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. Abstract

The presence of nuisance parameters causes unexpected complications in econometric

inference procedures. A number of modified likelihood and message length functions

have been developed for better handling of nuisance parameters but all of them are not

equally efficient. In this paper, we empirically compare different modified likelihood

and message length functions in the context of estimation and testing of parameters

from linear regression disturbances that follow either a first-order moving average or

first-order autoregressive error processes. The results show that estimators based on

the conditional profile likelihood and tests based on the marginal likelihood are best.

If there is a minor identification problem, the sizes of the likelihood ratio and Wald

tests based on simple message length functions are best. The true sizes of the

Lagrange multiplier tests based on message length functions are rather poor because

the score functions of message length functions are biased.



1. Introduction

Satisfactory statistical analysis of non-experimental data, is an important problem in
econometrics. Econometric models usually involve a large number of influences,
most of which are not of immediate interest. This means that such models contain
two kinds of parameters, those of interest and those not of immediate interest that are

known as nuisance parameters. Their presence causes unexpected complications in

econometric inference. A fairly standard procedure in likelihood based statistical

inference is to concentrate the likelihood function by replacing nuisance parameters by

their respective maximum likelihood (ML) estimators conditional on the parameters

of interest. In such situations, estimators and tests can perform poorly in small

samples (Bewley 1986, Cox and Reid 1987, King 1987, King and McAleer 1987,

Moulton and Randolph 1989, Chesher and Austin 1991). Earlier, Neyman and Scott

(1948) warned that nuisance parameters can seriously compromise likelihood based

inference. In relation to this, King (1996) observed that when nuisance parameters are

present, statistical theory is generally less helpful in suggesting reliable diagnostic

tests. Also, Cordus (1986) noted that the presence of nuisance parameters causes a

shift in the estimated mean of the null distribution of the likelihood ratio test.

The question which then arises is which methods should be used to tackle the

problem of nuisance parameters in order to improve estimators and tests. The

marginal likelihood is one such method for handling nuisance parameters. Estimators

and tests based on this likelihood have better small sample properties compared to

those based on the classical likelihood function (Ara 1995, Cordus 1986, Rahman and

King 1998). In the context of estimating variance components in the linear regression

model, a related approach known as residual (or restricted) maximum likelihood

(REML) (Patterson and Thompson 1971) has gained considerable importance. The

marginal likelihoods cannot be constructed in all situations and REML applies only to

the disturbances parameters in the linear model. As an alternative, Bamdorff-Nielsen

(1983) proposed the modified profile likelihood (MPL) and Cox and Reid (1987)

initiated the idea of the conditional profile likelihood (CPL) which requires that the

parameter(s) of interest and nuisance parameters are orthogonal. Also, using the

combination of REML and CPL, Laskar and King (1998) derived the conditional

profile restricted log-likelihood function (CPRL) for better handling of nuisance
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parameters. They investigated the small sample properties of estimators and tests
based on this likelihood function and three other modified likelihood functions and
compared with those based on the profile likelihood function.

An alternative approach, known as minimum message length (MML), is a

information theoretic criteria for parameter estimation and model selection. The

MML principle needs a prior distribution of the parameters, the square root of the

determinant of the information matrix for the parameters and a likelihood function. In

this context, Wallace and Dowe (1993) mentioned that the inclusion of the first two

factors helps reduce the measure of uncertainty, their ratio is dimension free and

invariant to reparameterization. Extending their research, Laskar and King (1996)

derived six different message length functions using different prior distributions of the

parameters and combinations of CPL and message length functions. They

investigated the small sample properties of estimators based on these message length

functions. Moreover, Laskar and King (1997) investigated the small sample

properties of different tests based on these message length functions. There are many

different modified likelihood and message length functions for handling nuisance

parameters but for econometric problems where estimation and diagnostic testing are

of main interest, all of them are not equally efficient. Thus, it is important to

investigate and find out the best approaches for handling nuisance parameters.

The aim of this paper is to empirically compare all the likelihood and message

length functions in the context of estimation and testing of parameters involved in the

variance-covariance matrix of linear regression disturbances. We extend and compare

the Monte Carlo results of Laskar and King ( 1996, 1997a, 1997b, 1998). This will

enable us to recommend the best functions in estimation and testing problems. In

section 2, different likelihood and message length functions are presented. A Monte

Carlo experiment, conducted to compare the estimators and tests based on all the

likelihood and message length functions are reported in section 3. Some concluding

remarks are made in section 4.

2. Theory

Consider the linear regression model with non-spherical disturbances

y = X13 + u ; u N(0, a2S-2(0)) (1)
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where y is nxl, X is nxk, nonstochastic and of rank k < n, )6 is a kxl vector, we) is a
symmetric matrix and 6 is a pxl vector. This model generalizes a wide range of
disturbance processes of the linear regression model of particular interest to
statisticians and econometricians. These include all parametric forms of
autocorrelated disturbances, all parametric forms of heteroscedasticity (in which case
12(9) is a diagonal matrix), and error components models including those that result

from random regression coefficients. The likelihood and log-likelihood for this model
(excluding constants) are respectively

1L(y;t9 0:72 , f3) if2090 eXp (y — 0)12(0) 1 (y X$)}, (2)
2a-

1 11(y; e,a2 ,p) —flog az --logif1(0)1— , (y S2(0)-1 (y2 2 2c7-

and the log profile (or concentrated) likelihood is

p(y;0) cic — -112 log &20 — —21 10,02(0

where a 20 = (y— f2(60-1 (_ X13 0) I n and /30 = (X II(0)-1 X)-1 X I2(0)-1 y.

(3)

(4)

2.1. Modified Likelihood Functions

Tunnicliffe and Wilson (1989) derived the marginal likelihood for 6 in (1) as

(y;0) = log111(0)1— logl C209)-1 X1 — 12(6)-' a) (5)

where m = n — k. Using the combination of REML and CPL, Laskar and King (1998)

derived the CPRL function of 6 for model (1) as

= (m-2) [loglf2(0)1— logl X1 12(6)-' XI — m 0(60-' a)] (6)2m

Using the idea of Cox and Reid (1987), Laskar (1998) derived the CPL for 0 in (1) as

(y; 0) = — —1 logIX 12(6)' 
XI

(n — 2) logif2(0)1 (m 2) log(fi'12(6)-1 t2).2 2n 2 (7)

Based on the idea of Cox and Reid (1993), Laskar (1998) also derived an approximate

conditional profile likelihood (ACPL) for 6 in (1) as

1 1= 
m— 2 

log(trf2(6)-1 11) — —1041(0)1— —loglx 'nor'2 2 2
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+-
1
tr
[S2(0)- an(e)] - 8).

e=e.

From (5) and (6)

(8)

Icgpr (y; 0) = 
(m— 2) 

in, (y; 0)

so that for the purposes of estimating 0, the marginal likelihood function and the

CPRL are equivalent. This is not necessarily true for likelihood based tests of e
because scores, Hessians and maximized likelihood will be different, although any

differences will obviously disappear as n increases.

2.2. Message Length Functions

Minimum message length is a Bayesian method which chooses estimators to minimize

the length of an encoded form of the data made up of a model and the deviations from

that model (residuals). Wallace and Dowe (1993) state that the MML principle is that

the best possible conclusion to draw from the data is the theory which maximizes the

product of the probability of the data occurring in the light of the theory with the prior

probability of that theory.

For model (1), an approximate message length function given by Wallace and

Freeman (1987) and accurate to 6 =11 1.1 IC.: F(0, cr2, p) is

— log
700, 62 , pme, a2, s)

VF(0,0-216) + 11-(1+ log Ks)
2 (9)

where 71-(9,02,[3) is a prior density for y = (0',a2J3',)', F(0,02,A is the determinant of

the information matrix, s = k+ p + 1, Kis is the s dimensional lattice constant which is

independent of parameters, as given by Conway and Sloan (1988, p. 59-61). For

5 19example K1 = —1 , K, =  and K, =  Wallace and Dowe (1994)12 36.;0, •

mentioned, maximizing (9) is equivalent to maximizing the average of the log-

likelihood function over region of size proportional to 1/ VF(0,a2,p) while the ML
estimator maximizes the likelihood function at a single point. The value of 0 which

minimizes (9) is the MML estimate of B with accuracy 3 =11 11K:F(0,472 ,M)
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4.

Inclusion of 71.(9,c2,f3) and VF(0,C72,$) help reduce the measure of uncertainty, their
ratio is dimension free and invariant to reparameterization (Wallace and Dowe 1993).
Since MML is a Bayesian method and depends on the choice of prior density of the
parameters, there is scope in selecting the prior. Using different prior densities and
combinations of CPL and message length functions, Laskar and King (1996) derived
six different message length functions which are

m— 1 
M.L1 = log a

2 
+ —1ogIS2(0)1 + --7uT2(0) u + — logl X nor'' XI2 2 2a- 2

I dE2(e)-1  an(e)1 [ dwell 
2'\

+-log(72 x tr   
dO 

tr wey
2 dO de

-F-S--(1-1- log I Cs )—log 2 , (10)2

2 1 1 1
ML2 = +—loglE2(0)1+-3-uT2(0)-1 u + S-2,(60-1 X12 9 2a- 2

+-
1
log
(
n x tr
[ dC2(0)-1  d0(0)1 {

tr[S2(0)-1 a2(0)11
de .12 de des

+1(1+ logic.)— log2 , (11)2

+m—k-3 k 1CPMLi = 1og(51 + log11-2(9)1+ log
2 n+k+1

x; x;

2\

+
-I
log n x tr

[ dwe)-1  .9Q(e)1
tr
[
Q(60

_, a2(0)1}
2 dO dt9 de

(12)

where ute = yte — 13, x; = D(9) 2 , D(9) = 11(0) I 10(ml yto = y ,,

= t2 i2 CI; I (n — k —1), lite = y; — .X.::13' fo and 13'e = (X; X,;)-1 X; y; .

m — k — 2 kCPML2 = log 32 + 1ogIS2(9)1+ log
2 n + k

x; x;

( 2\[ ds2(e)-1  dn(e)1 Itr[Q(0)_, dc2(el+—log tr
BO j2 de do

(13)

where k = m, =y;- X;f3; , '13; = (X; X,*,)-1 X; y*e, X; = G1(0) 2 X,

y; = G, (0)-2 y and G1(0) = S2(0) /1E2(0)1
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1 1 1AML1 = 
m — 1 

log + --5-2 4u0 + —210 Xf;Xe I + —21ogIC(9)1, (14)2

(15)
AML2 = flog 5 + 7521 + —21 loglX2fe I + —21 logIC(0)1

where Cr2 = o / IS2(0)17z , G(6) is an nxn matrix comprised of OM with each element

divided by 10,(0)1. and the (i,j)th element of the pxp matrix c(0) is

—
1
tr
[a2 G(0)-1  

G(0)
]

2 do,de,

Details of the LR, LM, Wald, AW and NW tests based on all the likelihood and

message length functions in the context of testing Ho: 0 = 00 against Ha: 0 # 00 in (1)

are given in Laskar and King (1998), Laskar and King (1997a) and Laskar and King

(1997b). Laskar and King (1998) estimated the MA(1) disturbances parameter

constrained between -1 to 1, because of the identification problem for MA(1)

disturbances. It is well known that there is a non-zero probability of getting ML

estimators of -1 or 1 for MA(1) disturbances parameter (Shephard 1993). The score

with respect to the MA(1) parameter is discontinuous and the information matrix is

not well defined at those two points. As a result, Laskar and King (1998) faced the

problem of nonmonotonicity of the power curve of the Wald test. They initially

tackled this problem by rejecting the null hypothesis whenever the estimate of the

MA(1) disturbance parameter is ±1 and called this the AW test. Unfortunately the

AW test cannot totally solve this problem because it takes into account boundary

values of the parameter estimates only. The power curve may be nonmonotonic at

some other points of the parameter space. Laskar and King (1997a) fully overcame

this problem by replacing the unknown parameter values in the variance component of

the Wald test with their null hypothesis values rather than their estimated values and

denoted it as the NW test.

3. Monte Carlo Experiment

Laskar and King (1998) investigated the small sample properties of estimators and

LR, LM, Wald and AW tests based on different modified likelihood functions in the

context of MA(1) and AR(1) regression disturbances. Also, Laskar and King (1997a)
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investigated the small sample properties of NW tests based on different modified
likelihood functions in the context of MA(1) regression disturbances. When message
length functions based estimation and testing are concern, Laskar and King (1996)
investigated the small sample properties of estimators in the context of MA(1)
regression disturbances and Laskar and King (1997b) investigated the small sample
properties of tests in the context of MA(1) regression disturbances.

In order to compare the small sample properties of estimators and small sample
size and power properties of the LR, LM, Wald, AW and NW tests for testing
Ho: y = 0 for MA(1) regression disturbances or Ho: p= 0 for AR(1) regression

disturbances i.e. Ho: 0= 0 based on different modified likelihoods, classical (profile)
likelihood and message length functions, we considered results from above papers and
further a Monte Carlo experiment was conducted for computing the estimators and
small sample sizes and powers based on message length functions with the
disturbances of (1) generated by the AR(1) process

ut = pu,_, + Et (16)

in which Et - IN(0,c2), t = 0,1,...,n . Under (16), u N(0,a211(p)), where

uo N(0, c72 / (1— p2)), Q(p) is the nxn symmetric matrix whose (ij)th element is

pl'il / (1— p2) . For the model (16), all the message length functions are not defined

at p =±1. So, the best way of tackling this problem is to restrict p to the interval

—0.9999 p 5_ 0.9999. (17)

For our purposes, the need to impose the restrictions (17), has a positive implication.
Often when estimators are being investigated, there is uncertainty about which

moments of the estimator's distribution exist. If, for example, the second-order
moment does not exist, then any estimate of it obtained from a Monte Carlo
experiment will be finite but meaningless. In our case, while we do not know the
distributions of our estimators, the restrictions (17) implies that all moments will
exist.

3.1. Experimental Design

The first part of the study covered a comparison of the different MML estimators for
the AR(1) parameter. The estimates based on (i) ML1, (ii) ML2, (iii) CPMLI, (iv)
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CPM1d2, (v) AML1 and (v) AML2 when p = -0.8, -0.4, 0, 0.4, 0.8 were used for the

first comparison. The second part involved a comparison of sizes of different tests
using asymptotic critical values at the five percent level. The third part of the
experiment was divided into two parts. In first part, the Monte Carlo method was
used to estimate appropriate critical values of each of the tests in order to compare the
powers of all tests at approximately the same level. These critical values were
calculated using 2000 replications. In second part, powers of all the tests were
calculated using these (simulated) critical values. The tests involved LR, LM, Wald
and NW tests.

All the calculations were repeated 2000 times using the GAUSS (1996)
constrained optimization routine but with particular care taken in choosing starting
valus (see Laskar, 1998). The following X matrices were used with n = 30 and n = 60:

Xl: (k = 5). A constant, quarterly Australian private capital movements,

Government capital movements commencing 1968(1) and these two variables

lagged one quarter as two additional regressors.

X2: (k = 3). A constant, quarterly seasonally adjusted Australian household

disposable income and private final consumption expenditure commencing

1959(4).

X3: (k = 3). The regressors are the eigenvectors corresponding to the three

smallest eigenvalues of the nxn tridiagonal matrix whose main diagonal

elements are 2, except for the top left and bottom right elements which are

both 1 and whose elements in the leading off-diagonals are all —1.

X4: (k = 2). 'A constant and a linear trend.

These matrices reflect a variety of behaviour. The capital movements
regressors in X1 are rapidly changing with a high degree of seasonality. This is in
contrast to the relatively smooth regressors X2 (seasonally adjusted quarterly data).
The regressors in X3 are smoothly evolving and include an intercept. They cause the
Durbin-Watson statistic, which is an approximately locally best one-sided test against
both MA(1) and AR(1) disturbances (King and Evans 1988), to attain its upper bound.

Also Laskar and King (1998), Laskar and King (1997a), Laskar and King (1997b) and

Laskar and King (1996) considered the same set of X matrices.
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3.2. Empirical Comparisons of Estimators Based on Likelihood and Message
Length Functions

Estimated bias, standard deviation, skewness and kurtosis of all the estimators were

computed and summarized using a loss function, !bias! + —
1
(standard deviation) +

1 1
!skewness' + — 'kurtosis - 31 where = 3 (Laskar and King, 1998). Then we2,3

compare all the estimators by ranking their absolute value of bias, standard deviation,

the absolute value of skewness, the absolute value of (kurtosis - 3) and loss. These

statistics of the estimators based on profile likelihood, marginal likelihood, CPL,

ACPL, ML1, CPMLI, ML2, CPML2, AMIii and AML2 were combined from this

Monte Carlo experiment, Laskar and King (1998) and Laskar and King (1996). They

were ranked from 1 to 10 in ascending order, from the smallest to the largest values,

for each X matrix and each value of n, y and p. The average ranks with their

standard error in parenthesis and the rank of this average rank for MA(1) processes,

AR(1) processes and combined MA(1) and AR(1) processes are presented in Table 1.

The average ranks of rankings of all statistics with their standard error in parenthesis

and the ranks of this average ranks for different processes and values of y and p are

presented in Table 2.

The ranking of average ranks based on all statistics for combined MA(1) and

AR(1) processes with n = 30 and 60 from Table 2 indicates that the CPL based

estimators are best, but not for all processes and values of n. The same table reflects

that for MA(1) processes with n = 30 and n = 60, they are the second and the third best

respectively, but for combined n = 30 and 60, they are best. For AR(1) processes

with n = 30 they are the fifth best, but for n = 60, they are best and for combined n =

30 and 60, they are the second best. They are best for combined MA(1) and AR(1)

processes with all sample sizes. The separate average rank for losses and all

individual statistics sheds more light on the performance of the CPL based estimators.

The skewness of the CPL based estimators are smallest for combined MA(1) and

AR(1) processes and MA(1) processes with n = 30 and 60. The absolute value of

estimated kurtosis minus three, of the CPL based estimators are smallest for all

processes and all sample sizes, except for AR(1) processes with n = 30. This pattern

is not clear for losses, biases and standard deviations. The losses of the CPL based
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estimators are smallest for AR(1) processes with n = 60, MA(1) processes with n = 30
and 60 and combined MA(1) and AR(1) processes with n = 30 and 60. The
performance of the CPL based estimators are relatively poor in average ranks based on
biases and standard deviations, in particular, the average ranks based on standard
deviations are relatively large and typically eighth and ninth in most of the cases. The
CPL based estimators reduce bias, but not very much, their average ranks vary from
two to five, but they reduce estimators' skewness and kurtosis compared to all other
likelihood and message length functions based estimators.

The average ranks of all rankings from Table 2 reflect that the marginal

likelihood based estimators are the second best, but they are more uniform in terms of

their ranking with the smallest standard error of 0.103, compared to 0.113 for the CPL

based estimators. For AR(1) processes, they perform relatively better compared to

their performance for MA(1) processes. For AR(1) processes with n = 30 and

combined n = 30 and 60, they are best and when n = 60, they are the second best. In

contrast, for MA(1) processes with n = 30 and n = 60, they are the fourth best and for

combined n = 30 and 60, they are the fifth best. The average ranks based on losses for

the marginal likelihood based estimators are the smallest for combined MA(1) and

AR(1) processes with n = 60, MA(1) processes with n = 60 and all cases of AR(1)

processes. For combined MA(1) and AR(1) processes with n = 30 and 60, they are the

second best, but for n = 30, they are the third best. The marginal likelihood based

estimator reduces estimators' bias compared to all other likelihood and message

length functions. This is the reason why Ara and King (1993) and Rahman and King

(1998) have found better small sample properties of the marginal likelihood based

tests compared.to the classical likelihood based tests.

The estimators based on AML, are the third best overall, but the standard error

of their average rank namely, 0.150, is relatively large, being seventh in ranking;

which suggests a lack of uniformity in terms of their ranking. Their ranking is third

due to the smaller ranking based on standard deviations and small values of y and p.

The average rank based on standard deviations from Table 1 suggests that for AR(1)

processes, it is best, for MA(1) processes and combined MA(1) and AR(1) processes,

it is the second best except for MA(1) processes with n = 30, where is the third best.

All other cases their average ranks are higher.

•
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Average ranks of all ranking from Table 2 suggest that the estimators based on
ML1 are the fourth best. The ranking of ML2, AML, ACPL, profile likelihood,
CPML2 and CPMLi based estimators are fifth, sixth, seventh, eighth, ninth and tenth
respectively. The areas in which the ML1 based estimators do well are MA(1)
processes with n = 60, where they are best and for MA(1) processes with combined n
= 30 and 60 and combined MA(1) and AR(1) processes with n = 30 they are the
second best. The average ranks based on losses from Table 1 exhibit that the MIA
based estimators have smallest losses for combined MA(1) and AR(1) processes with

n = 30 and MA(1) processes with n = 30. For MA(1) processes with n = 30, skewness

of the ML1 based estimators are smallest and for n = 60 and combined n = 30 and 60,

they are the second best. The average rank based on kurtosis of the MIA based

estimators is relatively larger and only for AR(1) processes with n = 30, it is the

smallest and for n = 60 and combined n = 30 and 60, it is the second smallest. For

combined MA(1) and AR(1) processes with n = 30, it is also the second smallest.

There is a tendency for the MIA based estimators to do slightly better when n = 30. In

contrast, the marginal likelihood based estimators do slightly better for n = 60.

The estimator based on the ML, is the fifth best with a relatively low standard

error of 0.112. The average ranks based on losses reveal that for MA(1) processes

with n = 30, losses of the ML, based estimators are the second smallest and in all

other cases they are typically larger. Biases of the ML, based estimator are smallest

for MA(1) processes with n = 30 and for combined n = 30 and 60 but for n = 60 they

are the second smallest. Average ranks of the ML, estimator based on standard

deviations, skewness and kurtosis are relatively larger.

The estimators based on the AML1 are the sixth best with relatively large

standard error of 0.160, ranking ninth. The average rank based on standard deviations

are the smallest for all processes and all sample sizes, except for AR(1) processes with

n = 60 and with combined n = 30 and 60, in which it is the second smallest. The

average ranks based on skewness for AR(1) processes with n = 30 and for combined n

= 30 and 60 are also smallest. Table 2 exhibits that for y= p = 0, the average ranks

based on the AML1 are smallest. These are the factors responsible for the smallest

average rank of the AML1 based estimator.
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The average ranks based on all ranking from Table 2 display that for = p =

-0.4, the estimators based on the CPL are best and those based on the ANILI are the
second best. The CPL based estimators are also less discrepant with smallest standard
error of 0.198 compared to 0.317 for the AML, based estimator. For y = p = 0, on

the basis of average ranks of all rankings, the estimators based on AML, are best and
those based on AMLI are the second best. The ranking of marginal likelihood and
CPL based estimators are fifth and sixth respectively. For y = p = 0.4, the ANIL1

based estimators are best and the CPL based estimators are the second best. The
results for different values of y and p suggest that for y and p close to zero, AML,

and AML' based estimators perform better. In contrast for y and p away from zero,

marginal and CPL based estimators perform better. There is a case for y = p = -0.8,

where the ML, based estimators are best with a relatively large standard error.

Overall, this analysis displays that the estimators based on the CPL are best with

the marginal likelihood based estimators being second best. Although the marginal

likelihood based estimators are the second best, they are more uniform in terms of

ranking on a range of criteria with the smallest standard error of 0.103 compared to

0.113 for the CPL based estimator. The biases of the marginal likelihood based

estimators are smallest compared to those of the CPL based estimator. On the other

hand, skewness and kurtosis of the CPL based estimators are smaller compared to

those of the marginal likelihood based estimators. Bias reduction is considered more

important in the literature but, the latter two findings are not. The CPL is also capable

of reducing estimators' skewness and kurtosis. When the values of y and p are

closer to zero, both marginal likelihood and CPL based estimators perform relatively

poorly and we are able to favour AML1 and AML, based estimators, but still they are

nonuniform in terms of their ranking. It is not difficult to conclude that marginal

likelihood and CPL based estimators are close competitors and it is very difficult to

state which one is best. The estimators based on MLI and ML2 may be ranked third

and fourth best respectively, considering the standard error of their average ranks.

Although the AML, based estimators are fourth in average rank, the standard error of

their average rank is 0.150, which is much larger compared to 0.112 for ML2 based

estimators. Typically, CPMLI, CPML2 and profile likelihood based estimators are the

worst of all other estimators considered.
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3.3. Empirical Comparisons Among Likelihood and Message Length Based

Tests

The sizes and powers of all tests based on profile likelihood, marginal likelihood,

CPL, CPRL, ACPL, ML1, CPMLi, ML2, CPML2, AMLI and AMld2 were combined

from this Monte Carlo experiment, Laskar and King (1998) and Laskar and King

(1997b). The absolute value of (size - 0.05) for all eleven tests are ranked from the

smallest to the largest values, and powers are ranked from the largest to the smallest

values for each X matrix and values of n, y and p. The average rank of size of

different tests with its standard error in parenthesis and the ranking of the average rank

for MA(1) processes, AR(1) processes and. combined MA(1) and AR(1) processes are

presented in Table 3. The average rank of power with its standard error in parenthesis

and the ranking of the average rank for all tests based on eleven likelihood and

message length functions for different values of y and p are presented in Table 4 and

those of all the tests based on marginal likelihood, CPL, ACPL, MLi, ML2, AML1 and

AML, for MA(1) processes, AR(1) processes and combined MA(1) and AR(1)

processes are presented in Table 5. The marginal likelihood and CPRL are equivalent

for the purpose of estimating y and p. but they have scores and information matrices

that differ by a multiplicative constant. As a result, the small sample sizes of

asymptotic tests based on these two likelihood functions will differ, although the tests

are identical if simulated (or exact) critical values are used. Some minor variations

may be observed due to rounding errors. As a result, the CPRL was not considered

for the second power comparisons. Also the CPMLI, CPML, and profile likelihood

were dropped from the second power comparison because they produce highly biased

power curves.

3.3.1. Comparisons of Sizes

The ranking of the average ranks for sizes of the LR tests reflect that for MA(1)

processes with n = 30, sizes of the MLi based tests are best overall, being closest to

the nominal size of 0.05 and those of CPRL and AMLI are jointly the second best.

The fourth best are the sizes of the AML2 based LR tests. However, for n = 60, those

of the CPRL based tests are closest to the nominal size and those of MIA and ACPL

are the second and third best respectively. The sizes of the profile likelihood based
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LR tests have the worst performance, being always away from the nominal size in
both the cases. It appears that for MA(1) processes, sizes of the marginal likelihood
based LR tests are away from the nominal size. This may be because of the
identification problem associated with MA(1) processes. The sizes of the marginal
likelihood based LR tests for AR(1) processes are closest to the nominal size while
those for MA(1) processes are the ninth best, so clearly they depend on data
generating processes. For AR(1) processes, sizes of the MIA based LR tests are the
second best and very similar both for MA(1) and AR(1) processes.

The sizes of the marginal likelihood based LM tests are the most promising, of

the eleven tests, with sizes ranked closest to the nominal size for each of MA(1) and

AR(1) processes; those based on ACPL, CPL and CPRL are typically the second, third

and fourth best respectively. In contrast, sizes of the message length based LM tests

are relatively poor, being away from the nominal size. These results are not surprising

as Mahmood and King (1997) observed that the LM test based on an unbiased score

function has best small sample properties and reported that the score functions based

on marginal likelihood and CPRL are unbiased.

The Wald test was not constructed for MA(1) processes for all the likelihood

and message length functions because of the identification problem mentioned in

section 3.1. Sizes of the Wald test based on ML, are best for AR(1) processes with

both n = 30 and 60 and those based AMLI with n = 30 and the marginal likelihood

with n = 60 are the second best and they are the same in terms of rankings. AW and

NW tests were constructed only for MA(1) processes and in terms of rankings, their

sizes seem to be more accurate when modified likelihood functions are replaced by

message length functions. The sizes based on MLi are best for both n = 30 and 60,

those of the NW tests based on ML, are best and those of the ML1 are the second best.

These results are tied up with the identification problem outlined in section 3.1. When

we get a problem of lack of identification, the information matrix reacts and solves

this problem. In this regard, Martin (1997) used the Bayesian method for inference

about fractional cointegration using autoregressive fractionally integrated moving

average processes and reported that the use of Jeffreys prior helped to offset an

identification problem in the likelihood function. Jeffreys prior is proportional to the

determinant of the information matrix. The message length function contains the
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square root of this determinant. Inclusion of this factor may help to tackle the
identification problem. Consequently all versions of message length based Wald tests
have better small sample sizes compared to those based on modified likelihood
functions.

Overall, the results show that sizes of the marginal likelihood based LM tests
for both MA(1) and AR(1) processes and those of LR tests for AR(1) processes are
most accurate and closest to the nominal size. The LM test based on all the message
length functions perform poorly and show strong size distortion. On the other hand,
the LR test based on MLI is quite impressive, having best sizes for MA(1) processes
with n = 30 and second best sizes for MA(1) processes with n = 60 and AR(1)
processes. Wald, AW and NW tests perform relatively better for message length
functions and, particularly those tests based on MIA, ML2 and AMLi, have desirable

sizes. Clearly, sizes of profile likelihood, CPMLi and CPML, based tests are away

from the nominal size, indicating their poor performance in testing problems. There is

no clear pattern of sizes for other tests, but a ranking of the average ranks of sizes for

all tests (second bottom column of Table 3) indicates that sizes of the marginal

likelihood based tests are best with those based on ML1, CPL, CPRL, ACPL, AML2
being second, third, fourth, fifth and sixth best respectively, and those based on AML1

and CPL are the same in average ranks. However, average ranks based on classical

(LR, LM and Wald) tests show an interesting picture, where the sizes of all the

modified likelihood based are better compared to those of message length based tests.

Those of marginal likelihood based tests are again best and sizes of the ACPL based

tests are the second best. The third and fourth best sizes are those of the CPRL and

CPL based tests. Clearly, modified likelihood based classical tests have better overall

small sample sizes.

3.3.2. Comparisons of Powers

Table 4 shows that powers of the profile likelihood based tests are largest for positive

values of y and p and smallest for negative values of y and p. In contrast, powers

of the CPMLI and CPML2 based tests are smallest for positive values of y and p and

largest for negative values of y and p. All of them produce highly biased power

curves. As a result their average ranks will be similar to those of the tests which
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produce unbiased power curves. Consequently, we may arrive at wrong conclusions.
So we have decided it is not safe to include them in the power comparison.

The ranking of the average rank from Table 5 reflects that for MA(1)
processes, power curves of marginal likelihood and AM.,' based LR tests are best
centred and the second and fourth best, respectively. In contrast, power curves of the
CPL based LR test show greater bias, being best powers for positive values of ya.nd p

and worst powers for negative values of yand p. This pattern of powers is completely

the opposite for AR(1) processes, being highly biased power curves for marginal

likelihood and AMLI and relatively better centred power curves for CPL, ACPL and

MLI. Finally, for MA(1) processes, powers of the marginal likelihood based LR test

are largest overall and those based on ACPL and CPL are the second and the third

largest respectively. For AR(1) processes, powers of the CPL based test are largest

and those based on the marginal likelihood are the second largest. In contrast, for

combined MA(1) and AR(1) processes, powers of the marginal likelihood based LR

tests are largest and those based on CPL and ACPL are the second largest.

When powers of the LM tests are concerned, there is no clear pattern, but it

appears from the average ranks that power curves of the CPL based tests are poorly

centred compared to those of the marginal likelihood. The power curves of AMLI and

AML2 based LM tests are best centred for AR(1) processes and those of CPL and

ACPL are the best and second best respectively for combined MA(1) and AR(1)

processes, while those based on CPL and ACPL have the same ranks and are best for

AR(1) processes. It seems that power curves of the ACPL based LM test are bettered

centred, the second best for combined MA(1) and AR(1) processes and best for

MA(1) processes. The power curves based on the ML2 are also quite impressive,

being the third best for combined MA(1) and AR(1) processes. Those based on MIA

are close competitors, being the fourth best power having very consistent rankings

with the smallest standard error of 0.207.

With respect to powers of Wald tests, when based on marginal likelihood and

ML1, they are highly biased and those based on AML, are best centred. However

power curves of AW tests based on ML2 are best centred and powers are relatively

low, being the sixth best, while those of AML and AMLi are best and the second best

respectively. On the other hand, power curves of the NW tests based on AMLi and
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AML2 are best centred with relatively low power and they are the sixth and seventh
best respectively. There is no other clear pattern, but it seems that powers of the ML/2
based tests are uniformly best and those based on the ML1 are the second best.

When we consider the average ranks based on all tests (last seven column of
Table 5), a slightly different pattern in powers is observed. Powers of the marginal
likelihood based tests are consistently best, followed by the powers of the ACPL
based tests which are the second best for both MA(1) and AR(1) processes. Those
based on CPL, AML2, AML1, ML2 and MLi are the third, fourth, fifth, sixth and

seventh best respectively. This ranking pattern is slightly different for different

processes and different values of rand p. For MA(1) processes, power curves based

on ACPL and AMLI are best centred and those based on CPL are highly biased. In

contrast, for AR(1) processes, only the power curves based on CPL are best centred

and those based on marginal likelihood and MI.,' are highly biased.

Overall, these results reflect that based on overall power in small samples, the

marginal likelihood is uniformly best and powers of LR tests are best centred for

MA(1) processes, while being highly biased for AR(1) processes. Also, powers of all

versions of the marginal likelihood based Wald tests are highly biased. The powers of

the ACPL based tests are the second best with smallest standard error and those for

LR and LM tests are also the second best for both the MA(1) and AR(1) processes but

their performance is relatively poor for all versions of Wald tests and is the fifth best

in all cases. Those of the CPL based tests are the third best. The powers of AML2,
AMLI, ML, and MLI based tests are the fourth, fifth, sixth and seventh best

respectively. It is clear that on the basis of average ranks, powers of all tests based on

modified likelihood functions are larger compared to those of the message length

based tests. There are some cases where message length based tests produce better

centred power curves with relatively lower powers and modified likelihood based tests

dominate in terms of power. Above all it is easy to conclude in favour of marginal

likelihood based tests when power is the criteria.

4. Conclusions

In this paper we empirically compare the estimators and tests of the parameters

involved in the variance-covariance matrix of the linear regression disturbances based
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on eleven different likelihood and message length functions, most of which are
designed for proper handling of nuisance parameters. The estimation results show
that estimators based on the CPL are the best out of the eleven estimation methods.
The CPL reduces skewness and brings kurtosis close to three. The second best are
marginal likelihood based estimators which show the best uniformity in terms of their
ranking over the various situations considered. The average sizes of all likelihood and
message length based tests show that overall, marginal likelihood based tests have the
most accurate sizes, particularly for the LM test; these are most impressive. All

message length functions perform poorly based on power compared to the likelihood

functions. Powers of the marginal likelihood based LR tests and the CPL based LM

tests are best for both MA(1) and AR(1) processes. Overall, powers of the marginal

likelihood based tests are best and those of the ACPL based tests are the second best

and the CPL based tests are the third best.

In conclusion, it can be said that at least in the context of MA(1) and AR(1)

linear regression disturbances, the marginal likelihood may be the best likelihood for

handling nuisance parameters in estimation and testing problems. But, for more

general inference problems there are some situations where marginal likelihood

cannot be applied. In such situations, the CPL and ACPL are the preferred

alternatives. The former has the problem of non-uniqueness of reparameterization and

orthogonality and cannot always be found. The latter is applicable for scalar

parameters and depends on the profile likelihood based estimators. In addition to

these, MML is a Bayesian method and depends on the prior distribution of the

parameters. Our empirical results exhibit that, in some situations, MLI and

perform very well and have the ability to deal with a minor identification problem.

However, there is flexibility in choosing a different prior. Also, message length based

LM tests have poor small sample properties due to their biased score functions. All

these clarify that none of the methods is superior in all situations, but their

performance may depend on the nature of the problem at hand. However, for the

problems considered in this paper, we conclude in favour of the marginal likelihood.
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Table 1. Average ranks, with standard errors in the parenthesis and ranking of the
average ranks of estimated bias, standard deviation, skewness, kurtosis and
loss of the estimators based on different message length and likelihood
functions for MA(1) and AR(1) processes.

ML and NEAL estimators

Profile Marg. CPL ACPL MLi CPML1 ML2 CPML2 AMLI AML,
Average rank based on estimated losses for MA(1) and AR(1) processes, n = 30 and 60 '

7.05
(.369)
8

3.513
(.1649
2

3.413
(.201)

1

4.563
(.221)
5

3.9
(.199)
3 .

8.613
(.223)
10

4.438
(.210)
4

7.825
(.259)
9

5.95
(.325)
7

5.6
(.328)
6

Average rank based on estimated losses for MA(1) and AR(1) processes, n = 30
7.5 3.7 3.35 4.875 3.25 8.425 4.050 7.375 6.30 6.025

(.533) (.217) (.290) (.291) (.240) (.338) (.286) (.372) (.425) (.442)
9 i 3 k 2 _ 5 1 10 4 8 7 6

Average rank based on estimated losses for MA(1) and AR(1) processes, n = 60

6.6 3.325 3.475 4.25 4.475 8.8 4.825 ' 8.275 5.6 5.175
(.537) (.173) (.284) (.288) (.300) (.218) (.310) (.286) (.524) (.492)
8 1 2 3 4 10 5 9 7 6

Average rank based on estimated losses for MA(1) processes, n = 30 and 60

8.325 4.125 3.7 5.6 3.775 7.85 3.85 6.975 5.6
,

5.175
(.409) (.203) (.271) (.248) (.361) (.382) (.331) (.35) (.544) (.533)
10 4 , 1 6 2 9 3 8 6 5

Average rank based on estimated losses for MA(1) processes, n = 30

9.3 4.45 3.3 6.15 2.8 7.1 3 6.2 6.5 6.15
(.385) (.336) (.391) (.319). (.345) (.657) (.348) (.569) (.587) (.662)
10 4 3 5 1 9 2 7 8 5

Average rank based on estimated losses for MA(1) processes, n = 60

7.35 3.8 4.1 5.05 4.75 8.6 4.7 7.75 4.7 4.2
(.662) (.213) (.362) (.344) (.561) (.328) (.503) (.339) (.886) (.793)
8 1 2 7 6 10 4 9 4 3 i

Average rank based on estimated losses for AR(1) processes, n = 30 and 60

5.775 2.9 3.125 3.525 4.025 9.375 5.025 8.675 6.3 6.025
(.548) (.171) (.293) (.284) (.174) (.163) (.225) (.335) (.355) (.378)
6 1 2 3 4 10 5 9 8 7

Average rank based on estimated losses for AR(1) processes, n = 30

5.804 5.019 5.313 5.636 6.925 8.861 6.313 8.25 6.25
,

5.9
(.757) (.254) (.421) (.409) (.273) (.165) (.258) (.507) (.514) (.561)
4 1 2 3 6 10 8 9 7 5
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Table 1. (continued)

ML and MML estimators

Profile Marg. CPL ACPL MLI CPMLI ML, CPML, AML1 AML,
Average rank based on estimated losses for AR(1) processes, ;2= 60 

,

5.85
(.828)
6

2.85
(.233)

1

2.85
(.399)

1

3.45
(.394)
3

4.2
(.213)
4

9
(.290)
10

4.95
(.373)
5

8.8
(.439)
9

6.5
(.505)

k 8

6.15
(.514)
7

Average rank based on estimated biases for MA(1) and AR(1) processes, n = 30 and 60

6.375 3.088 3.725 4.05 3.588 8.825 3.95 8.2 6.088 5.325
(.392) (.182) (.234) (.221) (.153) (.186) (.228) (.225) (.301) (.318)
8 1 3 5 2 10 4 9 7 6

iAverage rank based on estimated biases for MA(1) and AR(1) processes, n = 30

6.55 3.275 4 4.225 3.575 ' 8.775 3.7 8 6.575 5.675
(.560) (.237) (.338) (.344) (.214)• (.290) (.289) (.356) (.363) (.406)
7 1 4 5 2 10 3 9 8 6

Average rank based on estimated biases for MA(1) and AR(1) processes, n = 60

6.2 2.9 3.45 3.875 3.6 8.875 4.2 8.4 5.6 4.975
(.554) (.277) (.322) (.280) (.220) (.235) (.351) (.275) (.473) (.488)
8 1 2 4 3 10 5 9 7 6

Average rank based on estimated biases for MA(1) processes, n = 30 and 60

7.25 3.525 4.252 5 3.425 8.6 ' 3.05 7.775 5.55 4.475
(.475) (.322) (.328) (.300) (.258) (.318) (.305) (.303) (.492) (.465)
8

, 3 5 6 2 10 1

'processes,

9 7 4

'Average rank based on estimated biases for MA(1) n = 30

7.6 3.7 4.8 5.1 3.1 8.4 2.45 7.5 6.45 5.25
(.665) (.385) (.499) (.512) (.340) (.450) (.276) (.459) (.689) (.636)
9 3 4 5 2 10 1 8 7 6

Average rank based on estimated biases for MA(1) processes, n = 60

6.9 3.35 4.25 4.9 3.75 8.8 3.65 8.05 4.65 3.7
(.692) (.494) (.458) (.289) (.383) (.367) (.525) (.320) (.765) (.726)
8 1 5 7 4 10 2 9 6 3

Average rank based on estimated biases for AR(1) processes, n = 30 and 60

- 5.5 2.65 2.925 3.1 3.75 9.05 4.85 8.625 6.625 6.175
(.598) (.146) (.285) (.250) (.163) (.189) (.274) (.322) (.333) (.394)
6 1 2 3 4 10 5 9 8 7
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Table 1. (continued)

ML and MML estimators

Profile Marg. CPL ACPL MIA CPMLi ML2 CPML2 ' AMLI AML2
Average rank based on estimated biases for AR(1) processes, n = 30

5.5 2.85 3.2 3.35 4.05 9.15 4.95 8.5 6.7 6.1
(.860) (.182) (.421) (.350) (.223) (.233) (.328) (.478) (.465) (.598)
6 1 2 3 4 10 5 9 8 7

Average rank based on estimated biases for AR(1) processes, i; = 60
5.5 2.45 2.65 2.85 3.45 8.95 4.75 8.75 6.55 6.25

(.854) (.223) (.386) (.357) (.223) (.303) (.446) (.441) (.489) (.528)
6 1 2 3 4 10 5 9 8 7
Average rank based estimated' S.D. for MA(1) and AR(1) processes, n = 30 and 60

5.275 6.213 6.313 6.613 6.038 6.188 5.588 5.863 1.789 1.988
(.416) (.196) (.215) (.200) (.171) (412) (.255) (.332) (.109) (.113)
3 8 9 10 6 7 4 5 1 2

Average rank based estimated S.D. for MA(1) and AR(1) processes, n = 30
5.65 6.9 7.075 7.475 6.05 5.275 5.775 5.075 2.05 2.425
(.623) (.217) (.230) (.224) (.223) (.615) (.355) (.473) (.152) (.171)
5 8 9 10 7 4 6 3 1 2

Average rank based estimated S.D. for MA(1) and AR(1) processes, n = 60
4.9 5.525 5.55 5.75 6.025 7.1 5.4 6.65 1.525 1.55

(.553) (.291) (.322) (.272) (.262) (.517) (.368) (.438) (.148) (.113)
3 5 6 7 8 10 4 9 1 2

Average rank based on estimated standard deviations for MA(1) processes, n = 30 and 60 -
7.8 6.75 5.725 6.825 6.7 3.85 7.5 4.125 1.8 2.3

(.536) (.335) (.302) (.336) (.266) (.404) (.240) (.346) (.157) (.183)
10 7 5 8 6 3 9 4 1 2

Average rank based On estimated standard deviations for MA(1) processes, n = 30
7.5 7.7 6.35 7.75 6.6 2.55 7.65 3.15 2.15 2.9

(.854) (.242) (.244) (.376) (.373) (.336) (.350) (.274) (.233) (.261)
10

-

8 5 9 6 2 7 4 1 3
Average rank based on estimated standard deviations for MA(1) processes, n = 60

7.4 5.8 5.1 5.9 6.8 5.15 7.35 5.1 1.45 ' 1.7
(.666) (.555) (.523) (.481) (.388) (.617) (.335) (.561) (.185) (.179)
10 6 3 7 8 5 9 3 1 2
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Table 1. (continued)

ML and MML estimators

Profile Marg. CPL ACPL ML1 ' CPML1 ML, CPML2 AML1 AML2

Average rank based on estimated standard deviations for AR(1) processes, n =30 and 60

2.95
(.371)
3

5.675
(.169)
6

6.9
(.279)
8

6.4
(.217)
7

5.375
(.159)
5

8.525
(.495)
10

3.675
(.236)
4

7.6
(.456)
9

1.775
(.154)
/

1.675
(.115)

1
Average rank based on estimated standard deviations for AR(1) processes, n =30

3.5 6.1 7.8 7.2 5.5 . 8 3.9 7 1.95 1.95
(.613) (.261) (.321) (.236) (.185) (.811) (.161) (.673) (.198) (.170)
3 6 9 8 5 10 4 7 1 1
Average rank based on estimated standard deviations for AR(1) processes, n = 60

. 2.4 5.25 6 5.6 5.25 9.05 3.45 8.2 1.6 1.4
(.393) (.176) (.363) (.266) (.260) (.564) (.211) (.468) (.234) (.134)
3 5 8 7 5 10 4 9 2 1

Average rank based on estimated skewness for MA(1) and AR(1) processes, n = 30 and 60

6.713 4.688 3.738 4.938 4.575 7.388 4.388 5.675 5.013 5
(.349) (.211) (.227) (.229) (.280) (.350) (.262) (.352) (.402) (.379)
9 4 1 5 3 10 2 8 7 6
Average rank based on estimated skewness for MA(1) and AR(1) processes, n = 30

7.45 4.85 3.775 5.325 4.275 7.25 4.325 5.6 5.35 5.575
(.427) (.303) (.355) (.339) (.370) (.461) (.364) (.454) (.564) (.531)
10 4 1 5 2 9 3 8 6 7
Average rank based on estimated skewness for MA(1) and AR(1) processes, n = 60

6.119 4.595 3.714 4.667 4.738 7.286 4.381 5.643 4.881 4.643
(.531) (.292) (.282) (.306) (.422) (.549) (.376) (.539) (.581) (.542)
9 3 a 1 5 6 10 2 8 7 4

Average rank based on estimated skewness for MA(1) processes, n = 30 and 60

7.975 4.875 3.5 5.7 3.675 6.225 4.2 5.775 6.15 6.075
(.44/1) (.261) (.256) (.310) (.389) (.462) (.364) (.436) (.577) (.556)
10 4 1 5 2 9 3 6 8 7

Average rank based on estimated skewness for MA(1) processes, n = 30

9.2 4.95 2.8 5.85 2.75 5.6 3.65 5.15 7.3 7.7
(.236) (.407) (.287) (.519) (.331) (.494) (.460) (.488) (.689) (.607)
10 4 2 7 1 6 3 5 8 9

a
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Table 1. (continued)

ML and MML estimators

Profile Marg. CPL ACPL MIA CPML1 ML-, CPML2 ' AML1 AML2

Average rank based on estimated skewness for MA(1) processes, n = 60

6.75
(.771)
10

4.8
(.337)
4

' 4.2
(.367)
2

5.55
(.352)
7

4.6
(.651)

1

6.85
(.769)
6

4.75
(.547)
3

' 6.4
(.709)
5

5
(.868)
8

4.45
(.790)
9 ,

Average rank based on estimated skewness for AR' (1) processes, n -- ; 30 and 60

5.45 4.5 3.975 4.175 5.475 8.55 4.575 5.575 3.875 3.925
(.464) (.332) (.375) (.295) (.353) (.463) (.379) (.558) (.507) (.462)
7 5 3 4 8 10 6 9 1 2

Average rank based on estimated skewness for AR(1) processes, n = 30

5.7 4.75 4.75 4.8 5.8 8.9 5 6.05 3.4 3.45
(.607) (.458) (.580) (.414) (.457) (.584) (.533) (.766) (.659) (.559)
7 3 3 5 8 10 6 9 1 2

Average rank based on estimated skewness for AR(1) processes, n = 60

5.2 4.25 3.2 3.55 5.15 8.2 4.15 5.1 4.35 4.4
(.713) (.486) (.421) (.380) (.539) (.724) (.534) (.817) (.772) (.734)
10 _ 4 , 2 7 5

'kurtosis

6 3 5 8 9
Average rank based on estimated for MA(1) and AR(1) processes, n = 30 and 60

6.187 4.625 3.962 4.725 5.112 7.112 5.425 6.037 5.1 5.25
(.350) (.236) (.243) (.284) (.294) (.395) (.247) (.370) (.347) (.305)
9 2 1 3 5 10 7 8 4 6
Average rank based on estimated kurtosis for MA(1) and AR(1) processes, n =30

6.675 4.85 4.35 4.95 4.85 7.45 5.15 6.425 4.925 5.125
(.433) (.383) (.378) (.431) (.400) (.521) (.357) (.522) (.463) (.436)
9 2 1 5 2 10 7 8 4 6
Average rank based on estimated kurtosis for MA(1) and AR(1) processes, n =60

5.7 4.4 3.575 4.5 5.375 6.775 5.7 5.65 5.275 5.375
(.546) (.277) (.299) (.373) (.434) (.596) (.342) (.526) (.523) (.434)
8 2 _ 1 3 5 10 8 7 4 5

Average rank based on estimated kurtosis for MA(1) processes, n = 30 and 60

6.875 4.8 4.125 ' 5.65 ' 5.125 ' 6.65 5.25 5.875 ' 5.15 5.375
(.500) (.365) (.266) (.412) (.461) (.549) (.359) (.453) (.522) (.465)
10 2 1 7 4 9 5 8 3 6
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Table 1. (continued)

ML and MML estimators

Profile , Marg. CPL , ACPL MLI CPMLi ML2 CPML2 AML1 AML,

'Average rank based on estimated kurtosis for MAM'processes, n =30
7.15 4.85 4.45 6.15 4.65 . 6.1 4.85 5.25 5.6 5.9

(.670) (.617) (.336) (.642) (.646) (.774) (.534) (.664) (.659) (.684)
10 3 1 9 2 8 3 5 6 7

Average rank based on estimated kurtosis for MA(1) processes, n = 60
6.6 4.75 3.8 5.15 5.6 7.2 5.65 6.5 4.7 4.85

(.755) (.410) (.408) (.509) (.659) (.780) (.477) (.600) (.815) (.625)
9 3 1 5 6 10 7 6 2 4

Average rank based on estimated kurtosis for AR(1) processes, n = 30 and 60

5.5 4.45 3.8 3.8 5.1 7.575 5.6 6.2 5.05 5.125
(.472) (.304) (.410) (.338) (.371) (.566) (.343) (.592) (.465) (.402)
7

, 3 1 2 5 10 8 9

'processes,

4 6
Average rank based on estimated kurtosis for AR(1) n = 30

6.2 4.85 4.25 3.75 5.05 8.8 5.45 7.6 4.25 4.35
(.546) (.472) (.688) (.446) (.484) (.569) (.478) (.731) (.632) (.499)
8 5 , 2 1 6 10 7 9 2 4

Average rank based on estimated kurtosis for AR(1) processes, n = 60
4.8 4.05 3.35 3.85 5.15 6.35 5.75 4.8 5.85 5.9

(.753) (.366) (.443) (.519) (.577) (.913) (.502) (.835) (.650) (.593)
4 3 1 9 6 10 7 4 8 9
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Table 2. Average ranks of all statistics with standard errors in the parenthesis and
ranking of the average ranks of estimators based on different message length
and likelihood functions for MA(1) and AR(1) processes.

,
ML and MML estimators

Profile Marg. CPL ACPL MLi CPML1 ML2 CPML2 AMLI AML2

Average rank of MA(1) processes, n = 30,
8.081
(.270)

4.929
(.226)

4.182
(.197)

5.97
(.237)

4.091
(.255)

6.141
(.308)

4.394
(.261)

5.606
(.266)

5.556
(.315)

5.495
(.309)

10 4 2 8 1 9 3 7 6 5
Average rank of MA(1) processes, n = 60

7.11 4.73 4.43 5.55 4.99 7.1 5.18 6.58 4.14 3.89
(.325) (.212) (.194) (.185) (.249) (.317) (.241) (.265) (.353) (.306)
10 4 3 7 5 . 9 6 8 2 1

Average rank of MA(1) processes, n = 30 and 60

7.605 4.815 4.315 5.755 4.54 6.635 4.77 6.105 4.85 4.68
(.213) (.155) (.138) (.150) (.180) (.223) (.180) (.190) (.241) (.224)
10 5 1 7 2 9 4 8 6 3

Average rank of AR(1) processes, n = 30

5.21 4.18 4.5 4.4 4.85 9.12 4.84 7.72 4.43 4.27
(.315) (.183) (.257) (.204) (.171) (.203) (.176) (.285) (.291) (.277)
8 1 5 3 7 10 6 9 4 2

Average rank of AR(1) processes, n = 60

4.86 3.89 - 3.79 4 4.64 8.11 4.65 6.95 5.02 4.9
(.342) (.189) (.245) (.215) (.187) (.306) (.202) (.336) (.304) (.292)
6 2 1 3 4 10 5 9 8 7,

Average rank of AR(1) processes, n = 30 and 60

5.035 4.035 4.145 4.2 4.745 8.615 4.745 7.335 4.725 4.585
(.232) (.132) (.179) (.149) (.127) (.187) (.134) (.222) (.211) (.202)
8 1 2 3 6 10 6 9 5 4

Average rank of combined MA(1) and AR(1) processes, n = 30

6.655 4.54 4.35 5.18 4.47 7.645 4.6 6.675 4.995 4.87
(.231) (.147) (.162) (.165) (.155) (.212) (.159) (.208) (.217) (.211)
8 3 1 7 2 10 4 9 6 5

Average rank of combined MA(1) and AR(1) processes, n = 60

5.985 4.31 4.11 4.775 4.815 7.605 4.915 6.765 4.58 4.395
(.247) (.140) (.166) (.150) (.145) (.206) (.147) (.212) (.225) (.208)
8 2 1 5 6 10 7 9 4 3
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Table 2. (continued)

ML and MML estimators

Profile Marg. CPL ACPL' ML1 CPMLi ML2 CPML2 AMI.,1 AML2
Average rank of combined MA(1) and AR(1) processes, n =30 and 60

6.32 4.425 4.23 4.978 4.643 7.625 4.758 6.72 4.788 4.633
(.170) (.103) (.113) (.112) (.110) (.153) (.112) (.149) (.160) (.150)
8 2 1 7 4 10 5 9 6 3

,
Average rank for 7 = p = -0.8, n =30 and 60

5.975 4.388 4.5 4.95 4.588 7.413 3.813 6.738 5.75 5.525
(.419) (.245) (.226) (.192) (.315) (.289) (.256) (.317) (.370) (.324)
8 2 3 5 4 10 1 9 7 6

Average rank for 7 = p = -0.4, n= 30 and 60

5.325 4.463 3.988 4.647 4.963 8.188 5.313 7.488 4.463 4.025
(.422) (.243) (.198) (.189) (.268) (.316) (.209) (.318) (.326) (.317)
8 3 , 1 5 6 10 7 9 3 2

Average rank for 7 = p = 0, n=30 and 60

7.338 4.888 5.388 6.35 4.4 7.463 4.013 6.563 2.863 2.538
(.339) (.274) (.219) (.278) (.159) (.386) (.257) (.336) (.244) (.239)
9 5 6 7 4 10 3 8 2 1

Average rank for y = p = 0.4, n = 30 and 60

6.925 4.5 4.313 4.963 5.063 7.55 5.4 6.6 4.05 4.5
(.328) (.210) (.306) (.300) (.247) (.391) (.232) (.345) (.300) (.300)
9 3 2 5 6 10 7 8 1 3

Average rank for y = p = 0.8, n = 30 and 60

6.038 3.888 . 2.963 3.95 4.2 7.513 5.25 6.213 6.813 6.575
(.347) (.155) (.227) (.202) (.205) (.322) (.237) (.342) (.365) (.318)
6 2 1 3 4 10 5 7 9 8
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Table 3. Average ranks, with standard errors in parentheses and ranking of the
average ranks of sizes of the LR, LM, Wald, AW and NW tests for MA(1)
and AR(1) disturbances based on different likelihood and message length
functions.

.. 
ML and MML estimators

Profi. Marg. CPL CPRL ACPL MI i CPML1 ML2 cPML2 'AML1 'AML2
Average rank based on sizes of LR tests for MA(1) with n = 30

10.75
(.250)

11

8
(.913)
9

7.25
(1.32)
7

2.25
(.750)
2

- 8.25
(.629)
10

2
(.408)

1

7
(1.29)
6

6.25
(.479)
5

7.25
(1.75)
7

2.25
(0.75)
2

3.75
(.479)
4 w

Average rank based on sizes of LR tests for MA(1) with n =60

10.75 7.5 4.5 1.5 4 2.5 7 5 7.5 4.25 6
(.250) (.866) (.866) (.500) (2.38) (1.50) (2.04) (1.08) (1.50) (1.37) (1.08)

11 9 5 1 3 2 8 6 9 4 4,
Average rank based on sizes of LR tests for AR(1) with n = 30

' 9.25 1.5 5.25 7.75 6.5 2.75 9.75 3.75 10 3.75 3.25
(1.18) (.500) (1.11) (.629) (.645) (.479) (.750) (.629) (000) (1.55) (1.25)
9 1 6 8 7 2 10 4 11 4 3,

Average rank based on sizes of LR tests for AR(1) with n = 60,
5.5 2 5 8 5.25 2.5 10.25 2.75 10 5.75 6.25

(1.55) (.577) (.577) (.707) (.479) (.645) (.479) (.629) (.408) (1.79) (1.79)
6 1 4 9 5211 3 10 7 8

Average rank based on sizes of LM tests for MA(1) with n = 30

8.5 1.25 3.5 3.25 1.75 8 9.75 9 9.25 5 6.25
(.500) (.250) (.289) (.250) (.250) (.707) (1.25) (.707) (.750) (000) (.629)
8 1 4 3 2 7 11 9 10 5 6

Average rank based on sizes of LM tests for MA(1) with n = 60

8 1.25 3.5 -4 3 7.25 7 8.25 8.5 6.25 7.5
(1.29) (.250) (.645) (1.41) (.707) (.854) (2.04) (.854) (1.89) (1.70) (.866)
9 1 3 4 2 7 6 10 11 5 8

Average rank based on sizes of LM tests for AR(1) with n = 30

7 1 3.25 4 3 8 8.25 9.25 7.25 T 6.25 ' 7.25
(2.12) (000) (.479) (.707) (.707) (.816) (2.13) (.250) (1.70) (.479) (.250)
6 1 3 4 2 9 10 11 7 5 7

Average rank based on sizes of LM tests for AR(1) with n = 60

5.75 1.5 3.25 4 2.75 5.75 7.75 7.5 6.75 8.25 9.5
(1.49) (.500) (.750) (.913) (.479) (.854) (2.35) (.645) (2.13) (.854) (.957)
5 1 3 4 2 5 9 8 7 10 11
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Table 3. (continud)

ML and MML estimators
Profi. Marg. CPL CPRL ACPL MLI CPiviLl ML, CPML2 AML1 AML,

'Average rank based on sizes of Wald tests for AR(1) with n = 30,
8.75

(1.65)
5

3.75
(1.11)
3

5.25
(.250)
5

5.75
(.479)
6

3.75
(.629)
3

7.5
(.289)
7

10
(.577)

11

8.5
(.289)
9

8.25
(1.75)
8

2
(.408)
2

1.75
(.750)

1
Average rank based on sizes of Wald tests for AR(1) with n ='60

4.5 ' 2 5.75 5.75 5.25 10 ' 7.75 9.5 8.5 ' 2.75 1.5
(1.32) (.408) (.479) (.750) (.629) (.707) (1.43) (.500) (.645) (.629) (.289)
4 2 6 6 5 11 8 9 9 3 1 ,

Average rank based on sizes of AW tests for MA(1) with n = 30

11 8.25 7.25 6.75 ' 9.25 1.25 5.5 ' 1.25 6.25 3.5 ' 4.5
(000) (.479) (.479) (.629) (.479) (.250) (1.19) (.250) (1.43) (.500) (.500)
11 9 8 7 10 1 5 1 6 3 4

Average rank based on sizes of AW tests for MA(1) with n = 60

11 9.25 ' 5.5 6.25 6 ' 1.75 5.25 ' 3.75 6.5 2.5 4.75
(000) (.479) (.645) (.750) (.707) (.750) (1.93) (.854) (2.06) (.645) (1.18)
11 10 6 8 7 1 5 3 9 2 4

Average rank based on sizes of NW tests for MA(1) with n = 30

11 8.75 5.5 6 9.75 2.75 5.25 1 3.75 6.5 5.5
(000) (.629) (.500) (.816) (.250) (.750) (1.11) (000) (1.11) (.957) (1.19)
11 9 , 5 7 10 2 4 1 3 8 5

Average rank based on sizes of NW tests for MA(1) with n = 60

11 7.5 3.5 4.5 3.75 3.5 6.25 1 6 9.25 7.25
(000) (.500) (1.04) (.645) (1.25) (.645) (1.25) (000) (1.47) (.750) (1.75)
11 9 2 5 4 2 7 1 6 10 8

Average rank of all tests for MA(1)and AR(1) with n = 30 and 60

8.768 4.563 4.875 '4.982 5.161 4.679 ' 7.625 5.482 7.554 '4.875 5.357
(.396) (.462) (.247) (.308) (.386) (.420) (.425) (.443) (.408) (.379) (.382)

11 1 3 5 6 2 10 8 9 3 7
Average rank of LR, LM and Wald tests for MA(1)and AR(1) with n = 30 and 60

7.857 2.95 ' 4.5 4.475 4.225 5.575 8.35 6.325 8.325 4.675 5.275
(.489) (.436) (.279) (.386) (.391) (.507) (.486) (.402) (.441) (.445) (.471)
9 1 4 3 2 7 11 8 10 5 6
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Table 4. Average ranks, with standard errors in parentheses and ranking of theaverage ranks of powers of the LR, LM, Wald, AW and NW tests forMA(1) and AR(1) disturbances based on different likelihood and messagelength functions.

ML and MML estimators
Profi. Marg. CPL CPRL ACPL M1 CPmL, mL, cPmL2 AMLI AML2

Average rank of powers of LR tests for 7 --='p = 0.4 and 0.8 with n =30 and 60
9.031
(.696)

11

5.219
(.491)
7

3.813
(.363)
3

5.656
(.581)
8

4.88
(.530)
6

6.38
(.540)
9

2.25
(.486)

1

7.125
(.588)
10

2.594
(.442)
2

4.375
(.457)
4

4.688
(.478)
5

Average rank of powers of LIZ. tests for 7 = p = -0.4 and -0.8 with n ---- 30 and 60
1.375 2.813 4.75 3.281 3.66 5.63 9.844 5.063 9 6.25 5.219(.317) (.226) (.426) (.281) (.360) (.490) (.520) (.460) (.473) (.614) (.555)1 2 5 3 4 8 11 6 10 9 7

Average rank of powers of LM tests for 7 = p = 0.4 and 0.8 with n = 30 and 60
9.406 5.719 3.813 5.719 4.375 5.188 1.781 6.719 2.219 6.813' 6.656(.514) (.412) (.282) (.412) (.380) (.334) (.314) (.490) (.300) (.616) (.726)11 6 3 6 4 5 1 9 2 10 8

Average rank of powers of LM tests for 7 = p = -0.4 and -0.8 with n = 30 and 60
1.5 3.75 6.563 3.75 4.344 6.156 9.563 2.907 8.719 6.156 5.688(.127) (.254) (.481) (.254) (.453) (.419) (.449) (.306) (.471) (.613) (.734)1 3 _ 9 3 5 7 11 2 10 7 6

Average rank of powers Of Wald tests for p = 0.4 and 0.8 with n = 30 and 60
8.5 6.813 6.625 6.5 ' 6.5 2.313 1.75 2.88 2.188 4.938 5.063(.979) (.802) (.865) (.775) (.830) (.285) (.403) (.360) (.400) (.755) (.692)11 10 9 7 7 3 1 4 / 5 6

Average rank of powers of Wald tests for p = -0.4 and -0.8 with n = 30 and 60,
1

(000)
1.875
(.155)

3.563
(.540)

1.938
(.170)

3.69
(.540)

6.563
(.837)

9.313
(.820)

6.5
(.840)

9.063
(.793)

4.563
(.570)

3.938
(.566)1 2 4 3 5 9 11 8 10 7 6 ,

Average rank of powers of AW tests for 7 = 0.4 and 0.8 with n = 30 and 60

9.313 3.563 3.5 3.5 3.688 8.313 6.75 8.375 5.875 3.5 3.813(.865) (.516) (.796) (.532) (.650) (.514) (.981) (.605) (.903) (.532) (.627)
11 4 1 1 5 9 8 10 7 1 6

Average rank of powers of AW tests for 7 = -0.4 and -0.8 with n = 30 and 60
4.25 3.375 4.875 3.5 6.75 9.438 9.688 9 8.813 2.813 1.813(.588) (.272) (.562) (.258) (.403) (.223) (.445) (.342) (.390) (.493) (.332)
5 3 6 4 7 10 11 9 8 2 1
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Table 5. Average ranks, with standard errors in parentheses and ranking of the
average ranks of powers of the LR, LM, Wald, AW and NW tests for
MA(1) and AR(1) disturbances based on different likelihood and message
length functions.

ML and MML estimators
I7 P Marg CPL ACPL MLi ML2 AML1 AML,

LR test
0.4 Average rank 2.875 1.688 3.313 4.131 5.313 3.875 4.063
and S.D. of ranks (.328) (.299) (.669) (.435) (.435) (.417) (.478)
0.8 Rank 2 1 3 6 7 4, 5,
-0.4 Average rank 2.375

.
4.125 2.063 5.5 4.625 3.938 3.063

and S.D. of ranks (.315) (.515) (.359) (.387) (.375) (.636) (.551)
-0.8 Rank 2 5 1 . 7 6 4 3,,

0.4
,
Average rank 4.625 3.125 3.25 4 4.5 1.25 1.688

and S.D. of ranks (.605) (.375) (.413) (.555) (.645) (.112) (.151)
0.8 Rank 7 3 4 , 5 6 1,

')

-0.4 Average rank 1.25 2.5 2.813 2.688 2.5 5.188 4.25
and S.D. of ranks (.112) (.303) (.368) (.416) (.474) (.660) (.581)
-0.8 Rank 1 2 5 . 4 2, 7 6

+0.4
,

Average rank 2.625 2.906 2.688 4.906 4.969 3.906 3.563
and S.D. of ranks (.228) (.366) (.390) (.306) (.286) (.374) (.370)
+0.8 Rank 1 3 2 6 7 5 4

+0.4 Average rank 2.938 2.813 3.031 3.344 3.5 3.219 2.960
and S.D. of ranks (.428) (.244) (.275) (.361) (.433) (.483) (.374)
+0.8 Rank 2 1 4 6 7 5 3

+0.4 +0.4 Average rank
,

2.781 2.859 2.859 4.125 4.234 3.563 3.266
and and S.D. of ranks (.241) (.218) (.238) (.254) (.273) (.306) (.264)
+0.8 +0.8 Rank 1 2 2 6 7 5 4

LM test
0.4 Average rank 4.875 2.625 3.375 3.813 4.5 3 2.813
and S.D. of ranks (.352) (.272) (.364) (.319) (.398) (.532) (.634)
0.8 Rank 7 1 4 5 6 3 2
-0.4 Average rank 3.25 5.938 2.563

,
5.125 3.25 3.438 2.438

and S.D. of ranks (.214) (.359) (.376) (.301) (.214) (.570) (.577)
-0.8 Rank 3 7 2 6 3. 5 1.

0.4 Average rank 3.188 1.625 1.875 2.813 4.5 5.438 5.625
and S.D. of ranks (.493) (.352) (.446) (.306) (.585) (.329) (.473)
0.8 Rank 4 1 2 3 , 5 6 7 .
-0.4 Average rank 2.5 3.813 3.563 3.875 1.188 4.813 5
and S.D. of ranks (.354) (.534) (.524) (.507) (.188) (.400) (.585)
-0.8 Rank 2 4 3 5 1 6 7
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Table 5. (continued)

ML and MML estimators

Y P Marg CPL ACPL MIA ' ML2 AMIA AML,
±0.4 Average rank 4.063 4.281 2.969 4.469 3.875 3.219 2.625
and S.D. of ranks (.250) (.371) (.267) (.246) (.249) (.386) (.423)
±0.8 , Rank 5 6 2 7 4 3 1r

±0.4 Average rank 2.844 2.719 2.719 3.344 2.844 5.125 5.313
and S.D. of ranks (.305) (.371) (.371) (.307) (.424) (.261) (.374)
+0.8 Rank 3 1 1 5 3 6 7

±0.4 ±0.4 Average rank 3.946 3.135 3.311 3.473 3.378 4.041 3.973
and and S.D. of ranks (.210) (.278) (.227) cam (.252) (-260) (.3270
+0.8 +0.8 Rank 5 1 2 4 3 7 , 6

Wald test..
0.4 Average rank 4.625 4.438 4.25 1.188 1.75 3.25 3.5
and S.D. of ranks (.562) (.547) (.504) (.101 (.214) (.461) (.447)
0.8 Rank 7 6 5 1 2 3 4
-0.4 Average rank 1.125 2.25

,
2.375 5.063 5 3.063 2.563

and S.D. of ranks (.085) (.359) (.340) (.616) (.626) (.370) (.376)
-0.8 Rank 1 2 3 7 6 5 , 4
+0.4 Average rank 2.875 3.344 3.313 3.125 3.375 3.156 3.031
and S.D. of ranks (.421) (.377) (.343) (.464) (.437) (.291) (.299)
+0.8 , Rank 1 6 5 3 7 4 2

AW test
0.4

,
Average rank 2.75 2.5 2.563 6.063 6.063 2.438 2.688

and S.D. of ranks (.359) (.563) (.365) (.309) (.370) (.387) (.435)
0.8 Rank 5 -) 3, 6 6 1 4
-0.4

.
Average rank 2.813 3.5 4.563 6.625 6.25 2.25 1.5

and S.D. of ranks (.245) (.365) (.203) (.125) (.112) (.250) (.204)
-0.8 Rank 3 4 5 7 6 2 1
+0.4 Average rank 2.781 3 3.563 6.344 6.156 2.344 2.094
and S.D. of ranks (.259) (.380) (.264) (.212) (.246) (.279) (.296)
±0.8 _ Rank 3 4 5 7 6 2 1

NW test
0.4 Average rank 3.5 1.813 3.813 1.313 2.125 5.813 6
and S.D. of ranks (.387) (.228) (.534) (.151 (.301) (.262) (.465)
0.8 Rank 4 2 5 1 3 6 7
-0.4 Average rank 2.188 4.063 3.188 2.938 1.688 4.875 6.625
and S.D. of ranks (.387) (.520) (.510) (.370) (.198) (.554) (.125)
-0.8 Rank 2 5 4 3 1 6 7
±0.4 Average rank 2.844 2.938 3.5 2.125 1.906 5.344 6.313
and S.D. of ranks (.397) (.487) (.520) (.346) (.257) (.443) (.345)
±0.8 Rank 3 4- 5 2 1 6 7
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Table 5. (continued)

,
ML and MML estimators

7 P ' Marg CPL ACPL MLI ML2 AMLI AML2
LR, LM, Wald, MIT' and NW tests 

.

0.4 Average rank 3.5 2.156 3.266 3.875 4.5 3.781
,

4.047and S.D. of ranks (.204) (.185) (.250) (.265) (.262) (.299)0.8 Rank 3 1 2 5
, 7

.(.257)
4 6

-0.4
.
Average rank 2.656 4.406 3.094 5.047 3.953 3.625 3.25

and S.D. of ranks (.148) (.247) (.219) (.228) (.243) (.282) (.313)
-0.8 Rank 1 6 2 7 5 4 3

0.4 Average rank 4.082 3.082 3.143 2.755 3.633 3.306 3.551
and S.D. of ranks (.325) (.288) (.286) (.275) (.341) (.303) (.315)
0.8 Rank 7 2 3 1 6 4 5,
-0.4 Average rank 1.625 2.854 2.917 3.875 2.896 4.354 3.938
and S.D. of ranks (.151) (.248) (.242) (.319) (.343) (.303) (.324)
-0.8 Rank 1 2 4 5 3 7 6

+0.4 Average rank
,
2.925 3.381

,
3.131 4.575 4.063 4.05 3.756

and S.D. of ranks (.131) (.183) (.166) (.182) (.180) (.190) (.219)
+0.8 Rank 1 3 2 7

, 6 . 5 4,

+0.4 Average rank
,
2.866 2.969

.
3.031 3.309 3.268 3.825 3.742

and S.D. of ranks (.217) (.190) (.187) (.217) (.243) (.220) (.226)
+0.8 Rank 1 2 3 5 4, 7 6

+0.4 +0.4 Average rank 2.996
.

3.143 3.112 3.951 3.804 3.759 3.701
and and S.D. of ranks (.121) (.125) (.125) (.145) (.151) (.145) (.159)
±0.8 ±0.8 Rank 1 3 '? 7 6 5 4
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