satisfy the condition that 
B J 

(4) r  

8 	 8 

or, in detail, (i) a + 00 - A 

(ii) y + 69 - A$ 

where A is a root of the characteristic equation of r. Together 4(i) and 

4(11) imply 

(5) p(a) - y + (b-Q) a — 002  - 0. 

So p(a) is the required quadratic expression whose zeros give the required 

slopes, as , su. 
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In the deterministic case, where o-0, the two eigenvectors are the 

only paths connected to the equilibrium point at the origin (see 

Figure 1). But when the system is subject to stochastic shocks, there 

turns out to be an infinity of trajectories connected to the origin, whose 

qualitative features it is our intention to characterize. To do this we 

first derive the fundamental differential equation to be satisfied by any 

solution to (1), and then show how those which pass through the origin 

possess a symmetry which is essential to solutions of problems with 

symmetric boundary conditions (see Section III). 

Let any particular solution be expressed as a function of x, so 

(6) y — f(x). 

Then Ito's Lemma implies that 

(7) E dy — P(x) E dx + 
2 
 f"(x)dt 

Rearrangement and substitution yields 

2 (8) 2 f" (x) — —f' (x) (ax + fif (x) ) + (yx + Sf (x) ) 

the fundamental differential equation to be satisfied by any solution to 

the linear stochastic system. 
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The qualitative nature of those solutions whit' pass through the 

origin is shown in Figure 2. First we note that such solutions are 

strictly symmetric. (It follows directly from (8) that if f(x) is a 

solution satisfying f(0) - 0, then f(x) - -f(-x).) As mentioned earlier, 

other qualitative features evident in the figure depend essentially on the 

eigenvectors of the deterministic system — which are themselves 

stochastic solutions. Since the expected direction of movement in the 

stochastic case is characterized by the same stationary loci as for the 

deterministic case, it will be evident that Figure 2 is not a phase 

diagram. What it shows is the qualitative nature of the deterministic 

relationship which links the asset price to the fundamental in circum-

stances where the latter is randomly shocked by white noise and the system 

itself is subject to symmetric boundary conditions (whose exact nature 

will determine the relevant solution, as we show with examples later). 

The notion that rational asset prices are deterministic functions of 

stochastic fundamentals, is, of course, central to much modern finance 

theory, e.g., the analysis of option pricing in Merton (1973). That 

feature of the stochastic saddlepoint systems which is peculiarly 

macroeconomic is that in general the process determining the 

"fundamentals" is not autonomous but depends on the asset price itself. 

(Thus, from (1), (2), dx - axdt + flydt + adz which, given a solution 

y - f(x), becomes dx - axdt + fif(x)dt + adz so that, unless fi  - 0, the 

diffusion process governing x will depend on the function f(x).) It is 

precisely this "endogeneity of the fundamentals" which makes it impossible 

in general to find closed form solutions and leads one to a qualitative 

treatment. 
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We now derive the qualitative treatment implicit in Figure 2 in 

detail, proceeding from a local to a global analysis. 

B. focal Analysis: Curvature Around Equilibrium 

The curvature of paths in the neighborhood of the origin, here the 

equilibrium, may readily be established with reference to the quadratic 

expression p(8). For if the function f" is approximated to first order at 

the origin, we find that 

2 	2 
(9) 	2 f"(x) " 2 (f"(0) + f"'(0)x) 

2 

- 2 f"' (0)x 

— 1—f"(0)(0-0 + fif(0) ) — f' (0) (a + flf' (0) ) + y + bf' (0) ]x 

letting B — f'(0). 

On our assumptions, p(B) must take the form illustrated in 

Figure 3(a), since-p(0) — 7 < 0, and p(B) reaches a minimum at B*  < 0. 

This enables us to calculate the sign of f" in a neighborhood of the 

origin, illustrated in Figure 3(b). As the angle tan-1(8) goes from 0 to 

360" and one proceeds counterclockwise round the origin, the sign of f" 

changes with each crossing of an eigenvector and of the vertical axis. 

See Figure 3(b). 
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C. Global Analysis 

Because of the symmetry of the solutions, it is only necessary to 

consider half the plane. Taking the right hand half—plane, where x Z-- 0, 

we divide this into four regions as shown in Figure 4(a). Regions A and B 

lie on either side of the stable eigenvector and above the line, LL, of 

(expected) stationarity for x. Here the expected movement of x is towards 

zero. For regions C and D, which lie either side of the unstable 

eigenvector and below LL the expected movement of x is away from 

equilibrium. We consider regions in pairs. We first observe that, by a 

standard theorem on differential equations (see, for example, Birkhoff and 

Rota [19691, p. 152), the two initial conditions f(0) — 0 and f'(0) — 0 

determine a unique solution to (8) in any compact convex region of the 

(x,y) plane; so the solution trajectories do not intersect other than at 

the origin. 

1. Regions A and B. Rather than working directly with the function 

f(x), it will be convenient to use the function g(x) which measures the 

"distance" of f from the stable manifold of the deterministic system, i.e., 

(10) 	g(x) - f 	— Bsx 

where 	(i) g' — f' - as 

While the slope of g differs from that of f by a constant, the convexity/ 

concavity of the two functions is the same for any x. See Figure 4(b). 
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By substitution into (8), we find 

2 

2 	
g" 	— (g' + 0S

)(ax + fl (g + 0sx)) + Ix + 6(g + asx) 

— — ((a + fl9s )x + flg)g'+ p(9S)x + (5 — 8sfl)g 

and so 

2 
{il) 	

2 
g" — — ({a + fles)x  + flg)g'+ (S — Bs fl)g 

as p(Bs) — 0. 

To characterize paths in these regions it is necessary first to 

demonstrate that the terms multiplying g and g' are both positive. The 

former, b — Bsfl, is positive as d, 8S  > 0, fl < 0. As for the latter, 

—((a + Pe,)x + fig), we note that f lies above the LL locus in regions 

A and B; i.e., f > 	
Or fi  x, so it follows that 

g =f — 8 s 	11- x > — 	s +B X. 

But then, since fl < 0, — ((a + fl8S)x + fig) > 0. 

Now in region A we consider all solutions satisfying g'(0) > 0. We 

wish to show that g"(x) > 0 for x > 0. Suppose this is not the case and 

let x be the smallest strictly positive value of x, such that g"(x) — 0. 
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We know that g, g', and g" are all strictly positive in a neighborhood of 

the origin. It must also be true from (11) that either g(x) 5 0 or 

g'(x ~5 0. It follows, since g is continuous, that there must be x <x, 

satisfying g"(x) - 0, contrary to hypothesis. 

An exactly analogous argument establishes that g"(x) < 0 for x > 0 in 

region B, i.e., for all solution paths satisfying 
a -8

s  < g'(0) < 0. 
ft 

Thus, the curvature found in a neighborhood of the origin applies 

throughout each of these regions. Paths in A are strictly convex to the 

x axis, paths in B strictly concave (and, of course, on the boundary 

between the two regions, where g' - Bs, g" - 0 for all x > 0). 

2. Regions C and D. Although the expected movement of x is away 

from the current equilibrium in these regions, it is still possible to 

return to equilibrium by a sufficient sequence of appropriate shocks. 

Moreover, such trajectories are relevant to problems displaying 

"hysteresis," where the equilibrium itself is expected to shift when 

fundamentals diverge — as in the currency realignments example discussed 

below. So it is worth proceeding to characterize these paths. 

Here it is convenient to define a function h(x) to represent the 

"distance" of f from the unstable eigenvector, see Figure 4(C). So 

(12) 	h(x) - f(x) - aux 

where (i) h' - f' - Bu  

(ii) h" - f". 
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By substitution we find, 

2 
Q 

(13) 	2 h
N 

- - ((a + fie )x+ fih)h' + (b - 8uO)h 

an analogue of equation (11) above. Both the terms multiplying h and h' 

can be signed as negative in regions C and D. As for the former, 6 - Bup, 

we note that 

P(eu) - - pee + (6 - a) 9u  + y - 0 

so b-9ufi- B 	 y +a<0, as a, 9 , 	<0. 
u U 

As for the former, the requirement that 

f< 	x 	implies h-f-9ux<-+9u)x and so 

- (ph + (a + fi9u) x) < 0, given P < 0. 

To examine the curvature of solutions near the unstable eigenvector, 

we begin in region D where all the solution trajectories are connected to 

the origin. By construction, the required curvature is also exhibited by 

the function h charted in the bottom panel of Figure 4. In what follows, 

we argue that any solution in the region has the qualitative character- 
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istics shown by the curve labeled XDXD, i.e., it has a negative slope but 

is convex near the origin, reaches a minimum (here at x*), and passes 

through a unique point of inflection (here at x**) before approaching a 

limiting value as x increases without limit. 

The property that f" > 0 in the region near the origin establishes 

that h"(x) > 0 for paths starting from the origin with a negative slope, 

as shown by XDXD  in the figure. The general characteristics of a solution 

path, as x moves away from the origin, are established step by step, as 

follows. 

(a) To show that there exists x*  satisfying h'(x*) — 0 

Suppose not. Since h'(0) < 0, then, ex h othesi, h' < 0 for all 

x > 0 and h is bounded away from zero as x increases, and is always 

negative. But then (13) implies that h" > 0 and is bounded away from zero 

as x increases, which implies that h' must pass through zero, contrary to 

hypothesis. 

(b) To show that h(x) is strictly convex over the range 0 < x < x*  and 

reaches a minimum at x*  

That h" > 0 over the range 0 <_ x _< x*  follows from the fact that 

h'(0) < 0 and from the fact that the coefficients on h and h' in (13) are 

both negative. It follows from (a) that h'(x*) is a minimum. 
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(c) To show that h' (x) > 0 for all x > x*  

Since h < 0 for all x > 0 from the fact that h'(0) < 0 and the 

uniqueness theorem, at any point where h' — 0 it follows from (13) that 

h" > 0. But if there existed any turning point after x*, the first one 

would have to be a local maximum. So there can be no such points. 

(d) To show that there exists a unique point of inflection for h(x) at 

x**  > x*  

It follows from (c), and that h is bounded above by zero, and that 

h"(x*) > 0 that there must exist some value of x > x*  at which h" passes 

through zero from above, i.e., h"(x) — 0, h"'(x) < 0. Let x**  be the 

smallest such value. Then, from (13) 

(14) 2 h",(x**) - -( a+PBu)h'(x**) — flh'2(x**) + (6-0 P)h, (x**) < 0. 

It follows from (14) that 

(15) h' (X**) < b 
	a  — 28u. 

Suppose there exists another point of inflection at x***  < x**. Then by 

assumption h"(x***) — 0 and h"'(x***) > 0. But since h" < 0 for 

x**  < x < x***  it follows from (15) that 

h'(x***) <  6 
	

a  — 20u. 
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But, using (14), this implies that h"'(x***) < 0, which is a 

contradiction. Therefore the point of inflection at x**  is unique. 

(e) To show that h approaches a well-defined limit 

This follows immediately from (c) and the fact that h is bounded 

above by zero. 

The arguments needed to characterise paths in region C are very 

similar to those above. The only point to note is that in region C some 

paths enter from region B. and it may be true that h' < 0 when they enter. 

So the analogue to (a) is a demonstration that there exists x*  satisfying 

h'(x*) 5 0, where we pick x*  to be the smallest value of x satisfying the 

inequality. Subsequent proofs then follow exactly as before, with 

suitable sign changes. 

Note finally that so long as the saddlepoint structure of the 

deterministic model is preserved, the precise configuration of stable and 

unstable eigenvectors is unimportant for the qualitative characterization 

of solutions. But two special cases are worth remarking upon. First, if 

- 0, then the unstable eigenvector coincides with the vertical axis, and 

the regions C and D disappear. Solution paths lying in the half-plane 

where x >- 0 are globally concave or convex and all points of inflection 

(other than those at the origin) vanish. Second, if 6 - 7 - 0, then the 

stable and unstable eigenvectors correspond to the horizontal and vertical 

axes, respectively. In this case, all turning points vanish. 
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III. ECONOMIC APPLICATIONS IN CLOSED AND OPEN ECONOMIES 

Two illustrations of this qualitative analysis are provided here. 

First, we analyze how the bond market in a closed economy would react to 

fiscal stabilization policy which is applied discontinuously; and second, 

how the foreign exchange market might be expected to behave in the 

presence of an exchange rate band subject to stochastic realignment. In 

each case, we show how the particular solution path leading to equilibrium 

is determined by the (symmetric) boundary conditions of the problem. 

A. Fiscal Policy With Thresholds And The Bond Market 

To analyze how financial markets might react to the implementation of 

fiscal stabilization policy where public expenditures are only adjusted 

when GNP moves outside a threshold around target level, we make use of the 

familiar Hicksian IS/LM diagram, augmented here with the minimum of 

dynamics, as indicated in equations (Al) through (A4), below. (For 

simplicity, prices are taken as fixed, unlike the open economy case, 

considered next.) 

Equation (Al) gives the condition for equilibrium in the money 

market; while equation (A2) indicates the determinants of aggregate 

demand, x. The latter depends positively on output, and negatively on the 

long run (real) interest rate, R. It is also affected by government 

intervention, indicated by the variable, g; this contracyclical inter-

vention is, however, only applied outside the intervention limits Y < y. 

The sluggish adjustment of output, equation (A3), is subject to 

stochastic shocks. Bond prices are perfectly flexible, however, and 

satisfy the arbitrage condition E(dR) - R(R-r) which is linearized around 

equilibrium R in equation (A4). 
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(Al) 	m - - Ar + xy 

(A2) 	x---yR+oy+g, 	0 <a < 1 

where 	g- 0, Y< y< y 

g - —fly, y< y 	 > 0 

(A3) 	dy — O(x — y)dt + adz 

(A4) 	E(dR) - R(R - r)dt. 

Notation m the money supply 

y the level of real output 

x aggregate demand 

r the instantaneous short rate 

R the dividend yield on infinitely dated bonds. 

g fiscal intervention, applied contracyclically but subject 

to a threshold; see (A2) above. 

z Brownian motion process with a unit variance. 

Before taking account of fiscal intervention, we note that, setting 

g - 0, the dynamics for adjustment are 

	

dy 	O(c,-1) —0-y 	ydt 	adz 
(A5) 	 — 	—1 	 + 

	

EdR 	RKA 	R 	Rdt 	0 
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where we set m - 0, so that all variables are effectively measured as 

deviations from equilibrium. The negative determinant ensures saddlepoint 

dynamics, as shown in Figure S. There the line of stationarity for the 

long bond rate appears as the IM curve, the locus of stationarity for 

output is the IS curve, and the eigenvectors, labelled as SS and UU, can 

be shown to have slopes of opposing sign, as drawn. Thus, in the absence 

of fiscal intervention, GNP and the long bond rate will be "diffused" 

along the stable eigenvector SS (with a finite asymptotic distribution 

which is Gaussian). 

To take account of fiscal policy, we note first that in the absence 

of thresholds the effect of intervention would be simply to increase the 

absolute size of the top left-hand coefficient in (AS) changing it from 

ka-1) to O(a-,0-1), which would make the IS curve steeper and hence pivot 

the stable manifold down to S'S'. The effects of applying the policy 

subject to the thresholds, assumed to be equidistant from y, can now be 

derived — by locating the symmetric solution to the first system which 

passes through the points F'F' where the intervention points cut the 

manifold S'S'. This solution ensures that the economy will lie on the 

second manifold, S'S', outside the threshold limits and also that asset 

prices will not jump when fiscal policy is activated at the threshold 

points. It is, of course, the enhanced probability of such intervention 

that bends the solution away from SS towards S'S' as output moves away 

from the target towards the limits of intervention. (What happens if the 

intervention points are not equidistant from the target, y, is considered 

briefly in section IV, below.) 
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B. Realigment Rules For Exchange Rate Bands 

In the previous example, reaching a GNP threshold acted as a trigger 

for an activist fiscal policy designed to speed a return to target GNP. 

In much the same way, reaching the edge of an exchange rate band may be 

the signal for a spirited defense of the currency, and, as Krugman has 

demonstrated in the paper we have cited above, the expectations of such 

action will lead to what he refers to as a "bias in the band." But 

reaching the edge may also be the occasion for a "realignment" of the band 

(and of the monetary policy to support it), and it is on the consequences 

of such realignment rules that we focus here, using a simplified version 

of the model in Dornbusch (1976, Appendix). The equations of the model 

and the variables used are as follows: 

(B1) m — p+ Ry - ai 

(B2) y — —d(x + p — p*) 

(B3) dp - O(y - y)dt + adz 

(B4) Edx — (i*  — !)dt 

with notation 

M 	log of the money stock. 

P 	log of the price level. 

Y 	log of GNP. 

Y 	high employment GNP. 
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X 	log of the exchange rate (foreign currency price of domestic 

currency). 

i 	instantaneous nominal interest rate. 

z 	a Brownian motion process with unit variance parameter. 

* 	indicates variables in "rest of world." 

For simplicity the demand for money, on the right-hand side of 

equation (Bl) is made to depend on exogenous high employment GNP, y — as 

well as the (endogenous) interest rate and price level. The determinants 

of aggregate demand, shown in (B2), are the real exchange rate and the 

(short-term) interest rate. In this open-economy model, the lag in the 

adjustment of output has been ignored, and attention focussed on the 

dynamics of price changes instead. Thus, as shown in (B3), the price 

level is adjusted in proportion to output and is also subject to a white 

noise disturbance term. (Since the money stock is assumed to be held 

constant between realignments, and since the realignments do not lead to 

systematic inflation, omitting any inflation expectations terms may be 

reasonably justified.) As for arbitrage in assets, it is assumed that the 

exchange rate adjusts so that its expected change equals international 

interest differentials, equation (B4). 

Setting p*  - i*  - m - y - 0 and substituting gives the autonomous 

dynamics of the price level and the exchange rate as 

	

dp 	 -0(6 + 7X-1) 	-06 	pdt 	 adz 
(BS) 	 - 	 + 

	

Edx 	 -a
-1 	

0 	xdt 	 0 
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The eigenvectors are shown in Figure 6, where it can also be seen that the 

exchange rate is expected to be stable along the horizontal axis, while 

the locus of expected price stability is inclined at a greater angle than 

the 45' PPP line (along which the exchange rate moves pari passu with the 

price level leaving the real exchange constant). 

A symmetric exchange rate band is shown, with upper and lower limits 

at x and X, respectively, along with the two solutions we are to discuss. 

The first of these (labelled KK') is the unique path which becomes tangent 

to the edges of the currency band.l  This is Krugman's solution, with the 

S-shaped curve exhibiting the bias for which he was able to obtain an 

exact solution (in the special case where fundamentals follow a pure 

random walk). 

The second solution, labelled RR', shows how the exchange rate would 

behave if the market fully expects full accommodation of the price level 

movement as and when the rate reaches the edges of the band. (This will 

involve shifting the center of the band by exactly half the band width, 

and changing the money stock in proportion.) The expectation of such 

accommodation bends the trajectory away from K' all the way down to R', so 

the solution snakes around the PPP line, cutting it when the rate reaches 

the edges of the band. 

Although the solution RR' lies much farther from the stable manifold 

than when no realignment was in prospect, nonetheless the expected price 

movement is always towards (the current) equilibrium. (When equilibrium 

is at E, for example, the price level is expected to fall as ER' lies 

above the LL schedule where (E(dp) - 0; and vice versa.) But this is not 
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a necessary feature of all solutions to realignment problems, as can be 

shown by means of an example. Consider the case where 7 — 0 and so, from 

(B5), the locus LL coincides with the 45o PPP line, as shown in Figure 7. 

Let the degree of accommodation now be more than 100%, so the percentage 

shift in the band — and in the money stock — which takes place when the 

edge of the band is hit exceeds half the band width. Then the solution 

must have a segment where the price level is expected to move away from 

the current equilibrium, as can be seen in the figure. In this case, a 

greater realignment is triggered by a given price deviation than with 100% 

accommodation (as the angle a reflecting the extent of accommodation is 

greater than 450); and, just before the realignment, along the segment 

labelled FR', the expected movement of prices is away from equilibrium, 

i.e., E(dp) > 0. 

The determinacy of the equilibrium price level (associated with a 

policy of fixing the money stock) is of course undermined by such 

realignments which allow the price level to follow a random walk (with the 

degree of realignment governing the rate of diffusion of the price level). 

Note, however, that while the price level may only be semi—stable in a 

global sense, there is nevertheless, at any point of time a local 

equilibrium towards which the price level has a general tendency to move 

(until and unless shocks build up sufficiently to lead to its revision). 

IV. ASYMMETRIC BOUNDARY CONDITIONS: AN HEURISTIC APPROACH 

Where the boundary conditions are not symmetric around equilibrium, 

then it is not to be expected that the solution should pass through the 

deterministic equilibrium. So the family of solutions analyzed heretofore 
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will no longer be relevant. It is, nevertheless, possible that the nature 

of such asymmetric solutions can be seen by perturbing one of the 

symmetric boundaries, as is suggested by the following example using the 

closed economy model already described. 

Let the two thresholds triggering fiscal policy action in the closed 

economy not be equidistant from target GNP. Specifically, let stimulatory 

action be taken more readily than the converse, i.e. 1y - y1 < lY - y1, 

as shown in Figure 8. As a first shot at the solution, consider the 

trajectories linking the points F and F' to the deterministic equilibrium 

at E. Notice, however, that these will meet at a kink at E. But 

stochastic processes smooth out such kinks, so one may conclude that the 

solution will pass above this equilibrium, as shown in Figure 8. 

V. CONCLUSION 

Recently, Avinash Dixit and Paul Krugman have found explicit analy—

tical solutions for economic problems in which Brownian motion processes 

act as the trigger for discontinuous actions (exit/entry by firms, and 

official foreign currency intervention, respectively). These elegant, 

explicit solutions are not, however, available for stochastic variants of 

the saddlepoint model which has proved popular in macroeconomics. 

In this paper it has been argued that a general qualitative treatment 

of such saddlepoint systems is nevertheless available given the regularity 

provided by linear behavioral equations and symmetric boundary conditions. 

The examples used suggest that such a qualitative approach may often prove 

more attractive than recourse to numerical techniques to obtain exact 

solutions for specific values of the parameters. 
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Footnotes 

1. Once the edge of the band is reached, it is assumed here that 
monetary policy is assigned the task of keeping the rate there until 
such time as the fundamentals move the system back on to KK' (see 
Miller and Weller, 1988, for further discussion). 
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Figure 3. Local analysis. 
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Figure 6. Currency bands: Krugman's bias and realignments. 
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Fig. 7. An alternative realignment rule: more-than-full accommodation. 
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Figure 8 	Asymmetric thresholds. 
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