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ABSTRACT

This study proposes a new approach to the estimation of the time series properties of daily

volatility in financial markets. The estimation technique is a two stage procedure which initially

estimates the volatility of any particular trading day from intraday data. This procedure is

implemented over a number of trading days to produce a series of daily volatility estimates. A

general volatility framework is also developed and the series of daily volatility estimates can be

put into this framework to estimate the time series properties of daily volatility. Furthermore,

with this new approach it is shown that the time series properties of daily volatility can be

modelled in a wide range of functional forms, including those functional forms which capture

asymmetric information effects.

• The authors wish to thank Paul Kaman, Keith McLaren, Maxwell King, Neil Shephard, Chris
Ulph, Rodney Strachan and participants at the 1998 Econometric Society Australasian Meeting
for their many invaluable comments. All errors and omissions are however the sole
responsibility of the authors.



A GENERAL VOLATILITY FRAMEWORK
AND THE

GENERALISED HISTORICAL VOLATILITY ESTIMATOR.

ABSTRACT
This study proposes a new approach to the estimation of the time series properties
of daily volatility in financial markets. The estimation technique is a two stage
procedure which initially estimates the volatility of any particular trading day from
intraday data. This procedure is implemented over a number of trading days to
produce a series of daily volatility estimates. A general volatility framework is also
developed and the series of daily volatility estimates can be put into this framework
to estimate the time series properties of daily volatility. Furthermore, with this new
approach it is shown that the time series properties of daily volatility can be
modelled in a wide range of functional forms, including those functional forms
which capture asymmetric information effects.

In recent financial market literature, the price of a security is typically assumed to follow a

geometric Brownian motion process in continuous time. A discrete time version of the

geometric Brownian motion model is a random walk in the logarithm of prices,

Loge(p,)= p+ Loge(p 1)+e„ (1)

where et iid N(0, c2), p, is the security price at time t and p is the expected rate of return

on pt. Defining the return at time t to be r, = Loge(P/ ), the return series can thus be
Pt-1

modelled as r, = p+ e,. An estimate of the volatility of the return series is given by Figlewski

(1997).

E(ri-r)2

1=1
(2)

where A is the volatility estimator and F = r, . Equation (2) is usually referred to as the
n

historical volatility estimator and implicitly assumes that daily volatility is constant. However

daily volatility modelling in recent times has been dominated by the ARCH family of volatility
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models and the more recent range of stochastic volatility models, both of which capture the
notion that daily volatility is time varying.

This paper proposes a new approach to the estimation of the time series properties of
daily volatility estimated from intraday data. This goal is achieved with the development of two
theoretical models. Initially a general volatility framework is developed in section I which is
general enough to encompass most existing time varying volatility models, that is the ARCH
family of volatility models and the stochastic volatility models.

The second theoretical development is the generalised historical volatility estimator
which can be used to estimate daily volatility from intraday data. Given that the intraday return

series on any particular trading day is highly autocorrelated, this volatility estimator can

estimate the volatility of an autocorrelated return series to produce a daily volatility estimate A,

. Then a series of daily volatility estimates can be estimated 1A.11 for T trading days from the

intraday data from these trading days. It is this series of daily volatility estimates placed with

the general volatility framework that allows the researcher to model the time series properties of

daily volatility.

The literature concerning the estimation of daily volatility from intraday data is

remarkably scarce. Beckers (1983), Anderson (1995), Parkinson (1980) and Rogers and

Satchel' (1991) all propose estimators of daily volatility based upon daily open, close, high and

low prices. Anderson and Bollerslev (1998) propose an efficient daily volatility estimator based

upon the sum of five minute absolute returns. All of these daily volatility estimators are based

upon the -assumption that the intraday return series can be modelled as a continuous time

Brownian motion process or as strict white noise. However recent research into finance market

microstructure suggests that the intraday return series is autocorrelated, a stylised fact not

captured in the geometric Brownian motion model.

In section II, a model of the data generating process for the intraday return series is

developed. This model explicitly assumes the intraday return series for each trading day can be

characterised by a unique ARMA model. In section III two estimators of daily volatility are

considered, the historical volatility estimator and the simple volatility estimator. The historical

volatility estimator will be seen to be a biased estimator of daily volatility whilst the simple
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daily volatility estimator is an unbiased estimator of daily volatility, however it is inefficient,
because it fails to use all available intraday information.

In section IV, new specifications of volatility are proposed which allow us to model the
volatility of an autocorrelated return series. Given that the intraday return series is often
autocorrelated, this new specification will allow the finance researcher to estimate daily
volatility from the intraday return series. This new specification of volatility can be seen as a
generalisation of the historical volatility estimator, and thus shall be referred to as the
generalised historical volatility estimator. Anderson and Boilerslev (1998, p255) note that

" A significant finding to emerge from our study is that high-frequency returns
contain valuable information for the measurement of volatility at the daily level. ....
These results encourage the development of new and improved techniques for the
estimation and prediction of daily or lower frequency volatility that explicitly
incorporate the information in high frequency returns."

This paper attempts to address the problem articulated by Anderson and Boilerslev.

The discussion will then explore various methods of modelling the type of

autocorrelation typically found in intraday data. A key finding of this section is that if the

intraday return process can be modelled as an ARMA(p,q) process, then daily volatility can be

expressed in terms of the parameters of that ARMA(p,q) model.

Furthermore, it will be shown that daily volatility can be estimated from, for example

transaction returns, five minute returns, ten minute returns or any other sampling interval. It will

be demonstrated that by utilising higher sampling frequencies, usually an increase the efficiency

of the proposed daily volatility estimator will result. Monte Carlo evidence is presented in

section V which shows that the generalised historical volatility estimator is both unbiased and

generally more efficient as the intraday sampling frequency of returns increases.

In section VI, the generalised historical volatility estimator is applied to S&P 500 Index

futures contracts. Evidence suggests that the generalised historical volatility estimator correlates

well with proxies for information arrival. In section VII, the validity of the generalised

historical volatility estimator is further verified by showing that scaled daily returns,

conditioned upon an unbiased daily volatility estimator, should follow a standard normal

distribution. This is empirically verified with the generalised historical volatility estimator
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based upon transactions data. In section VIII, the estimation of general volatility framework
models is considered under a number of different functional forms. Evidence is presented in

section IX which brings into question the specification of the GARCH(1,1) model of daily

volatility. Section X concludes the discussion.

. A General Volatility Framework

Anderson (1994) defines a volatility process {A,} 1 in terms of the model

R, Pt 4.. AtZt ,

where Rt is the proportional daily return, p, is the mean daily return, A, is the daily volatility of

day t and Zt iid(0,1). In the spirit of Anderson (1994), we shall furthermore assume that daily

volatility in a financial market is driven by an unobserved activity variable Kt, and that daily

volatility is a function of this activity variable A, = g(Kt). This activity variable we also

assume drives the daily volume and the number of intraday transactions. We shall further

assume that Kt has an autoregressive and moving average representation.

Kt 'al+ flet-1+011(1-1+ — +OpKI-p et-get-q (4)

where 0, is a vector of explanatory variables determined at time t-1; co ,0i3Oi (i > 0) are

fixed parameters with E0, <1; /3 is a vector of parameters; Var(et). o-2, , and e, is strict

white noise. Equations (3) and (4) constitute a well defined stochastic volatility model if Z,

and s, are independent. Note that A, is interpreted as the volatility of R, on day t in the sense

that Var(RtlEt_l,et)= A2„ where E,_, is the information set at time t-1. This functional form for

Kt clearly differs from Anderson's (1994) specification of Kt, namely

Kt = co+ fliCt_i +fr +aKt_ilp„ (5)

where a,j0,7> 0, a+ fl> 0 and a +y > 0 . Anderson specifies this functional form because by

appropriately restricting the parameters a, /3 and y as well as the functional form of K„ it can

be seen that stochastic volatility generalisations of the GARCH(1,1) and EGARCH(1,1) models

(3)
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are obtained. The lognormal stochastic volatility model is also obtained with appropriate
restrictions upon (4). Certainly the ARCH family of volatility models cannot be defined within
this framework. It is for this reason that we believe (4) will be general enough to encompass a

wide range of stochastic volatility models for the volatility process as well as the ARCH family

of volatility models. The specification of volatility in (4) shall be referred to as the general

volatility framework.

The variance of et is of particular importance in that if we restrict Var(et)= 0, we can,

with other suitable restrictions define the ARCH family of volatility models, with the exception

of integrated and fractionally integrated ARCH volatility models. For example the

GARCH(1,1) model (see Bollerslev, 1986) is defined as

R, = e, , h, = le, i) i> 0, h = ci.)+cce,2 fill, i • (6)

Now letting A2, = K, Var(et)= 0 , p=1 and Gt.., =R, = e then (6) reduces to

A2t = co ± + /34 This GARCH(1,1) model is not a genuine stochastic volatility model in

the sense that the level of volatility at time t is driven by a stochastic process, but rather it is

fully determined at time t —1 by A,_, and R_1. It is the inclusion of the contemporaneous

random variable s, that defines a genuine stochastic volatility process. The EGARCH(1,1)

model (see Nelson, 1989), captures the effect of asymmetric information on volatility. It is

defined as

R, = e„ hi =Var(etie,) i> 0,

et-i let-11 
litih7:

(7)

where co,/3,y and a are constant parameters. The EGARCH(1,1) model can also be defined

within the general volatility framework with the restrictions K = Loge(A2,) , Var(e t) = 0 ,p=1

and 0=y. 
e
'l + a le t -11 — —

2 
. The GJR model (see Glosten, Jagannathan and Runkle,At_1 A,

1990) like the EGARCH(1,1) model, captures the effect of asymmetric information on

volatility. The model is defined as
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R1 =e„11,=Var(etie1_1) i> 0, (8)

ht= co+ f3h1-1+aet2 1+ 7Stliet2 p

where co,/3,y and a are constant parameters, and St- = 1 if e, <0, St- = 0 otherwise.

Again, this model can be put into the general volatility framework with the restrictions A2, =

, Var(s3= 0 , p=1 and . The lognormal stochastic volatility model (see

Anderson, 1994) is obtained with the restrictions Kt = Loge (A t) , 0i =0 (i>0), Var(s,)> 0,

p=1, and 0,_, =0,

Loge(At). co+ OLog(A1_1)+ et. (9)

Model (9) is of particular interest because Var(e,)> 0 and it is this non zero variance that

allows the model to be a genuine stochastic volatility model in the sense that the level of

volatility at time t is not fully determined by any other set of variables determined at time t —1.

A wide range of other functional forms could in principle be defined by specifying the

functional form of g(K) and 0 along withp, Oi (i> 0), and Var(et).

Estimation of stochastic volatility models is difficult using maximum likelihood

methods since K1 is unobservable. A number of other estimation techniques for stochastic

volatility models have thus been proposed. In particular Harvey et al. (1994) use quasi-

maximum likelihood techniques, Jacquier et al. (1994) used Bayesian Markov chain Monte

Carlo methods, Danielsson (1994) suggested simulated maximum likelihood whilst Anderson

(1994) employed a GMM technique. In later sections we shall implement a rather unorthodox

procedure to estimate general stochastic volatility models (that is when Var(e,)> 0). We

exploit the fact that in many situations high frequency data is available, and this data can be

used to estimate daily volatility. It is a two stage estimation procedure in which daily volatility

on any particular trading day A„ is estimated from intraday data to produce a series a daily

volatility estimates 1A11 T for T trading days with the generalised historical volatility1.1

estimator. The second stage of the estimation procedure involves initially specifying the

functional form of g(K) and ® t_i along with p and allowing 0 (i> 0) to be non-zero. By

letting Var(ez)> 0, we have in effect an ARMA(p,q) model of daily volatility and this can be
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estimated using maximum likelihood methods. To estimate (4) however we require an estimate

of the volatility of any particular trading day. In later sections, we consider three estimators of

daily volatility from intraday data, the historical, the simple, and the generalised historical

volatility estimators.

II. A Model for Intraday Returns

In recent years the finance researcher has had access to the intraday price series, whether this be

a transaction price series, five minute price series or any other sampling frequency of prices. Let

Pt be the ith price on day t, and let n, be the number of prices on this day. A series of intraday

returns are defined from this price series as ri j = Log(e --&-- , where r i , is the ith intraday return
Pi-1J

on day t. The relationship between intraday returns and the daily return R, is given

by R, = . Combining this definition with (3), we have daily volatility defined as
i=1

n,

A2t =Var(Rtit , e t) =Var(Erialt t_i,e t) . (10)

Now intraday data can be used to estimate daily volatility A„ if one is able to specify a

particular model for how the intraday return series fri., lin:1 evolves throughout any particular

trading day. Previous empirical research into the intraday return series has found returns to be

highly autocorrelated. Autocorrelation in the intraday return series could be the result of the bid-

ask spread (see Roll, 1984), trading strategies employed by informed traders (see Kyle, 1985),

discreteness in prices (see Harris, 1990), non-continuous trading (see Stoll and Whaley, 1990),

and other sources. We consequently postulate that intraday returns can be modelled as a unique

ARMA process each trading day r = Pt 4- r• y " + ± et + + - • + t_gfej_qi,t

which can be equivalently written as

Ot0-)P, A Ot (1)8, (L) e
q51(L)r1 =

nt Irit0,(1) "
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where L is the usual lag operator, 01 (L) =1— 01,1-L — 02,1L2 —••• —

9 t (L) =1— 01,1L — 92,tL2 — --- — 0 1,,,tLqi , p, and q, are the orders of the autoregressive and

moving average components respectively on day t, 00 and Oia are the ith autoregressive and

moving average parameters respectively on day t, n, is the number of intraday returns, p, is the

mean daily return for day t and ei., — iid N(0,1) .

Provided the orders of the AR(.) and MA(.) process (p, and q1) are chosen using an

appropriate data dependent criterion such as the BIC, this class of models can encompass a wide

range of stationary processes (see Berk, 1974 and Ng and Perron, 1993). This assumption is

very much in the spirit of Hasbrouck and Ho (1987) and Stoll and Whaley (1990) who also

model the intraday return series as a stationary ARMA process.

However (11) does not capture some stylised facts regarding the data generating process

for intraday returns. In particular, intraday seasonality in volatility is well established in the

literature (see Bollerslev and Anderson, 1997), particularly at the open and close of trading as

well as at predicable times when other markets open and close. Furthermore, strategic

(informed) trading may occur at any time during the trading day giving rise to unpredictable

periods when trading is more intense and more volatile than usual. Hence intraday- seasonality

in volatility introduces predictable periods of volatility clustering whilst strategic trading

introduces unpredictable periods of volatility clustering in the intraday return series. However,

to date no definitive model for the data generating process of the intraday return process which

includes volatility clustering has yet been developed which is supported by rigorous empirical

evidence. Consequently the covariance stationarity assumption of the intraday return series may

at first sight be considered a rather bold assumption.

Clearly then (11) is a considerable simplification of the true data generating process.

However our focus is on the variance of daily returns and how this relates to the variance of

intraday returns. Volatility clustering is a form of heteroskedasticity and consequently the

parameters of the ARMA model for a particular trading day will be less efficiently estimated

but nonetheless consistently estimated if we choose to ignore the time variation in conditional

variance through the trading day. Given the very large intraday datasets, the inefficiency of the

parameter estimates will be of little consequence in practice. The evidence we present in later
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sections suggests that very little if any systematic bias in daily volatility estimates does occur by
assuming a covariance stationary intraday return series.

We now show in the following theorem that the assumed data generating process for ria
in (11) is consistent with how R, is assumed to evolve in (3).

n,

Theorem. If ro is defined by (11), and R, =Eri,, then for large n, we can define R,
i=1

by R, = p, A,Z, where zi — N(0,1).

Proof. See appendix (1).

Our aim is to estimate the parameters of (11) and various restricted versions of (4) for a

given g(). The general approach we advocate is as follows

(a) Ignore the interday relationships between the A, 's which are implied by (4),

and estimate A, for a given trading day using the intraday return series and the

assumed data generating process in (11).

(b) Use the series of estimates ofA, to estimate the parameters of (11) by

standard methods for estimating ARMA models.

Point (a) above . is unconventional in that daily volatility is estimated from intraday data.

However from the data generating process we have assumed for the intraday return process

(11), ;sit can be considered to be a drawing from a conditionally normal distribution with
\ A2

variance Var(r1aje ,) cc--L . Our sample of n, intraday observations can thus be used to

estimate A .

Section III will focus on two estimators of A„ the simple and the historical daily

volatility estimators and the limitations of these two daily volatility estimators, namely

inefficiency and bias respectively. In section IV the generalised historical daily volatility

estimator, which is both an efficient and consistent estimator of daily volatility is developed.
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Ill. Two Estimators of Daily Volatility

If we use no intraday data to estimate daily volatility, then daily volatility can nonetheless be

estimated from daily close to close prices. Initially we define a random variable P,c, as the

closing price in a financial market on day t. We have already defined the daily volatility

parameter A, for day t from the model R, = pi + A,Z, as A2, = Var(Rilt,_,,e,) ,

pC

= Loge(p ). A possible estimator for A, is A, =1R, I if we assume p, = 0 (an

assumption that we will return to later). If it is assumed that Z, is normally distributed then

R, 2
Z, = —

A, 
— x(1) conditional on A„ and it is well known that E[427]= . Thus 1R1 1 would

be a biased estimator of A1. However, an unbiased estimator is easy to construct

IRt I A, = .

127:-

(12)

This estimator of daily volatility is unbiased and shall be referred to as the simple daily

volatility estimator. Of course, this estimator is inconsistent, as it only uses one observation in

constructing the estimate, so it is not a very viable estimator, but its unbiasedness property will

be useful for later comparison. Anderson and Boilerslev (1998) also use this estimator of daily

volatility.

Other estimators such as the historical and generalised historical volatility estimator use

averages of r to compute A.2„ and hence will have distributions which are functions of a

x(2,20 random variable where n, is the number of intraday returns on day t. For any reasonably

sized n„ it is easily seen that E[Ad VEV2,1, and for a very large n, no correction for bias

would be necessary.

We now consider the historical volatility estimator of daily volatility calculated from all

intraday returns. If in (11) we assume intraday returns are not autocorrelated then

0,(L)= 8,(L) =1 and (11) reduces to
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(13)

\ A2
Note that in (13), Var(ri,11A1) = and hence A, can be estimated as A, = VntVar(ri,t)

nt

where Var(ri.t)=
„,

 E(rit —02n— l. 1

However at the intraday level of analysis, the return series may well contain some

autocorrelation, violating the assumption that ri is iid. Thus equation (13) will be of little

practical use in estimating daily volatility from an intraday return series since equation (13)

assumes an iid return series.

It is for this reason that the finance researcher typically uses daily, weekly or even

monthly returns. These sampling intervals are necessary to avoid the autocorrelation found in

financial return time series which can bias volatility estimates. Unfortunately, by using these

large sampling intervals a price is paid in terms of losing a large number of observations. It is

generally found that data based on small sampling intervals are more highly autocorrelated than

those based on larger sampling intervals. Thus the estimation of volatility based upon these

small sampling intervals will be more efficient (in the sense of using more data), but will also

be more biased if we fail to take account of the autocorrelation in returns.

IV. The Generalised Historical Volatility Estimator

It is well known that the intraday return series can be autocorrelated and consequently we will

assume that conditional on A,, ri, is stationary and that it can be modelled as a covariance

stationary ARMA process. Recall from (11) that an ARMA process in the intraday return series

0, (1),u, A,0,(1)0, (L) 
es,. Now definingfor day t can be written in the form 0,(L),=  

11t 117-1,0,(1)

At0t(1) Ot(l)lit=  and Pt =
Vntet(1) nt

equation (11) can be written as

0, (L), = + t(L)zi,„ where Var(zi t). 0-2 
Rto t2 (1) . We thus have
n,0,2(1)
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= [et (1(1) ]2 2

) crt • (14)

An expression for daily volatility has thus been developed in terms of the parameters of

an ARMA(p,q) model for ria. The model can be estimated by firstly estimating the parameters

of the ARMA(p,q) process and then substituting these estimates into (14). This methodology

will give us consistent estimates of daily volatility since as n, --> co, plim(b1,,—o)=0,

0 and pliin(6- — 6 ,2)= 0 . The estimator is thus defined as

2

Â: =  le1 ,1 -

-C'bPr 

, (15)

Thus far it has been assumed that the transaction return series can be modelled as an

ARMA process, and consequently the parameters of that ARMA process can be used to

calculate daily volatility. However the data from the transaction return series may be

unavailable, and only data for the one minute or five minute return series may be available for

example. The generalised historical volatility estimator (15) can be estimated from an intraday

return series of any sampling frequency. However as more intraday returns are used to calculate

daily volatility, an increase in the efficiency of the estimator should result.

V. A Monte Carlo Experiment

A Monte Carlo experiment was conducted to determine the relative efficiency of the generalised

historical volatility estimator. A series of 2000 intraday returns were generated from an

ARMA(1,1), MA(1), AR(0), AR(1), AR(2), AR(3) and AR(4) process. The disturbance term in

each model was drawn from the standard normal distribution. An ARMA(1,1), MA(1), AR(1),

AR(2) to AR(10) model was then fitted to the generated return series and the Schwartz

Information Criterion (BIC) statistic (-Loge(BIC)= Loge(at2 )+ KtLoge(n,)) of each of these
n

models was recorded where a2, is the maximum likelihood estimate of the error variance and Kt

is the number of parameters in the model on day t. The 'best' model of the generated return

series was chosen according the criteria of maximising the BIC. The parameters of this 'best'
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model were then used to estimate the volatility of the generated return series using the

generalised historical estimator.

Two subsets of the 2000 generated returns were then also considered. A subset using

every 4th price, and a subset using every 20th price were then used to generate a series of returns

with 500 and 100 observations respectively. This process is in some ways analogous to

estimating daily volatility from either transaction returns, one minute returns or the five minute

return series. Also the simple volatility estimator was calculated from the return series and the

results reported in the table titled 'n=1'. The two new return series (of 500 and 100

observations) were then modelled as an ARMA(p,q) process and the parameters of the 'best'

model were used to estimate the volatility of the return series using the generalised historical

volaility estimator. This experiment was repeated 1000 times. The mean, standard deviation,

bias and root mean square error (RMSE) of the estimated daily volatility were calculated for the

seven ARMA models considered. Results are shown in Appendix 2. .

Note that in all the models of the intraday return series, volatility estimates are relatively

unbiased no matter what the sampling frequency. However the standard deviation of volatility

estimates (or efficiency of volatility estimates) shows that the estimator is most efficient with

the larger sample size regardless of the nature of the 'true' series. In all models tested the

efficiency decreased as sampling frequencies of n=500, n=100 and n=1 were used respectively.

These results lend evidence to the belief that higher sampling frequencies generally lead to

more efficient estimates of generalised historical volatility when the return series are correctly

modelled as an ARMA(p,q) process. The RMSE is generally at its minimum when higher

sampling frequencies are used.

It is of some interest to see what biases may result in daily volatility estimates if the

intraday return process is generated by some type of ARMA process, but daily volatility is

estimated assuming the return series can be modelled as white noise or as an MA(1) process.

The motivation for modelling the return process as an MA(1) model is that it is not unusual in

the finance literature to assume that the intraday return series can be approximated by an MA(1)

process (see for example Anderson and Bollerslev, 1997). The Monte Carlo experiment

considered earlier in this section is repeated, only this time we do not find the 'best' ARMA

model to fit the data, rather we calculate the generalised historical volatility estimator modelling

the given return series as an MA(1) or white noise process. This exercise allows us to quantify
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the biases and inefficiencies that occur in estimating daily volatility when the time series
properties of the intraday return process is mis-specified. In Appendix 3 we consider the case
when the historical volatility estimator is used estimate daily volatility when the 'true' return
process is either an ARMA(1,1), MA(1), AR(1), AR(2), AR(3) or AR(4) process. In Appendix
4 the Monte Carlo experiment is repeated, however this time it is assumed the return process
can be modelled as an MA(1) process.

In the case where it is assumed the return process is white noise, the bias in volatility
estimates is at its maximum when all transactions are used (n=2000). Although in all cases the

efficiency of the historical volatility estimator increased as the sampling frequency increased,

the RMSE was at its maximum when the highest sampling frequency was used, due to

worsening bias. It is thus concluded from the Monte Carlo results in Appendix 3, that

calculating historical volatility on a return series which follows an ARIvLA process leads to very

biased estimates of daily volatility, however by using lower sampling frequencies this bias

problem can be alleviated to some extent.

In the case where it is assumed the return process follows an MA(1) process, the bias in

volatility estimates is again at its maximum when higher sampling frequencies are used and the

efficiency is at its maximum when higher sampling frequencies are used. The RMSE was

generally at its highest when all intraday returns were used with an exception being the case

when the true return generating process is ARMA(1,1). What is clear from the Monte Carlo

experiments reported in Appendix 3 and 4, is that mis-specifying the intraday return process

leads to biased estimates of daily volatility.

VI. An Analysis of S&P 500 Index Futures Daily Volatility

In this section we apply the generalised historical volatility estimator as proposed in section III

to S&P 500 Index Futures. Intraday data on S&P 500 Index Futures from the Chicago

Mercantile Exchange (CME) for the period January 1993 to December 1995 were obtained.

Data for the period 19/3/94 to 4/5/94 was not available. Trading times for the CME are 8.30 am

to 3.30 pm. 1,900,374 trades were recorded over this period. These recorded trades are not

necessarily a record of each transaction. Transactions with zero price changes are frequently not

recorded.
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It is generally agreed in the literature that ultra high frequency data on intraday returns
are highly autocorrelated. An AR(0), AR(1), AR(2) to AR(10) model with and without a
constant was estimated in the intraday transaction return series and the five minute return series
for each trading day of the S&P 500 Index futures data set in the years 1993 to 1995. The

reason for modelling the intraday return series as an AR(.) process rather than as a more general

ARMA(p,q) process is for computational tractability. An AR(.) model with sufficient lag length

can in practice capture the autocorrelation present in a ARMA(p,q) model and consequently

was considered to be an adequate model for the intraday return data generating process.

Treating event spaced data (for example transaction returns) as an ARMA process is rarely done

in practice, but should adequately capture autocorrelated behaviour if the series is not too thinly

traded. The criteria used to select the 'best' model was maximising the BIC. The frequency of

the AR(.) models chosen by the BIC for both the transaction and five minute return series are

shown in table I.

< INSERT TABLE I HERE >

S&P 500 Index Futures intraday transaction return data is often highly autocorrelated as

shown by the number of AR(.) models chosen by the BIC in table I. In fact, since this is a

intraday return series with zero returns deleted, the degree of autocorrelation present has been

considerably reduced relative to the original transaction by transaction price series (which we

do not have access to). It is of some interest that over the 740 trading days considered, no

trading days were chosen with a constant by the BIC in the transaction return series. This result

lends evidence to the hypothesis that E[R]=O. Some 92% of the 'best' models chosen in the

five minute return series were white noise. What is apparent is that the five minute return series

is far less autocorrelated than the transaction return series. Furthermore only seven trading days

were chosen with a constant by the BIC in the five minute return series. We should also note

that selecting an ARIVIA model with the BIC will underestimate the lag length of the AR(.)

model chosen as the 'best' model of the day's trading relative to using an information criteria

such as the AIC. Hence table I is based, if anything on conservative estimates of the lag length

of the AR(.) model of the intraday return series.

Six different estimators of daily volatility are estimated from the data. These daily

volatility estimators are

1. Simple Volatility.
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2. MA volatility based upon transactions returns (denoted by MA(T)).

3. MA volatility based upon 5 minute returns (MA(5)).
4. Historical volatility based upon transactions returns (Hist).

5. Generalised historical volatility based upon transactions returns (GH(T)).

6. Generalised historical volatility based upon 5 minute returns (GH(5)).

The MA volatility estimator (A2, = (1— 0 )ntal ) is included because in the literature it

is sometimes believed that the residuals from an MA(1) estimation on a five minute return

series should be uncorrelated and hence can be used for the estimation of an MA(1)-

GARCH(1,1) volatility model (see Anderson and Bollerslev 1997). The historical volatility

estimator is included to quantify what bias may occur in the estimation of daily volatility by

assuming the intraday return series is white noise when in fact the intraday return series is

highly autocorrelated. Finally both transaction and five minute returns are used to estimate daily

volatility to see if any systematic differences emerge from estimating the appropriate ARMA

model in chronological time (five minute returns) or event time (transaction returns). The six

daily volatility estimators were then used to calculate daily volatility of S&P 500 Index futures

over the period 1993 to 1995. Results are shown in figure I.

< INSERT FIGURE I HERE >

A simple visual inspection of these six graphs shows that the simple volatility estimator

has a number of estimates which are substantially larger and smaller than those for the other

estimators, probably due to the inefficiency of this daily volatility estimator. All daily volatility

estimators appear to move in a similar way through time, and appear to cluster in distinct high

and low periods.

To further compare these volatility estimators, a correlogram for these daily volatility

series, as well as for some measures (proxies) for information arrival, namely volume and the

transaction count are shown in Appendix 5. The reason for including proxies for information

arrival is that from the Mixture of Distributions Hypothesis (see Harris, 1986 and 1987), it is a

desirable property of any proposed daily volatility estimator that it should positively correlate

with proxies for information arrival. Note that two measures of volume are given.

(i) Volume(1) - the total number of contracts traded on each trading day.
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(ii) Volume(2) - Volume over the period 1993 to 1995 displays both seasonal and
trend components. The trend component is due to growth in the market whilst the
seasonal component arises because volume increases toward contract maturity
time. S&P 500 Index futures contracts expire on the third Friday of March, June,
September and December of each year. Hence Volume(2) is a deseasonalised and
detrended index of trading volume. Appendix 6 shows how this deseasonalised
and detrended index of trading volume is developed.

Referring to Appendix 5, the simple daily volatility estimates showed the least

correlation with proxies for information arrival. All other estimators performed reasonably well,

with the generalised historical volatility estimates and MA volatility estimates based upon

transactions data being the most highly correlated with proxies for information arrival overall.

VII. Conditional Normality in Returns

Recall that we define a process for daily returns by equation (3) as R, = p, A,Z„ where

Z, iid(0,1). If we condition on A, and assume Z, is normally distributed, then it follows that

R,

A,
A, — .1\T(114 ,1) . (16)

If it is further assumed that p, =0 then (16) becomes —
R,

— N(0,1) . We can now define our
A,

standardised return Z, as Z . If A, is adequately estimated then our estimate of Z„

should be distributed as N(0,1). Thus examining the distribution of Z serves as a

powerful test of the validity of the proposed volatility estimators. The standard deviation of 21
is of particular interest in that it indicates the existence of systematic bias in a proposed

volatility estimator if standard deviation of 21 is significantly different from one. Furthermore,
if a volatility estimator is valid we would expect insignificant skewness, kurtosis and

consequently the Jacque-Bera normality test would not reject 2, as being normally distributed.
If the assumed data generating process for intraday returns (11) is an adequate model then no

endogenety problem should be present in the calculation of the 2, statistic; in particular the
independence between eia and e, is crucial to being able to estimate A, from intraday data.
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In the ARCH family of models, A, is estimated as a 1-step ahead forecast from the

given estimated model. However, empirical research has shown that 2, is typically not normally

distributed under this scenario. This may well be because of contemporaneous shocks impacting

upon A, which are not captured within the ARCH specification of daily volatility. In this sense

the generalised historical volatility estimator has an unfair advantage over ARCH-type

estimators in this evaluation.

In this analysis we have added two further assumptions to Anderson's (1994) model of

daily volatility (3) in two significant ways. Firstly we have assume du, 0 . This assumption is

consistent with

(a) The empirical finding that the BIC chose models without a constant for the intraday

transaction return series without exception.

(b) Finance theory which suggests that daily returns 'should' be white noise if arbitrage

opportuniti▪ es do not exi▪ st.

The second departure from Anderson's (1994) model of daily volatility involves restricting Zt to

be iid N(0,1). This restriction is validated in Appendix 1. Descriptive statistics on 21 for the

various volatility estimators were obtained using all daily data for the years 1993 to 1995.

Results are shown in table II.

< INSERT TABLE II HERE >

The mean of 2, was close to zero but positive for all volatility estimators, indicating a

positive mean return over the period of analysis. The standard deviation of 2, was close to one

(1.0094) for the Gen Hist(T) volatility estimator. The standard deviation of 2, was further away

from one for all of the other volatility estimators confirming the systematic biases inherent in

these estimators as shown in Appendix 5.

Given that the Jacque-Bera normality test statistic is asymptotically distributed as a z22

random variable, the 2, statistic based on the historical, MA(T), GH (T), and GH (5) volatility

estimators could not be rejected as being normally distributed. This result is important because
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it indicates that the generalised historical volatility estimator based upon transactions data

yields estimates of A, which allow the restricted version of (5) to capture the behaviour of

daily returns.

VIII. Estimation of General Volatility Framework Models

Implicit in the ARCH daily volatility modelling methodology is the belief that daily volatility

not only varies on different trading days, but that daily volatility 'clusters' in high and low

periods. It is these stylised facts regarding daily volatility that leads us to believe that modelling

T
the series of daily activity variables 11C, t., in a general volatility framework (4), will allow us

to model the time series properties of daily volatility, where daily volatility A, = g(K1) is a

function of the daily activity variable K1. However we do not observe the daily activity

variable K1. Nonetheless Kt can be estimated for a given functional form g(.) and an estimate of

daily volatility A, where kt = g`' (A 1) . To see that gr-' (AI) is a consistent estimator of K

we note that plim(g-1(A,)) = )) by Slutsky's theorem and

e(plim(A,)) = (A1) = K, provided A, is consistent for A„ and subject to some weak

regularity conditions on A.). Now given an estimate of IC1, we denote the estimation errorq, in

as

(17)

where EP 7 ,1= 0, E[ii] = o-277 , „ = 0,i ?_ 1 and EP „ _il= 0 ,i 0. Substituting

(17) into (4) and rearranging we obtain

K1 = Olkt-1 p
K

t-p
+61±elet-1 +•-•+ 9 t-q

+lb 01 771-1 — • — Op rit-p

(18)

Equation (18) cannot be estimated with maximum likelihood estimation techniques

because the error term in (18) is correlated with the regressors. Hence estimating (18) using

estimates of K, instead of Kt will produce biased estimates of the parameters in (18) and their

standard errors. However we note that as the number of intraday transactions used to estimate
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A, increases, the variance of the estimation error o-2,7 approaches zero provided A, is a

consistent estimator of A1. Consequently replacing K, with kt in (18) and then implementing
maximum likelihood estimation techniques will produce consistent parameter estimates of (18)
as the number of intraday observations approaches infinity. Due to the high efficiency of the
estimates of 1C1, we thus do not believe the inherent bias would effect the results much, given
the large number of intraday observations available for estimating A1.

The daily generalised historical volatility estimates based upon transactions data over
the period 1993 to 1995 was thus modelled as an ARMA(0,0), AR(1), AR(2), AR(3), MA(1),
MA(2), ARMA(1,1), ARMA(1,2), ARMA(2,1) and ARMA(2,2) process with a constant. The

functional form of g(.) was initially defined as K, = A. . That is, models of the form

A2t = 5+ 01A 1 02A 2 03A3 + et — - 02 St-21-1 (19)

were estimated. Clearly the models defmed in (19) are all special cases of the general volatility

framework defined in (4). Given that A2, is unobserved, estimates of A2, based upon intraday

transaction data were used as proxies for A1. The BIC of the above models were recorded and

the model with the maximum BIC was considered to be the 'best' model of the time-series
behaviour of daily volatility. The model of choice according to the criteria of maximising the
BIC for (19) was

A2, = 0.000002014 + 0.93074A2,_1 e,— 0.742198e 1
(2.992) (41.16) (18.12)

t-ratio's are shown in parenthesis)

(20)

That is, an ARMA(1,1) model was selected as the 'best' model of the time series
properties of daily volatility. This is important because it shows that daily volatility is an
autocorrelated time series and that it is mean reverting since the AR(.) component indicates that

A2, is stationary. Furthermore the coefficient of A 1was both highly significant and had a value

of 0.93074, indicating that daily volatility is highly persistent. The coefficient of e was -

0.742198 and is both highly significant and had a large value, indicating that their exists a
significant amount of information in the previous error term.
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To further test the effect of the estimation error Tit on parameter estimates in equation

(20), the equation was estimated using instrumental variable techniques where A21_2 was used as

the instrument for A2,_1. It is easily verified that A2,..2 is uncorrelated with the error term

= 0177 and is highly correlated with A 1. The coefficient of A 1 was

estimated as (0.9485) and further testing revealed that this was not significantly different from

(0.9307), the coefficient of A_1 in (20). This result lends some evidence to the belief that the

effect of replacing estimates of IC, in (4) rather than IC1 has little significant effect on parameter

estimates in (20).

The lognormal functional form for general stochastic volatility models was also

estimated within the general stochastic volatility framework. The daily generalised historical

volatility estimates based upon transactions data over the period 1993 to 1995 were thus again

modelled as ARMA(0,0), AR(1), AR(2), AR(3), MA(1), MA(2), AR4A(1,1), ARMA(1,2),

ARMA(2,1) and ARMA(2,2) processes with a constant. The functional form of g(.) was

defined as K, = Loge(A.,). The model of choice according to maximum BIG criteria was again

an ARMA(1,1) model.

Loge(A.,)= —2.300+ 0.9302Loge (A + e, — 0.6928e,_1. (21)

(-153.6) (45.81) (17.35)
t-ratio is shown in parenthesis)

This stochastic volatility model differs from Anderson's (1994) lognormal stochastic volatility

model in that an MA(1) disturbance term is included in (21). Thus to test further whether model

(21) could be rejected in favour of (9), likelihood ratio tests were conducted. We note that

equation (9) is a restricted version of equation (21) where by restricting the coefficient of the

moving average term to zero (91 = 0) , we obtain (9). However performing likelihood ratio (LR)

tests to examine these restrictions is not easy. Evaluating the likelihood in stochastic volatility

models is difficult, due to the unobservability of A,. Furthermore, the LR statistics are unlikely

to have standard asymptotic distributions. These theoretical questions are the subject of future

research. However to get an indication of the likely plausibility of the different models, we

compute LR statistics for this hypothesis where the likelihood for the stochastic volatility

models is based on treating A, as the observed A,. Hence we define L(21) = maximum log of

the likelihood function for (21), and L(9) is similarly defined. The likelihood ratio test statistic
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under the null hypothesis Ho: 9, = 0 and alternative H1: 9, # 0 is given

by LR = —2(L(21) — .E.(9) ,r2k where k= number of restrictions.

The above test yielded a test statistic of 69.38 and consequently rejected Ho: 01 = 0

where x2, = 3.84 at 95% confidence. Even though this result is not based on valid asymptotic

theory, the rejection is so strong that it is almost certain to stand up to a more proper analysis.

The importance of the above testing lies in the result that the LR test rejected an AR(1)

functional form in favour of a lognormal general stochastic volatility model with an

ARMA(1,1) functional form.

A similar model to the EGARCH(1,1) model within the general stochastic volatility

framework was also estimated with an MA(1) disturbance term.

Loge(A.2,)= —4.5961+ 0.9342Loge — 0.02652 —I:1-R + e, — 0.7045e,_1 . (22)

(47.59) (-4.155) (17.96)
t-ratio's are shown in parenthesis)

The coefficient of R,-1 is negative as expected, and it is significant. Hence 'bad' news as

reflected in the previous day's standardised return significantly impacts on today's level of

volatility. A daily volatility model with a similar functional form to the GJR model was also

estimated with an MA(1) disturbance term.

42, = 0.00002784 + 0.9450A 1 + 0.0658857_, A, + e — 0.7897e 1. (23)
(47.76) (6.420) (20.94)

t-ratio's are shown in parenthesis)

As expected the coefficient of S 1A 1 is positive and significant, again reflecting the notion

that 'bad' news impacts positively on daily volatility levels.

IX. Testing the GARCH(1,1) Specification of Daily Volatility
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Recall that a GARCH(1,1) model can be written in the form R,IE N(0,h,), where E,_, is

the information set at time t-/ and h, = °to+ a1 R,2 1 +flh, 1. This GARCH model can also be

written in the form of an ARMA(1,1) model (see Bollerslev, 1986). If it is assumed that R, is

an unbiased estimator of the true daily volatility h„ then h, can be written as h, = E[R,2] or

equivalently

1? —h, = v„ (24)

where Ekl= 0 and Elv„ v,_1] = 0 where i 1. Substituting (24) into (6) we obtain

=a0+(a1 +18)R,2 1 +v vt-i • (25)

That is, if daily volatility can be modelled as the GARCH(1,1) process defined in (6), then the

unbiased estimator of daily volatility R, will follow the ARMA(1,1) process in (25). This

analysis can be further extended by noting that any unbiased estimator of daily volatility; and in

particular A2, can be w-ritten as

(26)

where E[S] = 0 and E[S „ ,_i] = 0 , i 1. Substituting (26) into (9) we obtain

— 9, = czo + a1R,2 1 + a,_1) (27)

A2, = ao + aiR;2 1 + )8A-2i-1 + 91 )69 •

What is significant about this result is that if the GARCH(1,1) specification of the 'true' daily

volatility h, is correct then for any unbiased estimator of daily volatility, the estimator will

follow the ARMA(1,1) process defined in (27) where both the coefficient of and 9 are

equal. If the coefficient of .A 1 and 9 are not equal then the GARCH(1,1) model given in (9)
•

may not be the correct specification of the time series model of daily volatility. Note that this

specification test requires the assumption that EP „9d= 0, an assumption that cannot be

empirically verified but does however seem to be a reasonable assumption. Hence equation (27)
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was estimated using the generalised historical volatility estimator based on transactions data and

results are reported in (28).

= 0.00002765 + 0.9386A 1 + 0.0358R 1 + 9, — 0.77489,_, . (28)
(13.85) (44.14) (4.213) (19.47)

BIC=-14,228 (* t-ratio's are shown in parenthesis)

To test if the coefficient of A2,_1 and 9 are significantly different we defineflAR as the

coefficient of A2,_1 in (28),flmA as the coefficient of 9,_, in (28),bAR as an estimate of the

coefficient of A2,_1 in (28) and bmA as an estimate of the coefficient of S in (28). Under the

null hypothesis Ho: 8 .8AR MA =0 against the alternative H1: PAR —flmA # 0 a natural test

b b AR —b MA statistic is defined as t =  — =  = 6502.
lfreirOAR bmA liViir(b AR) + ViirOmA — 2 COvOAR ,'MA)

At 5% significance, Ho is rejected and consequently evidence has been presented that the

GARCH(1,1) specification of the time series behaviour of daily volatility is incorrect.

A further observation that can be made about (28) is that the coefficient of R,2 1 is 0.036

whilst the coefficient of A 1 is 0.939. Clearly the previous day's estimate of daily volatility

based upon transactions data, with the generalised historical volatility estimator contains far

more information in regard to the current level of volatility A2, than does R,2 1.

X. Conclusions

After specifying' a general stochastic volatility framework, a new estimator of daily volatility

which is a generalisation of the historical volatility estimator has been proposed. This new

estimator of volatility is called the generalised historical volatility estimator, and has been

developed to take into account the autocorrelation typically found in an intraday return series.

We then went on to consider the case when the intraday return series is stationary, and

adequately modelled as an ARMA(p,q) process. Under this assumption it was established that

1---- 91.1. 192,t - • • • -
generalised historical volatility is given by A2, =

q,,z
nta.,2 . Substituting

01,t 02,t 0 j

parameter estimates into this expression will yield a consistent and efficient estimator of daily

2
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,

,

(b)

volatility. Evidence also suggests that unless the transaction return series is used to estimate

daily volatility, daily volatility estimates may be systematically biased. We conclude from this

analysis that intraday data can be used to effectively estimate daily volatility. In particular the

generalised historical volatility estimator based upon transactions data outperformed all of the

other daily volatility estimators considered on the basis that

(a)

(b)

it correlates more highly with proxies for information arrival

daily returns, when conditioned upon the generalised historical volatility estimates based

upon transactions data, are normally distributed with variance close to one.

This paper has employed a two step procedure to model the time series behaviour of

daily volatility, namely

(a) to estimate daily volatility with the generalised historical volatility estimator for T

trading days to produce a series of daily volatility estimates IA, 1 T ,
t=1

then model the series If(11 T as an ARMA process within the general stochastict=i

volatility framework for a given functional form g(.).

The generalised historical volatility estimator based upon transactions data can within

the general volatility framework, successfully model the time series properties of daily volatility

utilising a wide range of functional forms.

The literature concerning the time series properties of daily volatility in financial

markets since Engle's (1982) seminal paper has been dominated by the ARCH family of

volatility models and also the stochastic volatility models. The modelling methodology

proposed in this paper may well be a viable alternative to existing volatility modelling

methodologies. Furthermore the generalised historical volatility estimator could potentially be

utilised in further financial market analysis particularly at the market micro-structure level

where previous research has found the ARCH family of models to be mis-specified in regards to

levels of volatility persistence. Research in option pricing theory, and in particular the effects of

time varying volatility on the Black-Scholes formula may also benefit from the kind of highly

efficient volatility analysis that the generalised historical volatility estimator can be used for.

Given that the notion of risk (or volatility) is a key concept in finance theory, it is a matter of
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further theoretical development and empirical research to see how the generalised historical
volatility estimator linked with the general stochastic volatility framework may be implemented
to shed light on other problems.
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Appendix 1 The Volatility of an ARMA(p,q) Return Process

Recall from (11) that an ARMA process in the intraday return series can be written in
the form,

(Al) (L)r = 
0, (1),u, A:0, (1)9, (L)  e

ft 11T2-,-0 t (1) l't

where L = usual lag operator,
(L) = 1- 01,1L - 02,1L2 ,
t(L) =1- 91,tL- 924f -93f ,

Pt and qt are the orders of the autoregressive and
moving average components respectively on day t,

00 and Oi., are the ith autoregressive and moving

average parameters respectively on day t,
nt= number of intraday returns,
lit= mean daily return for day t,

eia iid N(0,1) .

We wish to prove that if the intraday return series can be correctly modelled as it is specified in
(Al), then daily returns can be written as Rt = p + A tZt . Now (Al) can also be rewritten as

0, (1)/-i1 A101 (1)0 t (L) 
(A2) =t,t n t t(L) 

+
11771-tt 9 t(1) t(L)e zit

However daily returns Rt are simply the sum of intraday returns and consequently daily returns
can be written as

n' O(1)Pt n' 1 A 0t (1)  n' 9 (L) (A3) R, = Eri,t t  + e
i=i nt i=1 t(L) .\F-it 0 , (1) 0 ,(L) *

Our strategy in developing this proof is to show that

(A4) lit .
0t(1)11t n'  1 

0 t(L)

and that

A tO t (1) I 9 t(L) 1 n,

(A5) A tZ o (L) e where Z,t 

Substituting (A4) and (A5) into (A3) will establish that daily returns can be correctly modelled
as Rt = ,u + A,Z, if the intraday return data generating process is given by (Al). We initially

n' 1 n 
show that E   . Now

01(L)
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1 1  1 1 (A6) + +
i=1Ø1(L) 1+i+---+Oi'Pr 

1+01,,+•••+0
1,111

nt

0t(1)

Substituting (A6) into (A4) the desired result is obtained. We now go on to prove (A5) by
initially showing that

(A7)
x-nn (L) \I0,(L) 

0:M eiet = 0 t(L) L

Showing (A7) and substituting into (A5) completes the proof. Now the Wold's decomposition
9,(L)

(1938) allows the expression 0, (.0e in equation (A7) to be written in the form of an infinite

order MA process.

(A8) =q1(L)e
O,(L) 

where Ti (L)=1+TL,L+T2 L2 +%L3 +•—
0t(L)

e
ij

,ia

=r T Li and T = 1
1..-0 ."/,1 oa -

If we assume that the intraday return series is a stationary process we will have to assume that

(A9) 2 oo
T. < oo and E. JIT.,1<coJ=0

Now we define tifi*ca as

(A10) Tk*,t = k+1,t lijk+2,t tlik+3,t )=_E tif
j=k+1

We now employ the Beveridge-Nelson (1981) decomposition to simplify the analysis.

(All) T, (L)=

Therefore

(Al2)

where T, (1) = = 1+ T11 ± T2, + -1-• • • = VjL_i=0T.i.„

and 'f(L) = T + 1'.L2 +. • -4-1111:t.e =

Tt =(T,(1)+ (1—

=kJ1 (Deo + (1— L)T,*(L)ei,,

= W,(1)ei + —Tr* (L)ei_L,

= 'P, (1)e +
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Substituting (Al2) into (A7), we have

0 (L) 
t ,tq5(L) 

W, (I) e + Ent(A13) . T* (L)Eni de;

But

(A14)

1 6,e0 = Ee11 + Ae2,1 Aen,

= (e1,, — e0,5) + (e2,t — (e3,, — — ens _1,5)

= en„t e0,5

Hence combining (A13) and (A14) we have

(A15) L 
$, (L) 

= T,(1)Eilieja + Tt*(L)(en,., — e0,5)

Now as nt oo the term kFt(1) e 5 in (A15) becomes larger whilst the term

P:(L)(ent t — e0,5) remains constant and consequently

n' 9 1 rt
(A16) E  (L)  eit F0,(1) 

when n, is large,
i=i 0t(L) °t(1)

Iand the proof is complete. Furthermore, since we have defined Z, as Zt = t , Zt can
„In '

1 .1 1 c—Inbe rewritten as Z5 = , E e. = 11-72-t-et where et = —24 ' e. and so by the Central Limiti=1 i,t i,., i,tlint nr

theorem it is readily seen that Z5 — N(0,1) .
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Appendix 2 - The Efficiency and Bias of the Generalised Historical
Volatility Estimator when Returns Follow an ARMA(p,q) Process.

Model ARMA(1,1) MA(1) AR(0) AR(1) AR(2) AR(3) AR(4)
True Volatility 33.5410 26.8328 44.7214 63.8877 68.8021 68.8021 74.5356

Mean

Std Dev

Bias

• RMSE

Mean

Std Dev

Bias

RMSE

Mean

Std Dev

Bias

RMSE

Mean

Std Dev

Bias

RMSE

n=2000

35.6576

'

26.8325 44.6810 63.9175 67.1858 68.9967 75.5096
1.9671 1.0252 0.9900 2.3371 5.0253 5.7410 5.7624 '
2.1165 -0.0003 -0.0404 0.0298 -1.6163 0.1947 ' 0.9740
2.8895

, 1.0252 0.9908 2.3373
.

5.2788 5.7443
,

5.8442
,

n=500

33.5018 26.9155 44.6365 64.3026 69.0422 68.9487 74.1762
1.8688 1.6321 2.5082 3.4920 3.6630 1 3.8821 4.8655
-0.0392 0.0827 -0.0849 0.4150 0.2401

'

0.1466 -0.3594
1.8692 1.6341 2.5097 3.5165  3.6708 3.8848 A 4.8788 •

n=100

32.9212 26.3021 44.3393 63.7164 67.6980

'

68.6357 74.5455
3.9193 3.1542 5.5740 8.2713 7.9566 8.7389 9.6819

' -0.6198 -0.5307 -0.3820 -0.1713 -1.1041 -0.1664 0.0099
3.9680 3.1986 5.5871 8.2731 8.0329 8.7405 9.6819 '

n=1

32.7597 26.1810 r 45.5190 63.0706 67.1952 67.9819 73.5764

-- 24.7212 19.7564 - 32.8473 47.8533 50.4678 51.4427 55.7266
-0.7813 -0.6518 0.7977 -0.8171 -1.6069 -0.8202 -0.9592

-24.7335 19.7672 32.8570 47.8603 50.4934 51.4493 55.7349

True model used to generate the intraday return series. 

ARMA(1,1) + e -0.4ei_i)

MA(1) (ri= ei- 0.4e)

AR(0) (r1 = e)

AR(1) (ri = 0.3r + ei)

AR(2) (ri = 025ri_1 + 0.1r 2 + ei)

AR(3) (ri = 02r1_1 + 0.1r1_2 0.05r 3 + ei)

AR(4) fr1 = 0.2r + O.112 + 0.051i_3 + 0.05r + e.)
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Appendix 3 - The Efficiency and Bias of the Generalised Historical

Volatility Estimator when Returns are assumed to follow a White Noise

Process.

ARMA(1,1) (ri= O.2i + ei -0.4ei_l) AR(2) (ri = 025r + O.1r 2 + ei)

True Volatility = 33.5410

Mean

Std Dev

Bias

RMSE

n=2000 n=500 n=100 i
i

45.6706 37.7527 34.3921 i

0.7441 1.2090 2.3356

12.1296 4.2117 0.8510

12.1524
, 

4.3818 2.4858

MA(1) (ri = e - 0.4ei_1)

True Volatility = 26.8328

Mean

Std Dev

Bias

RMSE

n=2000 n=500 n=100

' 48.1913

.

33.4679 28.2504

0.8383 1.1084 1.9092

21.3584 6.6351 1.4176

21.3749 6.7270 2.3779

True Volatility = 68.8021

Mean

Std Dev

Bias

RMSE

n=2000 '..

1

n=500 n=100

46.8136

1

59.6112 66.9109

0.8280 1.9318 4.6270

-21.9885 -9.1909 -1.8912

22.0041
. 

9.3917 4.9985
 .

AR(3) (r = + O.11.2 + 0.051i_3 + e

True Volatility = 68.8021

Mean

Std Dev

Bias

RMSE

.
n=2000 n=500

..
n=100

' 46.3260 57.7926 66.4508 '

'i 0.8036 1.8873 4.5899

i -22.4760 -11.0095 -2.3513

i 22.4904
;  

11.1701 5.1571

AR(1) (r i = + ei) AR(4) (r i = 0.2r + 0.11i_2 + 0.051;_3 + 0.05r_4 + ei)

True Volatility = 63.8877

n=2000 n=500 n=100

46.9105 58.4868 62.7863 '

'0.8208 1.8646 4.3386

-16.9771 -5.4008 -1.1013

16.9969
,. 

5.7136 4.4762 '

True Volatility = 74.5356

Mean Mean

Std Dev Std Dev

Bias Bias

RMSE RMSE

n=2000 n=500 n=100

46.5281 58.5527 70.8396

0.8161 1.9575 4.8956

-28.0075 -15.9829 -3.6960

28.0194 16.1023 6.1341

( Note - the 'true' model is shown in the top row of each table.)
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Appendix 4 - The Efficiency and Bias of the Generalised Historical

Volatility Estimator when Returns are assumed to follow an MA(1)

process.

ARIVIA(1,1) (r.=02r+ 0.4ei_1)

True Volatility = 33.5410

Mean

Std Dev

Bias

RMSE

n=2000 n=500 'n=100

' 35.4818

I

33.5421 33.2616 '

1.1773 1.9472 4.2239 '

.i 1.9408 0.0011 -0.2794

i 2.2699 1.9472 4.2331

AR(3) (ri = + 0.05/;_3 ei)

True Volatility = 68.8021

Mean

Std Dev

Bias

RMSE

n=2000 n=500 n=100

53.9072 67.4764 68.2064 1

1.3005 3.2565 8.3124 '

'-14.8949 -1.3257 -0.5957

14.9515 3.5160 8.3337

AR(1) (r1=03r+ei) AR(4) (ri = 0.2r + + 0.051i_3 + 0.051 4 + ei)

True Volatility = 63.8877

n=2000 n=500 n=100

' 57.4434
.

63.8603 63.3362

1.2938

1

3.2637 7.8097

-6.4442 -0.0273 -0.5514

6.5728 3.2638 7.8291

True Volatility = 74.5356

Mean Mean

Std Dev Std Dev

Bias Bias

RMSE RMSE

AR(2) (ri =0.25ri_1 +0.1ri_2+ ei)

True
Volatility

Mean

Std Dev

Bias

RMSE

= 68.8021

r 
n=2000 n=500 n=100

b 55.5410

'

68.2719 68.2057

1.2944 3.3622 8.3532

-13.2611 1 -0.5302 -0.5964

13.3241 3.4038 8.3745

n=2000 n=500 n=100

54.2278 70.6155 73.8869

1.3166 3.2668 8.8998

-20.3078 -3.9201 -0.6487

20.3504 5.1029 8.9234

( Note - the 'true' model is shown in the top row of each table.)
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Appendix 5 Comelogram of the Volatility Estimators and Proxies for

Information Arrival.

Correlogram.

Simple Hist (T) MA (1) MA (5) Gen Hist (T) Gen Hist (5) TRANSCNT Volume(1) Volume(2)

Simple 1.0000

Hist (T) 0.3973 1.0000
MA (T) 0.4142 0.9352 1.0000
MA (5) 0.4198 0.8378 0.8698 1.0000
Gen Hist (T) 0.4152 0.9354 0.9772 0.8805 1.0000
Gen Hist (5) 0.4102 0.8720 0.8984 0.9328 0.9087 1.0000
TRANSCNT 0.3072 0.6704 0.7831 0.6751 0.7220 0.6913 1.0000
Volume(1) 0.2735 0.4436 0.5174 0.4478 0.4496 0.4255 0.5405 1.0000
Volume(2) 0.3113 0.5669 0.5844 0.5192 0.5465 0.5030 0.4358 0.8622 1.0000
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Appendix 6 Detrending and Deseasonalising Volume

To deseasonalize and detrend the volume series, equation (A6.1) was estimated with

OLS.

(A6.1) V; =a+b7;+ct+e,

where a, b, c are constant parameters,

t = time trend (=1 on 4/1/93),

T; = Total number of trading days since the last contract maturity time.

V, = Total volume on day t.

It is implicit in model (A6.1) that volume increases linearly toward contract maturity time and

that their is a linear increase in volume over the trading period January 1993 to December 1995.

Regression results are shown in (A6.2).

(A6.2)
P., = 32,865+ 632.004T + 39.007t

(14.18) (12.76) (9.40)

where t-ratios are in parenthesis.

Residuals from regression (A6.2) are in effect an index of 'unexplained' volume. It is the

relationship between this index of unexplained volume and volatility that we are primarily

concerned with. This index of 'unexplained' volume shall be referred to as Volume(2). Figure

(2) shows total contract volume (Volume(1)) as well as a deseasonalised and detrended index of

trading volume (Volume(2)) over the period January 1993 to December 1995.

< INSERT FIGURE 2 HERE>
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Table I 'Frequency of AR(.) models chosen in the transaction

return series'

AR(0)

Freauen

ransaction retti
'

e rnintrte returns

32 679

AR(1) 15 41

AR(2) 588 16

AR(3) 102 8

AR(4) 4 0

AR(5) 0 0

AR(6) 0 0

AR(7) 1 0

AR(8) 1 0

AR(9) 1 0

AR(10) 0 0



Table II Summary statistics on the 2, statistic.

2,
Hist (T) MA(T) MA (5) Gen Hist (T)

.,
Gen Hist (5)

Mean 0.1165 0.1364 0.1812 0.1544 0.1752

Std Dev 0.8807 0.9131 1.0543 1.0094 1.0564 '
Coef of Skewness -0.0034 0.0674 0.2132 0.0912 0.1766

Coeff of Excess Kurtosis 0.2430 -0.1181 -0.2814 -0.0834 -0.1965

Jacque-Bera statistic 1.8196 0.9898 8.0341 1.2388 5.0312

Std Dev of Coef of Skewness = 0.08986
Std Dev of Coeff of Kurtosis = 0.1794

and i = _1 E2, , mk =2...E(-, _ 2-y2 , Coefficient of Skewness a 
= 
M 3

6,1 3/2 '
M2n  n i.,

Coefficient of Excess Kurtosis g2 = n4 /2 _ 3 , Jacque-Bera Statistic = n fi. 4. g22
M2 6 24

.,
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Figure 1 Estimates of Daily Volatility for S&P 500 Index futures.
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Figure 2
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