

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

REFINING RETURNS TO R&D IN SOUTH AFRICAN COMMERCE

Y. Khatri
London School of Economics

D. Schimmelpfennig,
United States Department of Agriculture

C. Thirtle
University of Reading

J. van Zyl
University of Pretoria

Use of a long-run profit function provides accurate estimates of returns to R&D. This is because the profit function is tied to the long term basic and applied nature of the economy. The long-run profit function is fundamentally different with a more adaptive character than the short-run profit function. This is because changes in TFP. In this situation, the long-run profit function provides more accurate estimates of returns to R&D than the short-run profit function. A potential solution to the problem of overestimation of returns to R&D is to use a long-run profit function. Several other inputs are held fixed at their long-run levels. This is because the long-run profit function provides more accurate estimates of returns to R&D than the short-run profit function. A potential solution to the problem of overestimation of returns to R&D is to use a long-run profit function. Several other inputs are held fixed at their long-run levels that have been estimated.

1. INTRODUCTION

In this paper, the profit function approach to estimating agricultural productivity and returns to agricultural R&D in South Africa is refined by comparing the returns from a short-run profit function to the returns from a long-run profit function.

Productivity statistics compare agricultural inputs to output in order to measure the performance of the sector. The ratio of aggregate output to an aggregate of all inputs combined gives a measure of total factor productivity (TFP).¹ The "Explaining" TFP growth, using non-conventional inputs such as R&D and extension expenditures, has been the focus of a large number of studies (listed in Echeverria, 1992). Changes in the TFP index are usually explained by determining or conditioning variables, such as the stock of knowledge (accumulated research capital, generated by research expenditures), extension services and farm education, as well as changes in weather.² The basic argument is that R&D generates technology, extension diffuses it and better-educated farmers are better at screening new technology. Consequently, they adopt new technologies more quickly and also adapt technologies thereby adding an element of on-farm technology generation. For South Africa, spillovers through international technology transfers may also be important. The influence of the weather is considerable, so a weather index should reduce the unexplained errors.

There are essentially two approaches to explaining changes in agricultural productivity, which forms the basis for calculating the returns to R&D. Evenson, et al. (1987) distinguish between these the *integrated approach* (where the productivity enhancing, or conditioning, factors are included directly in the primal or dual representation of production) and the *two-stage decomposition*, in which changes in total factor productivity (TFP) are first calculated, and then explained in a second stage, by the factors, such as R&D and extension, that are thought to account for growth. The *integrated approach* has the advantage of minimizing restrictive separability assumptions, as well as avoiding the need for the assumptions of full static equilibrium, Hicksian

lag length k . Using fewer lags than the 'true' specification implies biased estimates and too many lags implies inefficient estimates. To estimate the lag length two approaches can be employed. The usual approach is that of searching over a range of k using appropriate model selection criteria. Geweke and Meese (1981) investigated various model selection criteria for this purpose, including the Akaike information criterion (AIC), the final prediction error (FPE), the Bayesian estimation criterion (BEC) and the Schwarz Criterion (SC). The tests are not always in agreement, but for the R&D lag all suggested nine or ten lags.

Then, the shape of the lag distribution must be determined. The conventional approach is to fit a function such as an inverted "U"-shaped second degree polynomial, but this formulation fitted the South African data poorly. Amongst the large number of alternative lag structures fitted generalisations of the Beta and Gamma distributions (Tsurumi, 1971 and Schmidt, 1974) gave the best results according to the same model selection criteria (Adjusted $R^2 > 0.77$ in both cases). The best fit is negative skew with peak effects at one to four lags. Figures 1 and 2 provide the details.

This result can be contrasted with similar tests for the UK system, where the lag was sixteen years and the distribution was positively skewed, with the peak effects at twelve to sixteen lags (Khatri, 1994). This suggests that whereas the UK system includes a high proportion of basic scientific research with a long gestation period, the South African research system is dominated by short-term developmental work.³

In the profit function, which is described in the next section, the lag distribution is represented by a knowledge stock constructed using the perpetual inventory model (PIM) which is a reasonable approximation of the "true" lag structure. Thus, the knowledge stock (KS_t), with R&D entering with a one period lag, at period t is

$$KS_t = RD_{t-1} + (1 - \delta) KS_{t-1} \quad (1)$$

where δ is the rate of depreciation, which is set at 10%, so that 90% of the weight is on the first nine years. In this application the starting value of KS , at $t=0$, is irrelevant because 1947, because the series begins in 1929.

International technology transfers is approximated by patent count (see section on data).

Applying the same methodology to the patent count series gave a lag of twelve to thirteen years and again a negatively skewed distribution. So, the patent knowledge stock is approximated in the profit function by a PIM with depreciation rate of 8.3%, which is appropriate for a twelve year lag. The patent variable is the means of allowing for both private spillovers from abroad and for the technologies provided by multinational seed, chemical and machinery companies, which may or may not be performing their research in South Africa.

For the non-international private sector, very little is known about R&D. This is a handicap, but need not prevent economic analysis of the returns to R&D, since private R&D is not outside the market system, like the public expenditures. Indeed, as was noted by Griliches (1973), agricultural inputs were supplied by a monopolist, and the input statistics took proper account of quality adjustments.

The functional form employed is the generalised quadratic (GQ). The GQ profit function is defined as:

$$\Pi = \alpha_0 + \alpha' \hat{P} + \delta' \Theta + \frac{1}{2} \hat{P}' \beta \hat{P} + \frac{1}{2} \Theta' \phi \Theta + \hat{P}' \gamma \Theta \quad (1)$$

where \hat{P} is the stacked vector of normalised output and non-numeraire input prices, $(P, R)'$ and Θ is the stacked vector of k quasi-fixed and l fixed and conditioning factors. The vector α ($\alpha_1, \dots, \alpha_{m+n-1}$) and matrices β (β_{ij} , $i, j = 1, \dots, m$), δ (δ_{gh} , $g, h = 1, \dots, K+L$) and γ (γ_{ig} , $i = 1, \dots, m$, $g = 1, \dots, l$) contain the parameter coefficients to be estimated. The vector of parameters δ is of particular interest as these are the shadow prices of the fixed factors and technical variables. Applying Hotelling's lemma, we derive (short-run) optimal levels of output supply and demand:

$$y_i^* = \alpha_i + \sum_{j=1}^m \beta_{ij} p_j + \sum_{j=m+1}^{m+n-1} \beta_{ij} w_j + \sum_{g=1}^{k+1} \gamma_{ig} \Theta_g, \quad i = 1, \dots, m \quad (2)$$

$$-x_i^* = \alpha_i + \sum_{j=1}^m \beta_{ij} p_j + \sum_{j=m+1}^{m+n-1} \beta_{ij} w_j + \sum_{g=1}^{k+1} \gamma_{ig} \Theta_g, \quad i = m+1, \dots, m+n-1 \quad (3)$$

The long-run profit function, in contrast, consists of variable factors of production. Since factors such as machinery, land, and livestock inventory are assumed to be at long-run equilibrium levels, no quasi-fixed factors are represented in the profit function. The vector Θ contains conditioning factors such as weather and technology, that are always exogenously supplied. Prices of the inputs that were quasi-fixed factors in the short run are included in the vector w . Variable input demands for factors are obtainable using Hotelling's Lemma, and are estimated jointly with other input demands and other equations.

The price elasticities are derived as logarithmic derivatives of the supply and derived demand equations with respect to input prices (Lass, 1985; Khatri, et al., 1994a). Shadow values are given by the partial derivatives of the profit function (Diewert, 1974) with respect to the Θ variables. The derived shadow values can be interpreted equivalently as the marginal change in profits for an increment in a particular element of Θ or as the imputed rental value for an additional unit of that factor. Of particular interest are the shadow values of capital, land and research. The difference between the rental value and shadow value indicates whether the factor is over, under or optimally utilised. The shadow value of research can be used to derive the rate of return on research investment (Huffman, 1987).

4. DATA

The national farm-level production data for the period 1989-92 were obtained from several sources, largely RSA (1993) and are described in some detail in Thirtle, et al. (1993). In both the short and long-term profit function specification the three output aggregates are: Crops, Horticulture and Livestock and Livestock Products.

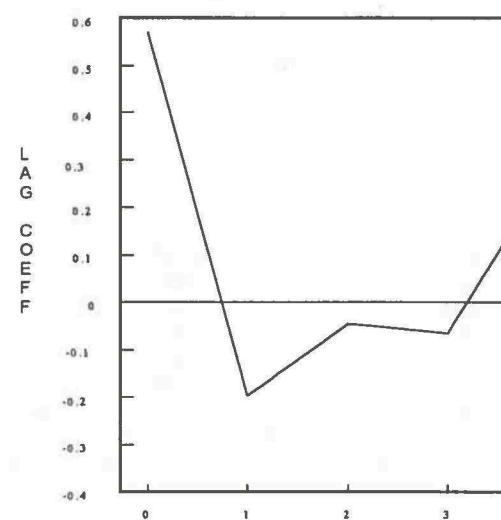


Figure 1: Unrestricted lagged round (9 years)

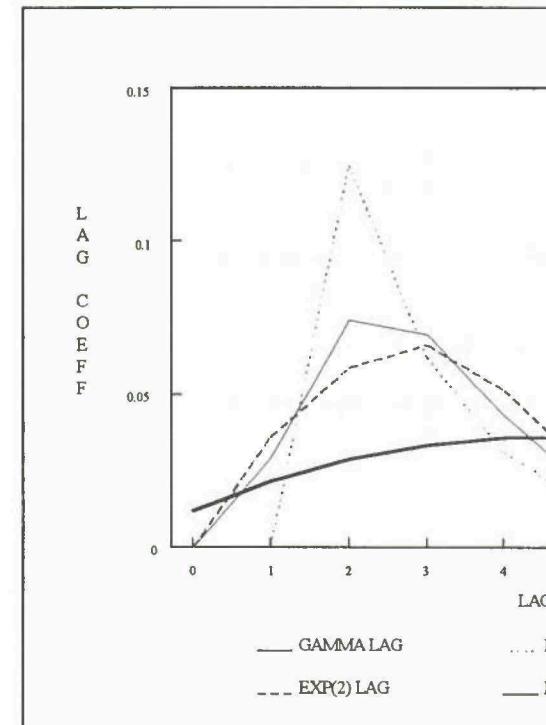


Figure 2: Lagged effects of research on production

respect to their statistical performance and theoretical consistency.

The results obtained with the short-run and long-run production functions (that can be estimated in one stage) specifically the elasticity estimates, are in accordance with expectations. The elasticities of the outputs and variable inputs in the estimation obtained with the long-run approach and the short-run estimations are remarkably similar. As expected the long-run elasticities for land, capital and livestock are

Shadow Prices

The change in the profit function with respect to technology variables represents their shadow values, that is, shadow values of technology factors are given by the partial derivatives of the profit function (Diewert, 1974) with respect to the technology variables. The derived shadow values can be interpreted equivalently as the marginal change in profits for an increment in a particular element of technology. This shadow value for R&D can be used to derive the rate of return to research investment (see Khan et al., 1996). Note, however, that the shadow values of the short and long-run conditioning variables are not directly comparable due to differences in the units of measurement for the capital items. These shadow values are reported in Table 1 for both the short and long-run specifications, at constant 1985 variable means.

The extension and education variables have negative shadow values, indicating that these variables, on the margin, are of no use to producers. In contrast, international research spillovers (PATENTS) and public research expenditure (RES) have relatively high positive shadow values, indicating that expansion of these factors is likely to benefit South African agriculture.

The shadow price for public research was negative at the beginning of the period, after which the value has risen at an increasing rate, suggesting that the public research system is now making a considerable contribution to profitability (Van Zyl, et al., 1993). The shadow price of the international knowledge stock (representing spillovers) indicates that spillovers significantly affect productivity and profitability. The shadow price of extension is surprisingly small (although highly significant) in the short-run formulation, implying a near zero return on public extension expenditure.

While in the long-run formulation, the shadow price of extension is substantially negative. The shadow price of extension has been falling over the period, which suggests that South African commercial farmers have become increasingly dependent on public extension advice. This corresponds with the findings of Koch, et al. (1991), who show that government extension officers spend increasingly more time on administrative duties and do very little actual extension work.

As with extension, the education index appears to have considerable explanatory power in the model, judging by the significance levels of the education related coefficients. The results in a highly significant, but unexpectedly negative shadow price for education. The education index is a proxy for the farmer's managerial ability and thus we would certainly expect a positive shadow price for education.¹⁰ The fact that there is a strong indication from the fixed factor elasticities that education augments output but also augments input (more than proportionately in the case of non-labour inputs). As the education level of South African commercial farmers is relatively high, it is entirely possible that the minimum

Table 1: Estimated Shadow Values of the Conditioning Variables

Factor	Short-Run	Long-Run
Public Research	0.000	-0.000
International Patents	0.000	0.000
Public Extension	-0.000	-0.000
Farmer Education	-0.000	-0.000

Note: All the shadow prices are significant at the 0.05 level.

takes 11 years to adjust, indicating an 11 year lag between R&D and TFP growth. The longer lag lowers the long-run MIRR to 58%. The correct rate of return is some unknown weighted average of the lags between R&D items that provide quick impacts, like improvements in seed varieties, and those that take longer to have an impact. The long-run rate is bounded by 113 and 58%, a range that exceeds the short run return.

These are certainly respectable rates of return on public expenditure. There are, however, the usual arguments that this figure may be somewhat diminished if we adjust for the dead-weight losses associated with tax collection (the means of financing public expenditure) and the possibility that public funding may be crowding out private sector research. The major point of interest, however, is the large difference between these rates when measured over the short and the long term.

6. CONCLUSION

Use of a long-run profit function has been shown to provide accurate estimates of returns to agricultural R&D in Europe and North America, a result that is tied to the long term basic and applied nature of the research institutions in these areas. Basic research into plant physiology and development takes place before plant breeders use the information to create new varieties with desirable characteristics. An additional lag occurs before outputs increase as the new seed varieties are diffused among farmers (see Khatri, 1994).

Agricultural R&D in South Africa is fundamentally different with a more adaptive character, and a shorter lag of five years for variable factors (see Thirtle and Van Zyl, 1994; 1996). The lag from basic to applied research is short cut in South Africa by making slight adjustments to seed varieties developed for similar environmental conditions in the northern hemisphere. Even when the fact is taken into account that some capital stock items take longer than five years to be impacted by R&D (by assuming that all of the capital stock adjusts more slowly) the result is a range of long-run returns that is greater than the short-run return. In this situation, the long-run profit function input demand and output supply elasticities are too high resulting in overestimation of returns to R&D.

A possible solution to this problem is to employ a short-run profit function in the calculation of returns to R&D. Several other inputs are held fixed and the result is a short-run return to R&D in South Africa that compares favourably with long-run return levels that have been established for the northern hemisphere.

NOTES:

1. There is a huge volume of literature on the returns to agricultural research. See, for example, Echeverria (1990) and Thirtle and Bottomley (1992).
2. Thirtle and Van Zyl (1994) used the two-stage decomposition approach to determine the returns to R&D and extension in South Africa and it is used here to predetermine the length and shape of the lags for the technology variables. These are then imposed in estimating the profit function, the results of which show that technical change is not Hicks neutral. This violates the assumptions implicit to the two-stage approach, which may give biased results.

DIEWERT, W.E., (1974). "Applications of Duality Theory", in M.D. Intriligator and D.A. Kendrick (eds.), *Frontiers of Quantitative Economics: Volume 1*, North-Holland Publishing Company, Amsterdam.

ECHEVERRIA, R. (1990). (ed.) *Methods for Diagnosing Research System Constraints and Assessing the Impact of Agricultural Research*. ISNAR, Hague.

EVENSON, R.E., LANDAU, D. & BALLOU, D. (1987). "Agricultural Productivity Measures for US State", Proceedings of a Symposium, Atlanta, Georgia, Jan. 29-30, 1987, Miscellaneous Publication 52-1987, Agricultural Experiment Station, University of Minnesota, St. Paul, MN.

GEWEKE, J. & MEESE, R. (1981). "Estimation of Regression Models of Finite but Unknown Order", *International Economic Review*, 20:203-216.

GRILICHES, Z. (1979). "Issues in Assessing Contribution of R&D to Productivity Growth", *The Journal of Economics*, Spring, 10(1): 92-116.

HUFFMAN, W.E. (1987). "Research Bias Effects on Input-Output Decisions: An Application to U.S. Corn Grain Farms", Proceedings of a Symposium, Atlanta, Georgia, Jan. 29-30, 1987, Miscellaneous Publication 52-1987, Agricultural Experiment Station, University of Minnesota, St. Paul, Minnesota.

ITO, J. (1991). "Assessing the Returns of Research Expenditures on Post-War Japanese Agricultural Production", Research Paper No. 7, National Research Institute of Agricultural Economics, Ministry of Agriculture, Forestry and Fisheries, Tokyo.

KHATRI, Y.J. (1994). Technical Change and Returns to Research in UK Agriculture, 1953-1988. Ph.D. Dissertation, University of Reading, England.

KHATRI, Y.J., JAYNE, T. & THIRTEL, C. (1994a). "A Profit Function Approach to the Efficiency Aspects of Land Reform in Zimbabwe", XXI IAAE International Conference, Harare, Zimbabwe, August 1994.

KHATRI, Y.J., THIRTEL, C. & VAN ZYL, J. (1994b). "The Rate of Return to Agricultural Research in South Africa: The Two-Stage Approach", mimeo, University of Pretoria, South Africa.

KHATRI, Y.J., THIRTEL, C. & VAN ZYL, J. (1994c). "South African Agricultural Competitiveness: A Profit Function Approach to the Effects of Policies on Technology", XXI IAAE International Conference, Harare, Zimbabwe, August 1994.

KHATRI, Y.J., THIRTEL, C. & VAN ZYL, J. (1994d). "Public R&D as a Source of Productivity Change in South African Agriculture", *SA Journal of Science*, 92:143-150.

KIRSTEN, J.F. & VAN ZYL, J. (1996). "Contemporary Policy Environment: Undoing the Legacies of the Past", in J. van Zyl, J.F. Kirsten and H. Binswanger (eds.), *Policies, Markets and Mechanisms*, Edward Elgar, Aldershot.

Financial Ratios Among Farmers During a Period of Financial Setbacks: Grain Farmers in Western Transvaal, 1981/82", *Agrekon* 26(1).

VAN SCHALKWYK, H.D., VAN ZYL, J., VAN ROOYEN, C.J. & KIRSTEN, J.F. (1994). "The Agricultural Land Market in South Africa: Options for Land Reform", Paper presented at the XXI IAAE International Conference, Harare, Zimbabwe, August 1994.

VAN ZYL, J. (1986). "Elasticity of Factor Substitution II: An Empirical Application", *Agrekon*, 25(3).

VAN ZYL, J., FÉNYES, T.I. & VINK, N. (1987). "Labour-related Structural Trends in South African Maize Production", *Agricultural Economics*, 1(3):241-258.