



*The World's Largest Open Access Agricultural & Applied Economics Digital Library*

**This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.**

**Help ensure our sustainability.**

Give to AgEcon Search

AgEcon Search  
<http://ageconsearch.umn.edu>  
[aesearch@umn.edu](mailto:aesearch@umn.edu)

*Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.*

*No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.*

## ECONOMIC EVALUATION OF THE MILK GROWTH HORMONE

*J.A. du Plessis*

*Centre for Farm Management, University of the Free State*

*P.J. Potgieter*

*Department of Agricultural Economics, University of the Free State*

The purpose of this paper is to discuss development of BST with respect to profitability at farm level. Appropriateness as technology is increased by the model conducted previously. On-farm response trials are conducted amongst existing users of BST provided. The model and procedures of analysis are flexible. Results indicated that, given the conditions of research, to improve profitability of certain dairy businesses apart from management, are the milk price, response to BST and the cost of BST. BST has a negative effect on profitability of BST.

### 1. INTRODUCTION

The purpose of this paper is to discuss development of BST with respect to profitability at farm level. Supplemental application of synthetic Somatotropin (BST) with respect to profitability at farm level. Commercial utilisation has not yet been approved in the European Union and in South Africa some milk processors have publicly voiced strong objections against BST, while others are in favor of it. Also, economic and management implications of BST utilisation have previously been studied under South African conditions, causing uncertainty regarding its appropriateness as a technology to enhance profitability.

Section 2 explains the method of research, followed by the results and conclusions in Section 3 and an epilogue in Section 4.

### 2. METHOD OF RESEARCH

Research consisted of three parts, of which detailed descriptions can be obtained from Du Plessis (1996). *Firstly*, a personal telephonic survey was conducted amongst existing users of BST in order to collect data to be used in economic analysis, as well as to scrutinize management implications of BST utilisation in practice. *Secondly*, on-farm BST response trials were performed at three case study sites, the purpose of which was to determine the increase in milk production as a result of BST application under specific farming conditions and to gather data for economic analysis. *Thirdly*, an economic and management simulation model was developed and used to examine the impact of BST on milk production, feed consumption and profitability of dairy enterprises under conditions of which the research was conducted.

The research was limited to specific conditions. Geographically it was restricted to the Free State province, and then also to farmers who adhere to average management practices and produce relatively high milk yields<sup>1</sup> (although this category of farmers is in minority, they are responsible for the largest share of

Bethlehem (eastern Free State). Two of the farmers farmed with Holstein animals and one with Ayrshires. None of the farmers applied BST previously. Herd size varied between 133 and 56 cows in milk, average milk yield between 7 734 and 8 920 kilograms per cow over 300 days and inter calving period between 396 and 423 days. All three made use of total mixed rations with four different feeding groups, one being cows in first lactation and the others based on yield differences amongst second and later lactating cows. Rations were fed on *ad lib* basis, so that feed intake could increase when milk production increased. Cows were moved to the next feeding group when milk yield increased above a certain level, so that more concentrated rations in terms of energy and protein were available with higher levels of production.

Feeding practices were particularly important determinants in case study selection, because feeding requirements increase when milk production increases as a result of BST application. According to Peel and Bauman (1987), BST treated cows compare to genetically superior animals of similar production levels, while genetic differences are mainly accounted for through feed intake and regulation of nutrients. As a result, a vital part of the case study research comprised analysis of individual feed components, ration composition and intake levels, to confirm that feeding were according to NRC (1988) recommendations. Annex B of Du Plessis (1996) contains details of all three aspects for each case study, where it was shown that feeding practices were in accordance with NRC standards.

BST response trials at each case study site consisted of selecting control and treatment groups, BST treatment of the latter, recording of milk yields and processing of results. The first two aspects receive further attention. In order to select control and treatment groups, pregnant cows in health, going into second or higher lactation with condition scoring at least 2,5 (Wildman *et al.*, 1982) and no visual deficiencies to udders or legs, were selected. These criteria correspond to recommendations made by manufacturers of BST (Twigge, 1994). There were proceeded to divide selected cows into two groups with comparable age, production potential and days in milk, after which a treatment group were randomly chosen. Treatment groups were treated four times (every 14 days) with *Lactatropin*<sup>TM</sup> over a period of eight weeks, while detailed records were noted. Apart from BST application, animals of both groups were treated according to normal farming practices.

### 2.3 Model development and procedures of profitability analysis

Although the model was primarily used to determine the influence of BST on decision variables, it was developed to be flexible and could be used for a wide range of economic analysis. It may be described as a functional, time step dynamic, Monte Carlo simulation model that may either be operated on deterministic or stochastic basis<sup>2</sup>. The model was developed on spreadsheet and stochastic appliance involves risk analysis with aid of @Risk add-in. Input to the model include initial herd composition and herd flow parameters (such as mortality and conception rates), feed ration composition, feed intake, group composition

provide a basis for sensitivity analysis. Use of 10 or 20 percent intervals around expected values instead, makes sensitivity analysis worth while.

- The detrimental effects of risk analysis by "trial and error" are beyond speculation. In other words, selecting too many variables to be stochastic, while paying sufficient attention to probability distributions, haphazard use of normal/triangular/uniform distributions and ignore dependency between variables, will do more harm than good.

Analysis was extended to study the effect of production quotas. Six strategies, reflecting combinations of BST application levels and sale of productive dairy cows, were evaluated under different quota levels (Du Plessis, 1996: 73-78).

### 3. RESULTS AND CONCLUSIONS

#### 3.1 Most important findings revealed by survey

Nine of the ten respondents farmed with Holstein Friesians while one farmed with Ayrshires. Herd size varied between 55 and 400 cows in milk (average 186), between 6 300 and 11 000 kilogram milk per cow per year (average 8 000) and inter calving periods between 372 and 430 days (average 400).

With regard to *feeding*, all the respondents employed total mixed rations as feeding system and they emphasised quality of roughage and balanced ration as preconditions for successful milk production. Respondents had more than one feeding group, while one fed the same ration to all of his cows. All of the respondents said that feeding requirements of treated cows were similar as that of untreated cows in the same level of milk production. This is in harmony with findings of Chalupa and Galligan (1989).

With regard to *application* of BST, it was concluded that respondents generally adhered to recommendations of manufacturers of BST.

With regard to *animal health and reproduction*, seven respondents indicated that BST had no influence on animal health. Three indicated that BST treated animals experienced a slight tendency to be more prone to disease, but no more than untreated animals on similar production levels. According to all respondents, the calving period depends on timing of application - when BST is applied after pregnancy, no influence was experienced apart from the fact that inter calving periods of treated cows compared with those of untreated cows were similar production levels. These results correspond with findings of Bauman (1992) and Phillips (1982).

Table 1: Average increase in average milk production

|                    | Case A |
|--------------------|--------|
| Average            | 4,29   |
| Standard deviation | 1,57   |
| - 95% interval     | 3,87   |
| + 95% interval     | 4,71   |

\* Average kilogram milk per cow per day over a two year period.

Table 2: Financial ratio analysis of BST utilisation

|                                              | Cas |
|----------------------------------------------|-----|
| <u>Feed cost as % of gross income:</u>       |     |
| Without BST                                  | 67, |
| With BST                                     | 65, |
| <u>Production cost as % of gross income:</u> |     |
| Without BST                                  | 81, |
| With BST                                     | 80, |
| <u>Profitability ratio:*</u>                 |     |
| Without BST                                  | 21, |
| With BST                                     | 23, |
| <u>Cash inflow as % of cash outflow:</u>     |     |
| Without BST                                  | 11, |
| With BST                                     | 11  |

\* Gross margin as percentage of total capital employed in

production as a consequence of BST application. It furthermore indicated that within the context of research, chances that use of BST would not be profitable, were insignificant. Break even points for all four of these critical variables were comfortably outside predetermined minimum/maximum limits (break even was defined to be the point where profitability with BST treatment equalled profitability in absence of BST).

Also, even when the price of milk and response milk yield were simultaneously pinned at their minimum values, while cost of BST and feed were set to their maximum values, use of BST still lead to improved profitability. This means that sensitivity analysis indicated that no further risk analysis was needed to investigate profitability of BST under circumstances of research. However, Monte Carlo simulation analysis was performed by Du Plessis (1996) to illustrate capabilities of the model. In doing this, values of the four critical values were derived from probability distributions, while other variables were fixed at expected values.

#### 3.4 Impact of milk production quotas on profitability of BST utilisation

It was found that BST utilisation was profitable in situations where quotas were introduced, albeit less profitable than in situations where no quotas applied. This result corresponds with findings of Giesen, Oskam and Berentsen (1989). Optimum management strategies in view of quotas depended on the specific (especially cash flow) situation of business, time period of quota and choice indicator (for example profitability versus cash flow). In general, the most profitable strategy was to manipulate BST and sale of lactating cows in such a way that milk production approached the upper limits of quota.

#### 4. EPILOGUE

A computer spreadsheet model was developed and used to evaluate profitability of BST use under specific local conditions. On-farm response trials at three representative case study sites and a personal telephonic survey conducted amongst existing users of BST provided a valuable basis to develop and apply the model. The model and procedures of analysis are flexible and could be applied to other problems of dairy farm management. Results indicated that, given the

Ltd, Essex, England.

DU PLESSIS, J.A. (1996). Ekonomiese bestuursimplikasies op plaasvlak met die gebruik van die groeihormoon Bovine Somatotropin (BST) in Vrystaat. Unpublished M.Sc.(Agric) dissertation, University of the Orange Free State, Bloemfontein.

GIESEN, G.W.J., OSKAM, A.J. & BERENBROEK, P.B.M. (1989). Expected economic effects of BST on the Netherlands. *Agricultural Economics*, Vol. 3, 248.

HARTNELL, G.F., FRANSON, S.E., BAUMAN, D.E., HEAD, H.H., HUBER, J.T., LAMB, R.C., MAIER, K.S., COLE, W.J., & HINTZ, R.L. (1991). Evaluation of sometribove in a prolonged-release system for lactating dairy cows: production responses. *Journal of Dairy Science*, Vol. 74:2645.

HERTZ, D.B. (1964). Risk analysis in capital investment. *Harvard Business Review*. Reprint from Harvard Business Review, September-October 1964, 169-181.

HERTZ, D.B. & THOMAS, H. (1983). Risk analysis and its applications. New York: Wiley.

LAW, A.M. & KELTON, W.D., (1990). Simulation modeling and analysis. New York: McGraw-Hill.

MARSH, W.E. (1986). Economic decision making for health and management in livestock herds: Examples of complex problems through computer simulation. Thesis. University of Minnesota. U.M.I. Dissertation services, Ann Arbor, Michigan.

NRC (1988). Nutrient Requirements of Dairy Cattle. Sixth revised ed. National Research Council, National Academy Press, Washington, D.C.