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This papers presents a method for simultaneously estimating a system of nonparametric
multiple regressions which may seem unrelated, but where the errors are potentially corre-
lated between equations. We show that the prime advantage of estimating such a 'seemingly
unrelated' system of nonparametric regressions is that substantially less observations can
be required to obtain reliable function estimates than if each of the regression equations
was estimated separately and the correlation ignored. This increase in efficiency is investi-
gated empirically using both simulated and real data. The method suggested here develops
a Bayesian hierarchical framework where the regression function is represented as a linear
combination of a large number of basis terms, the number of which is typically greater than
the sample size. All the regression coefficients, and the variance matrix of the errors, are
estimated simultaneously using their posterior means. The computation is carried out using
a Markov chain Monte Carlo sampling scheme that employs a 'focused sampling' step to
combat the high dimensional representation of the function and a Metropolis-Hastings step
to correctly account for the distribution of the covariance matrix. The methodology is also
easily extended to other nonparametric multivariate regression models.

Key Words: Nonparametric Multivariate Regression, Bayesian hierarchical SUR model, Multi-

variate Subset Selection, Markov Chain Monte Carlo, Focused sampling.
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Introduction

The aim of nonparametric regression is to estimate regression functions without assuming a
priori knowledge of their functional forms. The price for this flexibility is that appreciably
larger sample sizes are required to obtain reliable nonparametric estimators than for para-
metric estimators. In this paper we consider a system of regression equations that can seem
unrelated, but actually are because their errors are correlated. Such a system of equations is
called a set of 'seemingly unrelated' regressions, or a SUR model (Zenner, 1962). This paper
provides a Bayesian framework for reliably estimating the regression functions in a non-
parametric manner, even for moderate sample sizes, by taking advantage of the correlation
structure in the errors. The most important consequence of this work is to show that if the
errors are correlated, substantially better nonparametric estimators are obtained by taking
advantage of this correlation structure compared to ignoring the correlation and estimating
the equations one at a time.

Specifically, we consider the system of m regression equations

yi = fi(xi) + ei for i = 1,2,... ,m (1.1)

Here, the superscript denotes that this is the ith of m possible regressions, yi is the dependent
variable, xi is a vector of ri independent variables and fl, , fm are functions that require
estimating in a nonparametric manner. As in the linear Gaussian SUR model, the regressions
are related through the correlation structure of the Gaussian errors ei. That is,

e N(O, E In) (1.2)

where el = e21, , el is the vector of errors for the n observations of the ith
regression and E is a positive definite (m x m) matrix that also requires estimation. This paper
is concerned with providing a data-driven procedure for estimating the unknown functions
fi (for i = 1, , m) and covariance matrix E in this model.

Such systems of regressions are frequently used in econometric, financial and sociological
modeling because taking into account the correlation structure in the errors results in more
efficient estimates than ignoring the correlation and estimating the equations one at a time.
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However, most of the literature on estimating a system of equations assumes that the fi
are linear functions. For recent examples, see Bartels, Fiebig and Plumb (1996), Min and
Zenner (1993) and Mandy and Martins-Filho (1993). However, in practice the functional
forms of the fi in most regression applications are unknown a priori, so that an approach
that estimates their form is preferable. We illustrate the need for a nonparametric approach
and the gains in efficiency obtained by estimating a system of equations in section 4 by
applying our methodology to two real data examples. The first concerns print advertisements
in an Australian women's magazine and estimates the relationship between three measures
of advertising exposure and the positioning of advertisements in the magazine. The second
estimates the relationship between monthly returns and some key macroeconomic variables
for five large mining companies listed on the Australian stock exchange. In both examples,
significant nonlinear relationships are identified that would have been difficult to discern using
a parametric SUR approach. In addition, the estimates are shown to differ substantially from
those that arise from estimating each of the nonparametric regressions separately and ignoring
the correlation between the equations.

Our approach for estimating the system of equations defined at (1.1) and (1.2) models each
of the functions fi as a linear combination of basis terms. We develop a Bayesian hierarchical
model to explicitly parameterize the possibility that these terms may be superfluous and have
corresponding coefficient values equal to exactly zero. A wide variety of bases can be used,
including many with a desired structure, such as periodicity or additivity. The unknown
regression functions are estimated by their posterior means which attach the proper posterior
probability to each subset of the basis elements, providing a nonparametric estimate that is
both flexible and smooth. We develop a Markov chain Monte Carlo (MCMC) sampling
scheme to calculate the posterior means because direct enumeration is intractable. This
sampling scheme is a generalization of the 'focused sampler' discussed in Wong, Hansen,
Kohn and Smith (1997) and is shown to be reliable and fast. The performance of the new
estimator is demonstrated empirically with a set of simulation experiments carefully designed
to cover a range of potential regression curves, noise levels and several commonly employed
bases. These highlight the improvement that can be made by exploiting correlation structure
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in a system of regressions. We note that the solution to the nonparametric SUR model focused
on here is easily extendible to other nonparametric multivariate (or vector) regression models,
such as where the functions fi are the same for all i = 1,..., m.

Zellner (1962, 1963) provides the seminal analysis of a system of regressions when the
unknown functions fi are assumed linear in the coefficients. Srivastava and Giles (1987)
summarize much of the literature dealing with this linear SUR model. However, recent ad-
vances in Markov chain Monte Carlo methodology enable Bayesian analyses of more complex
variations of the SUR model. For example, Chib and Greenberg (1995a) develop sampling
schemes that estimate a hierarchical linear SUR model with first order vector autoregressive
or vector moving average errors and extend the analysis to a time varying parameter model.
Markov chain Monte Carlo methods have also provided a solution to reliably estimating
nonparametric regressions in a variety of hitherto difficult situations. For example, Smith
and Kohn (1996) and Wong, et al. (1997) develop nonparametric regression estimators for
regression models where a data transformation may be required and/or outliers may exist in
the data.

The paper is organized as follows. Section 2 discusses how to model the unknown functions
and why they are estimated using a hierarchical model. Section 3 discusses this Bayesian
hierarchical model and develops a MCMC sampling scheme to enable its estimation. Section 4
uses the methodology to fit the Australian print advertising and mining returns datasets.
Section 5 contains simulation examples which investigate the improvements that can be
made using this estimation procedure over a series of separate nonparametric regressions, as
well as comparing a variety of commonly used bases.

2 Basis representation of functions

Each regression function is modeled as a linear combination of basis functions, so that for a
function f,

f(x) = E/3b(x) (2.1)

Here, B = {14, , bp} is a basis of p functions, while the Ws are regression parameters.
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A number of authors have used such an approach in the single equation case using a vari-
ety of univariate and higher dimensional bases. For example, Friedman and Silverman (1989),
Friedman (1991), Smith and Kohn (1996) and Denison, MaHick and Smith (1997) use regres-
sion splines, Luo and Wahba (1997) use several reproducing kernel bases and Donoho and
Johnstone (1994) use wavelet bases to estimate non-smooth functions. In the empirical work
in this paper we consider the following bases for a univariate independent variable x, with n
observations xi, x2, • • • , xn-

1. Cubic Regression Spline: Here, Bi = {1, x, x2, x3, (x — x1)3+ , . . . , (x — xn)+J , where
(.) = max(0, -) and p = n+4. A similar basis was used in Smith and Kohn (1996), but
with a smaller number of basis functions. However, by employing the focused sampler
discussed in section 3.2, bases with p > n terms can be used.

2. Quadratic Regression Spline: Here, 82 = {1, x, x2, (x — x 1)2+ , . . . — xn)2+1 and
p = n + 3.

3. Quartic Reproducing Kernel: Here, 53 = Ibi (x), , bn(x), x, 1}, where
1 14 1 1 n 7 )bi(x) =
if 

— x —— — xi' — ) ̀
2 -1 

, for i = 1, , n ,

and p = n +2. This basis was discussed in Luo and Wahba (1997) and is defined over
the unit interval, so that we simply scale the independent variable before calculation
of 53, so that min(x) = 0 and max(x) = 1.

4. Thin Plate Spline: Here, 54 = Ibi (X), . bn (x), x, 1}, where

b1(x) = — xil2 log(lx 

and p = n +2. This is an example of a radial basis function of the type discussed by
Powell (1987) and was used in thin plate smoothing by Wahba (1990).

5. Natural Cubic Spline: This is a basis discussed in Wahba (1990), where 55 =
114 (x), , bn(x), x, 1} and

b1(x) =
lx2(xi

14(x —

4

for i = 1, , n .



The basis elements are assumed to be distinct, those that are not we simply remove. In the
absence of replicated design points, the number of terms in each basis is p> n. All the above
bases are known to be suited to approximating univariate functions that are both continuous
and continuously differentiable.

In the case of multiple regressors in an equation a variety of other bases can be used,
including tensor products of univariate bases (Friedman, 1991) and radial bases (Powell,
1987; Holmes and Mallic.k, 1997). In this paper we use additive combinations of the above
univariate bases, so that for an r dimensional independent variable x, the basis is

M = 131 U B2 U . . . U Br .

Here, Bi is a univariate basis for the ith element of x and M is the resulting multivariate basis.
The number of elements in this basis is generally p rn (approximate because the number
of replicated design points is unknown) and the model is made identifiable by retaining only
a single intercept.

Given a choice of a particular basis for the approximation at (2.1), the ith regression
at (1.1) can be written as the linear model

yi = Xi + e2. (2.2)

Here, yi is the vector of the n observations of the dependent variable, the design matrix
Xi = [1311b21... (bpi}, bi is a vector of the values of the basis function bi evaluated at the
n observations and 3 are the regression coefficients. The errors ei are correlated with those
from the other regressions, as specified in (1.2), and we denote the number of basis terms
in the ith equation as pi. It is inappropriate to estimate the regression coefficients using
existing SUR methodology for three reasons. First, the columns of Xi are not generally lin-
early independent because usually pi > n and if there are several explanatory variables then
pi rn. Second, even if a maximal linearly independent subset of columns was identified the
resulting estimates of the regression coefficients would have high variance and the function
estimate Jzwould interpolate the data (rather than produce smooth estimates that account
for the existence of noise in the regression). Third, it is difficult to identify one superior
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linearly independent subset of basis terms over another. Therefore, we estimate the regres-
sion parameters using a Bayesian hierarchical SUR model (described below in section 3) that
explicitly accounts for the possibility that many of these terms may be redundant. It is by
estimating the regression parameters using this procedure, rather than simply by generalized
least squares, that makes the function estimates nonparametric.

3 A Bayesian Hierarchical SUR Model

3.1 Modeling variable redundancy

Consider the ith regression of a linear SUR model given at equation (2.2), where the design
matrix Xi is (n x pi) and the coefficient vector f32 is of length pi. To explicitly account for
the notion that variables in this regression can be redundant, we introduce a vector of binary
indicator variables = (-AA, , 7:0'. Here, 71, corresponds to the kth element of the
coefficient vector of the ith regression, say At, with 71, = 0 if /31 = 0 and 71= 1 if iq 0.
By dropping the redundant terms with zero coefficients, the ith regression can be rewritten,
conditional on as

yi = + ei (3.1)

If qty = El; , then the design matrix X, is of size (n x q!.7) and (3-yi i is a vector of
elements.

By stacking together the linear models for the m regressions, the SUR model can also be
written, conditional on '7' = ) so that

y = 137 + e (3.2)

Here, 3, = y
21
, ymi), "c7 

= diag(X,71 , 42, . . . , X.7.) and P,71 = (0,71 f3tly'm1).
If Ty = Eir11 y , then Ly is an (nm x q-y) matrix and 07 a vector of elements. To com-
plete this Bayesian hierarchical model, we introduce the following priors on the parameters.

(i) In a similar manner as O'Hagan (1995) we construct a conditional prior for 07 by



setting

g37dE,7) oc p(yisspi,,E)11—
so that 071E, 7 N(Pi,nrn(X.17AX7)-1), where A = E-1 gin and /1.7 = (X,1),AX 1X7Ay.
This data-based fractional prior contains much less information about [3,7 than the like-
lihood.

(ii) The prior for E-1 is taken as independent of 7 and is the commonly used non-
informative prior discussed in Zenner (1971), where p(E-11-y) oc 1E-11-(m+1)/2.

(iii) The ryt are taken as a priori independent of one another with p(-4 = 1) = 1/2 through-
out this paper.

Note that the model here is a hierarchical SUR model as, conditional on 7, it is simply a
linear SUR model; and that it is through the conditional prior for 0,7 that -y is introduced
into the model.

• 3.2 Markov chain Monte Carlo sampling

To estimate this model we use the following Markov chain Monte Carlo sampling scheme.

(1) Generate from 071E-1, y, Y

(2) Generate from E-110,-y,y =E-11137,7 ,y

(3) For i = 1, 2, . , m

Choose Ci C {1,2, ... ,pi) in the random manner discussed below.

(4) Repeat the following K times

For i 1, 2, . . . , m

Generate from y for j E Ci

In this sampling scheme Ay is generated from a multivariate normal distribution and 11 is
generated from a binomial. Generation of the matrix E-1 directly from the posterior at
step (2) is difficult because the fractional prior 3E', -y is centered at /1,7, which is a
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function of E. Consequently, we use a Metropolis-Hastings step where the proposal Wishart
density is the posterior under a flat conditional prior for 07. This works well with between
60% and 90% of those iterates that are generated being accepted. Details of how to generate
from the distributions at steps (1), (2) and (4) are given in the appendix. It is important to
note that care has been taken to generate -yj without conditioning on (3.1 at step (4), otherwise
the sampling scheme would be reducible because yeii is known exactly given f3j.

Step (3) is a 'focusing step' similar to that discussed in Wong et al. (1997) and is under-
taken for each equation i = 1, ,m. The idea is to identify a subset of the binary variables
-4 which are relatively more likely to be 'active' (that is, variables where -ysii = 1 and there-
fore the corresponding regression coefficients are non-zero) and focus most attention on these.
This is important even in single equation nonparametric regression because the bases used
can employ greater than n terms, most of the regression coefficients of which have a high
probability of being zero. Focusing takes on a new importance in nonparametric SUR models
because there are m times as many terms again as in the single equation model.

We use a 'focusing rule' to identify the variables to be generated at the jth iteration of
the sampling scheme, which are indexed by the indexing set Ci for each of the i equations.
The rule we use is to generate all the binary variables that were active last iteration, plus a
randomly selected set of those that were inactive. Each previously inactive binary variable
is selected to be generated with probability

a = max (20/(p1 — q;,), I (pi —

This ensures that on average at least 20 previously inactive terms in the ith equation are
generated, while more terms are generated for functions that require a lot of basis functions,
so that Ty > 20. This ensures that the sampler can move quickly and efficiently around the
support of the posterior distribution.

Because the focus sets are selected in a random manner, the sampling scheme is irreducible
and aperiodic, so that by Tierney (1994) it converges to its invariant distribution, which is
the posterior distribution E-1, 7, Ply. It is both an order faster than a Gibbs sampling alter-
native that generates all the elements of -y one at a time, (that is, where Ci = {1, 2,... ,pi})
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and possesses stronger convergence properties. The latter is because, at any iteration j,
step (4) forms a Gibbs sub-chain of K iterations which converges to the conditional posterior
distribution of the 'block' 7j E', 1\1c, y, where -7c is defined here to be all the binary
variables to be generated.

Given an initial state for the Markov chain and a ̀ warmup period', after which the
sampler is assumed to have converged to the joint posterior distribution, we can collect

(E-1[1],,.),[1],011]), (E-1[J], .7[J], [J]iterates ) which form a Monte Carlo sample from the
joint posterior distribution. It is this sample that we use for inference.

A sampler that generates solely from the parameter space of -y is not considered as it
is difficult to generate from the posterior distribution y. Similarly, samplers that
generate from either the parameter space of (7, E-1) or (47,0) are not considered because it
appears difficult to generate from either the conditional posterior distribution E-11.7, y, or

1117\7j, 7 ,y

We have found this sampler to have strong empirical convergence properties— usually
converging to a stable distribution (as witnessed by the marginal distributions of the pa-
rameters) in a handful of iterations. This appears to occur regardless of the initial starting
state, which is best demonstrated by the fact that all of the very different examples in this
paper had the same initial state of OM = 0, E-1[O] = in, and 7[0] = 0. Any other arbitrary
feasible state also appears to work fine. The overall reliability and efficiency of the scheme
are demonstrated in section 5.

3.3 Estimation

Inference about the unknown functions and parameters is based on the Monte Carlo sample
obtained from the sampling scheme. Here, we only consider posterior means, but higher
posterior moments and diagnostic statistics (such as residuals) can be handled similarly.

The posterior mean of the regression parameters, E[/3y}, is estimated using the mixture
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estimate

= E E [t@i7Eil (3.3)

-Each of the conditional expectations in the sum is simple to calculate because E[137 fry, 1 
yi =

while elements of )3 that are not common to )37 are set exactly to zero.

The posterior mean E[Ely] is estimated by the histogram estimate t = E3L1 —1.
We do not use a mixture estimate because the distribution of E-110,y, -y, y is difficult to iden-
tify (which is also the reason a Metropolis-Hastings step is used at step (2) of the sampler).

The posterior means E[fi(z)ly} of the functions at equation (1.1) at any point z in the
domain of xi is estimated using the mixture estimate

J
(z) = E E [fi (z)hyril = )[sifry[i], E-1N, yi = vik)i

Here, v = (bi(z),... , b (z)Y is a vector containing the basis function expansion of the function
fi evaluated at the point z. The vector 

32
is made up of the elements of 3 that correspond

to f32. If the function is univariate, so that xi is a scalar, then fis an estimate of a
curve, while for higher dimensions it is a surface. For additive nonparametric models the
component function estimates can easily be calculated separately by identifying the basis
terms and regression coefficient estimates that correspond to each function and forming the
inner product of these.

4 Real Data Examples

4.1 Australian Print Advertising Data

In this section we demonstrate our procedure using n = 457 observations of data from six
issues of an Australian monthly women's magazine. Each observation corresponds to an
advertisement placed in the magazine and the following three advertisement exposure scores,
which are recorded from an experimental audience, are used as measures of the various levels
of effectiveness of the print advertisement.
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y1 (Noted Score): Proportion of respondents who claim to recognize the ad as having

been seen by them in that issue.

y2 (Associated Score): Proportion of the respondents who claim to have noticed the
advertiser's brand or company name or logo.

y3 (Read-Most Score): Proportion of respondents who claim to have read half or more
of the copy.

These scores from y1 to y3 are thought to measure advertisement exposure at increasing
levels of depth.

It long been thought that the positioning of an advertisement within an issue has an effect
on its exposure to an audience (Hanssens and Weitz, 1980). To quantify this we constructed
the variable P as

page number
= P 

number of pages in issue

to represent the position in the issue in which each advertisement appeared. Figures 1(a)-(c)
provide scatter plots of P verses yl, y2 and y3, respectively.

To estimate the effect the design variable P has on the exposure of a print advertisement,
we considered the three nonparametric regressions

yi = fi(P) + ei for i = 1, 2, 3

where the thin plate spline basis 134 is used to model fi, for i = 1, 2, 3. Expected features in
the functions fi include high casual attention to advertisements placed in the front (and to
a lesser extent back) of the magazine, while the pre-editorial slots (where P is about 0.7) are
thought to attract more indepth attention.

The three regressions were estimated one at a time using the single equation analogy of
the estimator introduced in this paper (where E = 13) and the resulting function estimates
plotted in figures 1(a)-(c) as dashed lines. However, the three scores y1, y2 and y3 are highly
positively correlated and it is likely that the assumption of independence in the errors is
inappropriate. Therefore, we also estimated the equations as a nonparametric SUR (NSUR)
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system. The estimate of the covariance and correlation matrix were

E=0.02

1.050 1.024 0.586

1.092 0.622

0.486

Estimated Correlation =

1.000 0.956 0.819

1.000 0.854

1.000

confirming the existence of high correlation, especially between the pair and y2 and the
pair y2 and y3. The function estimates f, (i = 1, 2, 3) are also plotted in figures 1(a)-(c) as
bold lines. They demonstrate that the front (and to a lesser extent) back of the magazine are
areas in which advertisements achieve higher average exposure; though this is more prominent
for the noted and associated scores, yl, y2, than for the read-most score y3. The pre-editorial
slots also result in increased exposure, with a particularly positive effect on indepth exposure,
as measured by y3. The function estimates differ substantially from those provided by single
equation estimation and reveal that taking the correlation into account can seriously alter
the function estimates. In addition, the relationships are distinctly nonlinear and would be
hard to discern using parametric SUR estimation.

To help confirm that the NSUR estimates had correctly captured the apparent relation-
ships between yl, y2, y3 and P, we calculated Monte Carlo estimates of the posterior mean
of the standardized uncorrelated residuals r = (R 0 /)e, where 1-VR = E-1. The estimate
was calculated from the Monte Carlo sample as

1
BMA F = Ep[ii 0 in)eii1,

where REI is a Cholesky factor, such that RUPREil = E-l[i], and e[i] = y — X01. Note that
as r N(0,4„,), it is expected that F should have the approximately the same distribution.
Figures 1(d)-(f) plot the standardized uncorrelated residuals fi corresponding to the three
equations, where we have partitioned the vector F = (fl, . F2, F3). appear randomly
distributed and seem to confirm that the functions fl, f2 and f3 were estimated without
bias.
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4.2 Australian Mining Returns

To demonstrate the use of our methodology to systems of additive regressions we apply it to
data concerning five large mining companies publicly listed on the Australian Stock Exchange:
BHP, CRA, CMC, MIM and WMC. The data was collected for n = 227 consecutive months
from December 1972 to November 1991. The dependent variable for the ith regression is
the respective company's dividend adjusted return, which is defined to be RI = ln(Pti +

— ln(P i), where Pti is the stock price of company i at time t and DI is equal to the
dividend payment of company i over the period (t —1, t]. The independent variables are the
macroeconomic variables given below.

• Ot: Change in the logarithm of the All Ordinaries (the major Australian stock index)
at time t.

• Xt: Change in the logarithm of the real exchange rate (SUS/SAUS) at time t.

• Gt: Change in the logarithm of the gold price at time t.

To investigate how the returns for each company related to these key macroeconomic vari-
ables, we posited the following nonparametric additive SUR model.

Rit = MOO + A(Xt) + A(Gt) + eit for i = •-• 5

Here, the regressions were labeled in the following order: i = 1 for BHP, i = 2 for CRA,
i = 3 for CMC, i = 4 for MIM and i = 5 for WMC. No time dependency in the mean returns
was considered as past returns are thought to have little, or no, information regarding future
mean returns due to arbitrage arguments, though the errors are likely to be correlated across
stocks.

We modeled the functions fi using the cubic regression spline basis B1 and fit the model
both as five separate nonparametric regressions and using the nonparametric SUR (or NSUR)
estimator. The regression function estimates using the two approaches are given in figure 2
and differ substantially, demonstrating the difference that modeling potential correlation can
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make in real data with moderate sample sizes. The NSUR estimated the variance of the
errors as

J=0.01

0.459 0.170 0.289 0.300 0.304

0.902 0.479 0.432 0.440

0.964 0.691 0.632

0.985 0.664

0.980

where all the stocks are positively correlated, even after the common effect of changes in the
All Ordinaries (Os) is removed. This is not surprising as all companies have heavy interests
in Australian mining and/or base metal production. Of particular interest is the correlation
between CMC, MIM and WMC, which are the companies that have their balance sheets
almost exclusively focused on mining base metal ores during the period, whereas BHP and
CRA are more diversified resource companies (Thomas, 1995).

The function estimates are given in figures 2(a)-(o); one panel for each of the fifteen
function estimates 

37 
= 1,... , 5 and j = 1, 2, 3. A density estimate of the respective

independent variable (Os, Xt or Gt) has been included on top of each plot. Each of these plots
has been produced over the domain of the middle 95% of the observations of the respective
independent variable. This is because the independent variables have extreme outliers in the
x-space (due to market shocks) and the resulting scale would distort the results.

-Figure 2 about here-

Figures 2(a)-(e) indicate that the returns of all five companies are highly related to changes
in the All Ordinaries, which is reassuring as these companies form a major component of this
index. BHP has an almost linear relationship with what would be a slope coefficient close
to one, (figure 2(a)) which is not surprising as this company is the largest company listed
with the Australian Stock Exchange and the most diversified of the five considered here.
However, the relationships between the returns for the other four companies (especially WMC
in figure 2(e)) and the All Ordinaries appear distinctly nonlinear. Here, company returns
increase more with positive returns on the All Ordinaries index than they decrease with
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negative returns on the index. This is because Australian mining and resources returns have
proved fairly robust to downturns in general Australian returns during the period in which
the data have been collected.

The relationship between these company returns and changes in the exchange rate (Xt)
are minor and generally negative, (see figures 2(f)-(j)). This reflects the fact that all these
companies export a large amount of ore and/or base metals and an increase in Xi makes
their product more expensive. However, it should be be noted that these companies will also
gain a short term increase in income on existing contracts already signed. Therefore, it is
hard to say what effect individual changes in Xt will have on monthly returns /74; something
that appears to be reflected in the indeterminant nature of the estimated relationships found
in figures 2(g) and (h).

Figures 2(k)-(o) plot the relationship between company returns and changes in the gold
price (Gt). None of these companies are specifically gold miners (Thomas, 1995), but the
relationship between the gold price and company returns increases from none for BHP to a
significant nonlinear relationship for MIM and WMC (figures 2(n) and (o)). It useful to note
that BHP and CRA were the largest and most diversified of the five companies during the
period of our data, while CMC and WMC were the smallest and least diversified with an
especially high focus on base metals. Therefore, it is possible that the gold price is capturing
an effect that is peculiar to these undiversified base metal miners.

Overall, the estimates explain quite a large percentage of variation in the company returns
for the companies. Many of the more interesting relationships appear distinctly nonlinear
and would not be captured by simply fitting a linear in parameters SUR.

5 Simulation Experiments

The performance of the nonparametric SUR estimator is studied using simulated data. Yee
and Wild (1996) use smoothing splines to estimate a system of equations in a nonparametric
manner, but they do not have data-driven estimators for their smoothing parameters. In the
example in section 5 of their paper they use values of the smoothing parameters based on
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the independent variable, but not the dependent variable. Such an approach is not a satis-
factory way of estimating the smoothing parameters because it does not take into account
the curvature exhibited by the dependent variable. Nor is it fully automatic in that a value
for the effective degrees of freedom has to be chosen by the user. For these reasons we do not
include the Yee and Wild (1996) estimator in our simulations and instead compare our esti-
mator with one that estimates each regression equation separately, ignoring any correlation
between the regressions. In doing this we show that this can result in substantially improved
estimates.

5.1 Example 1: Highly positively correlated univariate regressions

This simulated example highlights the case where the errors are highly correlated between
regressions, with the true covariance matrix E being given below at (5.1). There are m = 4
univariate regressions, so that ri = r2 = r3 = r4 = 1 and the standard deviation of the errors
(var(e1))1/2 = 1 is high compared to the range of the functions.

Four true functions were carefully chosen to represent a wide variety of possible relation-
ships. These are f1(x) = sin(87rx) (which is highly oscillatory), f2(x) = (0(x, 0.2,0.25) +
0(x, 0.6, 0.2))/4, with 0(x, a, b) being a normal density of mean a and standard deviation b,
(which requires a locally adaptive estimator as there are different degrees of smoothness on
the left and right of the function), f3(x) = 1.5x (which was chosen as many relationships are
often thought to be linear) and f4(x) = cos(27rx), (which is a smooth nonlinear function).
The independent variables for the four univariate regressions were x1 U(0, 1), x2 U(0, 1)
and

: ((0.5 " 0.6 1 1)

0.5 1 0.6
N 

We generated n = 100 data points from this true SUR model and applied the nonparametric
SUR estimator to this data. To assess the resulting estimates of the four functions, we
calculated the log mean squared difference between the function estimates and the true
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functions. This measure of distance between the two is defined as
1 200 

\ 2log(MSDi) = log ( E Cis(z) fi(zk))200 k.i

where min(xi) = z1 <z2 < <z200 = max(xi) is an evenly spaced grid over the domain of
xi. For the same data we also fit four single equation univariate nonparametric estimators
corresponding to using the estimator proposed here with m = 1 on each of the four regres-
sions. The log mean squared difference was also calculated for each of these four function
estimates. We use the same bases for the SUR and single equation estimators, namely the
reproducing kernel basis B3.

-Figure 3 about here.-

The entire process was repeated one hundred times. Figures 3(a)-(d) give boxplots of the
one hundred resulting values of log(MSDi) for each of the four functions (i = 1, 2, 3, 4) and
for both the nonparametric SUR estimator (NSUR) and individual nonparametric estima-
tors (NR). Figure 3 shows that taking into account the correlation between the errors has
substantially and consistently improved the resulting estimates of all the regression functions.

To examine the qualitative improvement that occurs, we focus on the single data set
corresponding to the 50th sorted value of EL MSDi for the nonparametric SUR estimator.
This data set can be regarded as providing a 'typical' example of the procedure and is plotted
as four scatter plots in figures 3(e)-(h) and again in figures 3(i)-(1). The nonparametric SUR
estimates of the four functions for this data appear in figures 3(e)-(h) and the estimates
for the separate nonparametric regressions appear in figures 3(i)41). These figures show
that the nonparametric SUR estimator significantly outperforms the separate nonparametric
estimators which ignore the correlation between the separate regressions. The variance E of
the errors and its estimate t for this data set is given below.

1 0.96 0.64 0.93

1 0.98 0.90
E =

1 0.85

1
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1.571 1.269 0.944 1.261

1.244 0.982 1.139

1.053 0.913

1.199

(5.1)



It compares favorably to the 'best possible' estimate tbest that arises from the sample variance
of the true errors themselves, which are known because this is a simulated example.

1.568 1.234 0.921 1.256

tbest = faa e2, e3

5.2 Example 2: Different Bases

I) = 1.261 0.990 1.143

1.061 0.914

1.200

The choice of basis used to represent a function can make a large amount of difference in
the empirical performance of any estimation methodology. The bases introduced in section 2
are those typically used to fit smooth functions and this example compares their ability to
parsimoniously reproduce the function employed in the multivariate nonparametric systems
examined in example 1. We applied the same nonparametric SUR estimator as in the first
example, except that we used the five bases Bk, . . . 55. Figure 4 provides the log(MSDi)
for the five bases and four functions. The performances are roughly comparable, which is
because all of the bases are known to be suited to smooth function estimation. However,
of the five alternatives, on average the quartic reproducing kernel basis is superior, which is
why we focus on this basis throughout the paper.

-Figure 4 About Here.-

5.3 Example 3: Various noise levels and sample sizes

The first example investigated the properties of the procedure in the case where there was
a fixed sample size (n = 100). and a fixed covariance matrix E. Although this particular
combination was challenging (because of the high ratio of the standard deviation of the
errors to the function ranges in each of the regressions), it important to see how the estimator
performs with different sample sizes and noise levels.
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To undertake this, we repeated the simulation experiment discussed in the first example,
but where we considered all combinations of four sample sizes, n = 100, 200, 400, 1600, and
four covariance matrices 0.25E, 0.5E, E, 2E, where E is the same covariance matrix used in
the first example and is given at (5.1). Notice that these are still highly correlated examples,
just with different noise levels. To compare the nonparametric SUR estimator (NSUR) to
the four separate nonparametric regressions (NR) we calculated the logarithm of the mean
squared difference averaged over all four regression functions for both procedures. That is,

1 4log(AMSD) = log (-
4 
E Aispi)
i=1

Low values of this suggest that the average distance of the function estimates from the true
functions is low (and therefore the performance of the estimator is good), while higher values
suggest the function estimates are further away from the true function. For each combination
of sample size and noise level, two boxplots (one each for the NSUR and NR estimators) of
the values of AMSD resulting from the 100 simulated data sets are included in figure 5.

—figure 5 about here--

Figure 5 reveals that regardless of sample size and noise level, the NSUR procedure
consistently outperforms the NR procedure, where the correlation is ignored and separate
regressions fit. The performance of the estimators converge as the sample size increases
and the noise level decreases. For example, the performance between the two differ more
when a = 2 and n = 100 than when c = 0.25 and n = 1600. In moderate sample size
environments the benefits can be substantial. For example figure 5 reveals that, regardless of
noise level, the NSUR estimator provides about the same level of performance (as measured
by AMSD) with only n = 100 observations as simple NR estimation does with a sample size
of between n = 400 and n = 1600. Although AMSD is a distance measure averaged over the
four regression functions, we have checked that the NSUR estimator also outperforms the
separate NR estimates using the individual MSDi criteria on all four individual functions.

. To demonstrate that the NSUR estimator is practical to implement, we report the time
required to fit models of each sample size for both it and the NR procedure. The computer
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used was a standard DEC Alpha workstation running at 233 MHz and the code for both
procedures was written in FORTRAN and compiled similarly. Although these timings are
implementation dependent, they do indicate that this Markov chain Monte Carlo procedure
is not overly computationally intensive.

—table 1 about here.-

5.4 Example 4: Unrelated regressions

The previous examples consider a highly related set of regressions and demonstrate the
improvements in the regression function estimates that can occur when correlations between
the regressions are modeled and estimated, rather than ignored. However, consider the case
where it is uncertain whether, or not, there is correlation between the regressions. In this
case, is there a risk of degrading the function estimates by modeling a correlation that does
not exist?

To investigate this case, we repeated the simulation undertaken in example 1, except
where the true regressions were fixed to be unrelated, with E = /4. Figures 6(a)-(1) provide
the equivalent output for this example as was produced in example 1. It can be seen from the
boxplots in figures 6(a)-(d) that, in general, there is a slight deterioration in the log(MSDi)
for the NSUR estimator compared to the NR estimation procedure. This is expected as the
regressions are actually not related and the NSUR, procedure also estimates E. For the single
median data set (which we take as a typical example in the same way as example 1) the
estimate of E is

1.005 —0.207 —0.147 0.174

0.851 0.043 —0.065

0.829 0.079

1.137

However, the loss in the efficiency of the function estimates is very small and in this median
data set the function estimates from the NSUR estimator (figures 6(e)-(h)) are almost iden-
tical to those from the NR procedure (figures 6(i)-(1)). This suggests that if it is not known
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whether a system of regressions is actually related, or not, using nonparametric SUR esti-
mation can provide significant improvements if there really is correlation, while it is unlikely
to result in a serious degradation of the function estimates if the regressions were not really
related.

-figure 6 about here-

5.5 Implementation Details

The Markov chain in all these estimations ran with 1000 iterations for the warmup and a
subsequent 500 iterations for the mixture estimation. The warmup period is conservative
as the sampling scheme consistently appears to converge (as measured by the distributions
of the iterates) within fifty iterations. In addition, we are using a conservative number of
iterations for the mixture estimation as the estimates fi appear to stabilize after around fifty
to one hundred iterations.
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Appendix 1 Generating from the conditional posterior distri-

butions

A1.1 Generating from 0.71E-1, -y, y

This conditional distribution can be calculated exactly, as

P(0-7IE-1, Y) cx P(Y107,E-1,7)P(01yiE-1,'7)
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(nm + 1)oc exp p #7YX;AX-y(0.7, -2 nm

so that Ay I E y NO17, nmnm±i (X;,AX-y)-1). Here, /./.7 and A are defined in section 3.1.

A1.2 Generating from E-1107, -y, y

This conditional distribution is difficult to recognize as E is embedded in the conditional
prior for Ay. Therefore, to obtain an iterate we use a Metropolis-Hastings step; see Chib
and Greenberg (1995b) for an introduction to this tool. The proposal density from which we
generate a candidate iterate is given by

q(E1) cx xyloopE-1,7)p(E-117)

1oc IE-11(n-m-1)/2exp f--
2
tr(S2E-1)1

which is a Wishart(D-1,n,m) density. Here, Il is an (m x m) matrix with ijth element
= (yi i)'(yi -.A newly generated iterate EL1 is accepted over the

old value E;11 with probability

(p(E:eiwii37,7, y)q(E:11) (p(0,71E;iw,7)
a = min  ,1  =mini, 1V3.7, y)q(E-n-e ) P(071E;ici, 7)

High acceptance rates of 60-90% are obtained because the proposal density q() is equal to
the correct conditional density except for the factor W371E-1,7).

A1.3 Generating from y

This conditional density can be calculated exactly, with

p 

y) 

cc f p(yloy, E-1,07)p(07147,E-1)437p(7.ii)

oc (nm + 1)-'7/2exp (y1Ay - AX.7(X;,AX-7)-1X?7Ay)1 (A1.1)

In equation (A1.1) the regression coefficient is integrated out using 07 nmnln+i(X;r4X7)-1)
and p(-4) = 1/2. The binary variable -yisi is generated by evaluating (A1.1) for yisi = 1 and
= 0 and then normalizing.
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Figure 1: (a)-(c) Scatter plots are of P versus yi, bold lines are nonparametric SUR estimates
of ji, while the dashed lines are the single equation estimates. Panels (d)-(f) contain scatter
plots of P versus the standardised uncorrelated residuals resulting from the nonparametric
SUR fit.
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Figure 2: Bold lines are estimates of the regression functions for the NSUR estimator, while
dotted lines are from the five seperate regressions. Panels (a)-(e) correspond to function
estimates if for i = 1, , 5. Panels (f)-(j) correspond to function estimates h for i
1, , 5. Panels (k)-(o) correspond to function estimates h for i = 1, , 5.
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boxplot is for the NSUR estimator, while the right hand boxplot is for the NR estimation
procedure. Panels (e)-(h) contain scatter plots of xi against yi, along with the function
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sample size NSUR estimator NR procedure

n = 100

n = 200

n = 400

n . 1600

43s

58s

213s

3850s

9s

14s

49s

910s

Table 1: Average time (in seconds) taken to complete a fit to data generated from the model
in example 2 for both the NSUR, and NR estimation procedures and four sample sizes.
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Figure 4: Comparision of the five bases Bk, , 135. Each plot corresponds contains boxplots
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