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Abstract

Recent advances in computing power have brought the use of computer
intensive estimation methods of binary panel data models within the reach
of the applied researcher. The aim of this paper is to apply some of these
techniques to a marketing data set and compare the results. In addition,
their small sample performance is examined via Monte Carlo simulation
experiments. The first estimation technique used was maximum likelihood
estimation of the cross section probit (ignoring heterogeneity). The remain-
ing .techniques estimated the binary panel probit model using: standard
maximum likelihood; the Solomon-Cox approximation to this likelihood
and finally; the Gibbs sampler to obtain Bayesian estimates. The results
suggested that, in most cases, standard maximum likelihood estimation of
the binary panel probit model was the preferred technique primarily be-
cause it is readily available to applied practitioners. Although when the
variance of the heterogeneity term is small, the computational simplicity
of the Solomon-Cox approximation may prove attractive. In large samples,
the Gibbs sampler was also found to perform well.

*We are extremely grateful to Tim Fry, Ritchard Longmire and Rosi Doran for helpful guid-
ance and suggestions. We are also greatly indebted to Sid Chib for making the Gibbs sampler
Gauss code available to us. All remaining errors are our own.



1. Introduction

Given recent advances in personal computing power, it is now within the reach
of the applied researcher to implement computer intensive estimation methods
to previously intractable models. This paper compares different estimation tech-
niques of the binary panel probit model via both an application to a marketing
data set and a limited set of Monte Carlo experiments.

Four estimation techniques were applied to an empirical and several simulated
panel data sets in this study. The first estimation technique used was a cross
section binary probit model (ignoring heterogeneity), with coefficients estimated
via maximum likelihood (ML). This estimation method is subsequently referred
to as the cross section (CS) probit. The remaining three methods all estimated
the binary panel probit model (accounting for heterogeneity). The first estima-
tion technique employed was ML estimation of the model (referred to as standard
ML), whilst the second approximated this likelihood with the Solomon-Cox (SC)
approximation. The estimates derived here maximised the approximated likeli-
hood function. Finally, the Gibbs sampler was used to obtain Bayesian estimates
of the binary panel probit model, which does not evaluate the likelihood function
directly.

The binary panel probit model has been frequently used in applied research
(see for example, Zellner and Rossi [1984], Albert and Chib [1993, 1995] and
Harris [1996]). The Gibbs sampler has been applied to binary and multinomial
panel probit models (McCulloch and Rossi [1994], Geweke et al. [19944 Albert
and Chib [1995] and Chib [1996]) as well as cross-sectional binary and multinomial
probit models (Zenner and Rossi [1984], Chib [1993], McCulloch and Rossi [1994]
and Geweke et al. [1994a]) . The Solomon-Cox method is also relatively new
to the literature (Lieberman and Mayas [1994, 1996]). Recently, Solomon-Cox
approximations have been used successfully in panel data applications, although
there appears to be few applications to the panel probit model (see Lieberman
and Mayas [1994, 1996] for a list of references).

The findings of this paper in general support of use of standard ML estimation
of the binary panel probit model. Although when the variance of the heterogeneity
term is small, the computational simplicity of the Solomon-Cox approximation
may prove an attractive alternative. In large samples, the Gibbs sampler was
also found to perform well. The plan of the paper is as follows: Section 2 briefly
outlines the binary panel probit model and the various estimators considered;
Section 3 describes the data set used; Section 4 provides empirical results; Section
5 contains the Monte Carlo simulation experiment results. Section 6 contains
some concluding remarks.
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2. The Binary Panel Probit Model

Choice decisions made by individuals are often of economic interest. In general
however, only the outcome of the decision process is observed, while the underlying
process is unobserved or latent. In the simplest case, the individual is faced with
a yes/no (binary) decision, which, without loss of generality, can be defined as
one (for a yes decision) and zero (for a no).

Let the observed binary variable yi be the discrete realisation of the (latent)
continuous random variable, y7. Assuming a linear functional form for the latent
variable gives

= ui, i 1, N (2.1)

where xi is a k x 1 vector of explanatory variables,
is a k x 1 vector of unknown coefficients and,

ui is the unknown error term.

The latent variable y7 can be considered as representing the perceived utility
of individual i. Assuming the Random Utility Model (RUM), an individual will
select an alternative if they perceive that it maximises their utility, such that

1 if y7 > 0
— 0 if y: < 0 •

Thus, Pr(yi = 1) = Pr(yi* > 0) = Pr(ui > —x/i0). The evaluation of this prob-
ability requires specifying the distribution of ui. The probit model assumes ui is
normally distributed with a mean of zero, and a variance of one (for identification).

(2.2)

2.1. Binary Probit Estimation

The researcher is therefore interested in modelling the probability of yi being zero
or one. Assuming this probability can be parameterised by the function F(43),
the cross section probit results if F is the standard normal cumulative distribution
function evaluated at 43. That is,

x:i3 1 u2
F(43) = 4)(43) = —e—Tdu

__„,, .\/"77-T.

where the values of F(43) are bounded between zero and one.

(2.3)

ML estimation of the binary probit (BP) model therefore involves maximising
the log-likelihood function
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/Bp = in F (x:(3) ln(1 — F(43)),
yi=0 yi=1

with respect to 0.

(2.4)

2.2. The Binary Panel Probit Model

The formulation of the binary choice model above assumes that the error term is
an independently and identically distributed standard normal variable and hence
ignores any heterogeneity between individuals. The binary panel probit model
allows us to account for this heterogeneity in the form of individual specific effects,
represented by ai (see Hsiao [1986, 1996]). A higher realisation of ai increases the
probability of y = 1, for all t ... T. With data in the form of a panel, the
latent model can be reparamaterised to include individual specific effects, given
by

yi*.t = x:tf3 ai vit = 1, • • • 7 N7 t = 7 • • • 7 T

where ai is the individual specific effect and,
vit is the random error term of the panel probit model.

(2.5)

It is assumed that ai and vit are independently and normally distributed with
zero mean and variances o-a2 and (72, respectively.

2.2.1. Classical Maximum Likelihood Estimation

A fixed effect estimation technique applied when the individual specific effects are
random will result in, at best, a loss of efficiency in the estimates of 07 and at
worst, inconsistent estimates attributed to a small T in most panel data sets.'
Under the assumption of normality of a, and vit, the log likelihood function of
the panel probit (PP) model with random effects is given by

1pp =
i=

ln (P(yi)) where

00 1 aF x,to cti
P(y) =1.-. (27r

)
1
2 
exp [ (- VYit -1

Cv (ivt=1

llisiao (1996) .
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ML estimation of the log likelihood function provides consistent and efficient
estimates for 3 (under weak regularity conditions), however, it is computationally
intensive. ML estimation can be simplified when appropriate assumptions are
made upon the composite error term, Et = ai vit . Assuming cei and vit are
independent, the correlation across i is assumed to be constant such that

Corr (Et, Eis) p = 01/ (0.2ct av2) t s.

(2.7)

The estimation problem can now be reduced to a single integral, with its
integrand being the product of a single normal density and T differences of nor-
mal cumulative distribution functions. Butler and Moffitt [1982], propose using
Gaussian quadrature to evaluate the required integral. The formula used is the
Hermite integration formula of the form

100

J-00

e'
2

g(z) Aig(zi)
,=1 (2.8)

where J is the number of evaluation points, zi are the nodes at which g(.) is
evaluated, with respective weights Ai. In this paper, eight point quadrature was
used.

2.3. Solomon-Cox Approximation

The Solomon-Cox (SC) approximation is a general estimation technique proposed
to provide an analytical solution for the ML estimates of non-linear panel data
models with random effects, which are often very complex, or indeed, intractable.
Given the concerns noted above regarding the evaluation of the integral, it appears
ideally suited to the panel probit case. The procedure provides a small-variance

• 
approximation to the true marginal likelihood function, and is attractive due to
its simplicity and computational tractability.

The SC approximation applied to the binary panel probit model with random
effects again assumes that ai are independently normally distributed for all i, with
the log likelihood function (Lieberman and Mayas [1996]) given by

lsc =
N T

in fi  f (yitlxit, e; 0)][i — a2C)] x

i= 

(2.9)
t=i 

exp [  .2l(1)2r
2(1_ cr2e)] 1-1 

`J(0-4).1}
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where e =
40(u4) is the order of bias,

n f 0, 0) = [40-(1 — ci3)1—Y-]t=1 t=1
- 43(1-43yr

t=i

1(2) E fyit [43-202 ± (1)-10x'itfi] ,ci — t=1
+(1 — yit) [(1 — 43)-202 — (1— c13)-1 Ox3]

and, 43 and çb are the standard normal cumulative distribution and probability
density functions respectively, evaluated at 4/3.

The SC approximation is computationally convenient in that it avoids burden-
some numerical integration. Hence, if the variance of the composite error term is
relatively small, the SC technique provides a useful method to obtain estimates
of the parameters in the binary panel probit model with random effects.

2.4. Gibbs Sampler

The Gibbs sampler is a Monte Carlo Markov Chain method of sampling well suited
to Bayesian inference. This method of estimation has simplified the Bayesian
analysis of panel data models providing precise finite sample estimates. The
Gibbs sampling algorithm simulates the posterior distribution rather than com-
puting the posterior moments, and may be a preferred estimation tool over its SC
approximation counterpart.

In a general setting, Bayesian estimation requires the estimation of the pos-
terior distribution of the unknown parameters in the model (0 = 3, p) to be
estimated, for example 7 (01y) . The Gibbs sampler obtains draws from the pos-
terior distribution by successively drawing from the full conditional distributions
of the individual parameters comprising 9. Say there is a data set y, and the
parameters of interest are 0' = (3', p)'. To draw from the joint posterior distribu-
tion in- , ply), start with any value of p that supports the joint distribution of
and p, and draw from the full conditional distribution, p (01p, y). Using this draw
of 3 as the new value, a drawing is made from the full conditional distribution
p(p13,y), providing an updated value of p, which is in turn used to obtain an
updated value for /3. This process is continued for a large number of iterations,
with the sequence being a stationary Markov chain. The equilibrium distribution
of this Markov chain can be shown to be the posterior joint distribution 7r (01y).
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Thus, by recursively sampling from the full conditional distributions, draws from
the posterior distribution can be obtained.

The distinguishing feature of the binary panel probit model is the existence of
the unobservable latent data. The Gibbs sampler overcomes this via data augmen-
tation. This was proposed by Albert and Chib [1993] in a cross-sectional context,
but can be easily applied to the panel probit (Albert and Chib [1995]). Given the
assumptions underlying the model, the distribution of the latent variable is known.
Thus, conditional on the parameter vector P(YiKt I g) N (40 , 1). Draws for
are relatively easy to obtain from truncated normal distributions, dependant on
the observed value of yit. Specifically

* I TN0,00) (xi), 1) if yit = 1
Yit 1 T/V(_),3,0) (x i3, 1) if yit = 0.

(2.10)

The full conditional distributions used in the Gibbs sampler are thus pG3
and P(Yi*t iYit, 0). By sampling from these full conditional distributions a set of
simulated latent variables is obtained. Treating the simulated values of y7 as
observed data, the model can then estimated as a standard Bayesian regression.

The Albert and Chib algorithm can easily be applied to a panel probit model
with random effects. This procedure avoids the problem of evaluating the integral
of the likelihood function in equation (2.6).

The Gibbs sampler can be implemented by first drawing values of the latent
variable yi*t. The full conditional distribution of the latent variable in this case is
given by the following truncated normal distributions

TN(0,c,o) (xO ai, 0.2a ± 0.2v) if yit = 1
13(A / D it) = T N(_,o) (48 ai, 0.a2 + 0.2v) if yit O.

(2.11)

By obtaining draws for the latent variable, yi*t, the problem is reduced to one of
estimating a standard Bayesian panel regression, with the observed binary data
rendered redundant in the subsequent steps of the Gibbs sampling routine.

The parameters of the model can then be drawn via the following full condi-
tional distributions:2

p(ai ID, 0, y7t) N(&1, V,);
P(,3ID, Y7t, ai, xit) NO, E0);

2A full exposition of these distributions can be found in Chib [1996].
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P(D-1107Y7t7ai,xit)

-1

W (po (Ro-1 aiai) ; (2.14)

where ai are independent of xit, V = (D-1 ± 1)-1, vi(y7 _ xii3), -4 and
Ep are the usual panel estimates for the mean and variance of 3 and, Po and Ro
are parameters of the prior distribution of D-1. Successive draws from the full
conditional distributions above are obtained and repeated a large number of times.
A salient feature of the Gibbs sampling procedure is that it does not require the
evaluation of the likelihood function of the panel probit model at any stage. In
this application, non-informative priors for all of the parameters were used. The
Gibbs sampler was run for 6100 iterations, with the first 100 draws omitted to
account for "start-up" noise.3 The Bayesian estimates reported are the means of
the full conditional distributions.

3. An Empirical Example: The Data

The data used in this application was extracted from the Roy Morgan Research
Consumer Panel of Australia, over the financial year July 1992 - June 1993, for the
Melbourne metropolitan area. The data was diary based and collected monthly for
a variety of product fields. Daily purchases of products and a range demographic
variables were recorded for each household. The subset comprised 284 respondents
who purchased laundry detergent during the year.

In order to fit into the binary panel probit framework, the outcome of interest
was coded into a binary decision, representing whether the household purchased
any laundry detergent in a given month or not (one and zero respectively).

Not all of the respondents in the panel returned a full set of diaries for the
year. Out of the 284 individuals that purchased laundry detergent, 216 returned
all twelve diaries. This however may not be due to attrition in the panel. No
information was available as to which diaries were not returned. It was therefore
impossible to discern whether incomplete diary returns were due to attrition of
panel members. An incomplete set of diaries may have also been due to such
things as forgetfulness, or because the panel member was on vacation, and so on.
Empirical work was therefore based on the 216 members who returned all twelve
diaries.

3Estimates obtained from the Gibbs sampler could be made more precise by increasing the
number of iterations. The obvious trade-off is the associated increase in running time.
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The only choice specific variable considered was the average price of all laundry
detergents in all stores during each month. Other variables initially analysed
were individual specific demographics, such as sex, type of work, marital status,
household size and household income. Preliminary analysis suggested that only
household size was statistically significant.. However, price was also included in
further modelling as it was deemed to be an important economic variable.

The expected sign of the household size coefficient is not obvious. One might
expect that the larger the household the more detergent is required. However,
modelling the purchase decision renders the volume of purchases irrelevant. It
could also be argued that larger households would buy laundry detergent in bulk,
and hence fewer purchases would occur throughout the year than for a single
person household for example. Nevertheless, one would expect on average a priori,
that household size would have a positive coefficient.

Microeconomic demand theory would lead one to expect that price would
exert a negative effect on the probability of purchase. However, as the price
variable used was aggregated across all Melbourne metropolitan stores for the
entire month, some of the price effect may have been smoothed out. Prices of
laundry detergent can potentially vary a great deal from day to day both between
and within stores. Furthermore, the nature of the product means that panel
members can postpone (although not indefinitely) purchases according to price
changes. The price variable used can therefore not be expected to account for
such behaviour.

4. An Empirical Example: Results and Evaluation

Ordinary least squares estimates appeared to provide suitable starting values for
each procedure as convergence was achieved rapidly in each estimation technique.
The results are presented in table 4.1.4 A preliminary examination of table 4.1
indicates that the four procedures yielded similar parameter estimates. In each
method, the household size coefficient was found to be statistically significant and
had the expected sign. The coefficients of the average price variable, although
not statistical significant, did have the expected negative sign, complying with a
priori expectations.

Tests for heterogeneity can be based upon the significance of the estimate of
p or upon maximised likelihood functions in the form of a likelihood ratio test.

4 Gauss code for the empirical example and subsequent simulation (see section 5) is available
on request from the authors.
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Table 4.1: Laundry Detergent Purchases Parameter Estimates = a

Explantory Probit Panel Solomon-Cox
,

Bayesian
Variables (using ML) Probit approximation (Gibbs Sampling)

Constant 1.0682 1.4533 1.2831 1.240
(0.9508) (1.5021) (1.4686) (1.307)b

Household Size 0.1697 0.2138 0.2205 0.207
(0.0176) (0.0427) (0.0347) (0.041)

Average Price -0.0049 -0.0064 -0.0060 -0.006
(0.0028) (0.0044) (0.0043) (0.004)

P - 0.3539 0.3487 0.366
(0.0312) (0.0470) (0.080)

Max. log-likelihood -1744.37 -1569.56 -1601.99 -
Asymptotic standard errors in parentheses.

b
Standard deviation of the posterior distribution.

Table 4.2: Hit-Miss Ta 1
' Predicted

Actual 0 1 Total
0 36.7 16.2 52.9
1 23.9 . 23.2 47.1

Total 60.6 39.6 100

Under both methods heterogeneity was detected and therefore there seemed to be
strong evidence that the cross section probit model was seriously misspecified.

For many researchers, the choice of the most appropriate estimation technique
may be a function of the required computational complexity. The least computer
and time intensive procedure was the binary probit model. However, diagnostic
tests suggested that, in this instance, it was misspecified. The three panel estima-
tion procedures provide similar results in terms of expected signs and parameter
significance, and subsequently, the SC approximation was preferred, as it is less
burdensome than its counterparts.

An additional tool used to help differentiate between the estimation techniques
was to examine their within sample prediction accuracy. A common measure of
predictive accuracy in discrete choice models is the hit-miss table. The respective
hit-miss tables for the four estimators are provided in tables 4.2, 4.3, 4.4 and 4.5.
Tabulated values are in percentages relative to the total number of observations
in the sample.

From these results, it was apparent that standard ML estimation and the
Solomon-Cox approximation (Tables 4.3 and 4.4 respectively) correctly predict
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Table 4.3: Hit-Mi
Predicted

Actual 0 1 Total '
0 35.8 17.1 52.9 1
1 22.5 24.6 47.1

Total 58.3 41.7 100 '

Table 4.4: Hit-Miss Table for the Solomon-Cox Approximation
Predicted

Actual 0 1 Total
0 35.8 17.1 52.9
1 22.5 24.6 47.1

Total 58.3 41.7 100

an identical number of purchases of laundry detergent. Furthermore, these two
procedures provided the closest predictions to the actual results. Both methods
under-predicted the number of purchases by 5.4 percentage points. In contrast, the
CS probit and Bayesian estimation under-predicted the number of purchases by
7.7 and 10.1 percentage points respectively. These tables seem to support standard
ML estimation and the SC approximation as the most appropriate estimation
techniques of the binary panel probit using this data set.

In summary, despite similar parameter estimates for each methodology em-
ployed in this paper, standard ML and the SC approximation of the binary panel
probit model are the favoured procedures as they achieved a prediction accu-
racy of 60.4% compared with 59.9% and 59.1% for the cross section probit and
Bayesian estimator respectively. Coupled with the computational complexity of
each estimation technique, it seems that maximum likelihood estimation of the
SC procedure would appear to be the most appropriate for the applied researcher.
However, further examination of these results was conducted using a set of Monte

Table 4.5: Hit-Miss Table for Bayesian Estimation

-
Predicted

Actual 0 1 Total
0 37.5 15.4 52.9
1 25.5 21.6

-
47.1

, Total 63.0 37.0 , 100

11



1 if y,7t > 0

Carlo experiments.

5. Monte Carlo Simulation

The data used in the simulation experiments was generated according to the
following process

y:t = fio Oixiit /32x2i ai vit (5.1)

where the mapping from the latent variable to the observed variable was

Yit = 0 otherwise.

The values for the three 3 coefficients were 0.5, -1, and 1 respectively. These
values were chosen for their simplicity and because they gave an appropriate split
of zeros and ones. The initial values of the time and individual varying variable
were generated according to x1 'S.' U(-2, 2). Subsequent values of xlit followed
an autoregressive process given by

nit

= 0.1 x (trend) ± 0.5 (x-i)
1 1,

The time invariant variable of the model, x22 was generated as xl U(0, 1),
where

{ 
0 if 0 < 4i < 0.5

12i "----: 1 if 0.5 <4 < 1.

To complete the simulation, the generation process of the composite error term
was specified. The individual specific effects parameter (ai) was generated ac-
cording to ai r- N(0, crD, where o-2„ was specified as 0.5, 1 and 2. The choice of
(7„2 corresponded to values for p equal to i, -- and i respectively, implying weak,
mild and strong correlation over time for each individual. Finally, the random
error term (vit) was independently drawn from a standard normal distribution.
The simulations attempted to replicate commonly used data sets. For example,
the regressor xiit attempted to proxy time and individual varying variables, such
as age, experience, income etc., whilst the time invariant regressor, x22 was used
as a proxy for such variables as gender, race etc. (see Harris [1996]).

Although p is directly estimated by standard ML, the Gibbs sampler and
the SC approximation estimate the.variance of the individual effects. Therefore
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a calculation based on (2.7) was required to find the corresponding value of p.
To complete the simulation process, the dimensions of the panel needed to be
specified. To replicate the empirical example, a panel of dimension N = 200 by T
= 12 was simulated, corresponding to 200 observations over 12 months. Following
this, experiments of smaller dimension were simulated, consisting of a T dimension
of 3,6 and 12, with N= 100.

Examining the results in table 6.1, one can observe that, when oi and N
were kept constant, standard ML provided parameter estimates closer to the true
values. Furthermore, the mean squared errors (MSE) for each technique were
typically relatively small and consistent between procedures. As N increased,
the parameter estimates converged to their true values, and their respective MSE
functions decreased monotonically. When al was varied, a number of interesting
results appeared. In particular, the SC approximation, being a small-variance
approximation, was more accurate when cyce2 = As the variance increased, the
parameter estimates diverged from their true values, and correspondingly, the
MSE functions increased rapidly. Despite being a small-variance approximation,
the SC was outperformed by standard ML for all of the three chosen values of
al. As ML and the Gibbs sampler are not a small sigma approximation, they
did not appear to be adversely affected by changes in cr. An overall examination
of the MSE's in table 6.1 suggested that the preferred estimation procedure was
standard ML.

When T was adjusted, keeping all other factors constant, more accuracy and
precision in the estimates was observed, accompanied by universally lower MSE
functions. The results of table 6.2 concur with those of table 6.1 in that standard
ML estimation seemed to outperform the other techniques, particularly for small
variance simulations when N = 200. However, when N = 100, more precise
parameter estimates were observed as the variance was increased. On the other
hand, the MSE functions were smaller for the small variance simulations. For all
values of o-2 , standard ML estimation outperformed the SC approximation.

The final simulation involved further increasing T to 12. Once again, standard
ML estimation performed well. Precision of the estimates increased with N,
which is consistent with the previous simulations, and for the SC approximation,
increased precision was observed when a-a2 decreased. For N = 200, estimates
from the Gibbs sampler performed better than the ML estimates. This seems to
suggest that the Bayesian technique may be preferred when T is large. The CS
probit model did not perform well in any setting. This seemed to suggest that
not accounting for heterogeneity adversely effects parameter estimates.

13



In summary, the simulation results suggested that standard ML estimation
was the preferred technique. The SC approximation provided accurate estimates
in small variance simulations, but was outperformed by ML estimation for all
levels of cra2. Although the likelihood function of the SC is simpler and provides
a closed analytical form, standard ML is available in econometrics packages such
as LimdepTM. For a given level of T, increased precision was observed in the
estimates as N increased. Finally, the Gibbs sampler outperformed ML when T
= 12. While the Gibbs sampler did not perform as well in the other experiments,
a distinct advantage it has is that it provides a distribution of the parameters
of interest, rather than a point estimate. Thus, the increased programming and
computational burden may be warranted. Although the increased programming
and computational burden of the SC approximation and the Gibbs sampler are
not prohibitive, standard ML is recommended for most applied situations.

6. Conclusion

Four estimation techniques using consumer panel data were applied and com-
pared in this paper. First, the CS probit model (ignoring heterogeneity) was
estimated using maximum likelihood. The three remaining methods estimated
the binary panel probit model (accounting for heterogeneity) using: standard MI,
estimation of the likelihood function; the Solomon-Cox approximation to the like-
lihood function and; a Bayesian approach utilising the Gibbs sampler, using data
augmentation to avoid direct evaluation of the likelihood function. The starting
values used for each technique were least squares estimates.

Each technique was applied to a consumer panel data set of laundry detergent
purchases. The parameter estimates of the four estimators all had the expected
signs, while individual effects were found to have a pronounced influence on pur-
chases from diagnostic tests. Using within sample predictive accuracy to differen-
tiate between procedures, the SC approximation and standard ML outperformed
the Bayesian and CS. probit estimators, with slightly superior predictive accuracy.

Finally, the results from some Monte Carlo experiments were presented. The
results confirmed that the SC approximation would perform well when a2c, is small.
From the empirical example, the estimated value of p (normalising on o-2„) implied
cra2 0.5, in which setting the SC approximation performed well in the Monte
Carlo experiments.. However, for all samples and parameter settings, standard
ML estimation emerged as the best performed estimation procedure. While results
for each of the binary panel probit estimators were quite close, standard ML
estimation was considered to be the preferred technique. It is readily available to
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[3]

practitioners in many statistical packages, avoiding programming and alleviating
some of the computational burden.
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Table_
-..., ..• .. •••• ,.., .. ............. .....r, .-, ..... 1...... li ..., l

-N=1-00
-J A. ,..0 1 1- ‘-/

N=200
a-2 = 1 1 2 1 1

i
9

Probit 00=0.5 0.417 0.356 0.296 0.409 0.358 0.290
(0.026) (0.039) (0.063) (0.016) (0.030) (0.055)

01 =-1 -0.836 -0.726 -0.594 -0.831 -0.715 -0.579
(0.046) (0.093) (0.182) (0.038) (0.090) (0.186)

02= 1 0.831 0.732 0.596 0.828 0.715 0.581
(0.076) (0.119) (0.216) (0.051) (0.103) (0.199)

Solomon-Cox 0,3=0.5 0.469 0.431 0.389 0.462 0.436 0.385
(0.026) (0.031) (0.050) (0.012) (0.018) (0.032)

01 =-1 -0.939 -0.874 -0.772 -0.934 -0.864 -0.756

1

(0.028) (0.040) (0.077) (0.016) (0.031) (0.072)

02= 1 0.937 0.887 0.787 0.935 0.870 0.772
(0.066) (0.082) (0.137) (0.032) (0.049) (0.093)

P 0.229 0.360 , 0.505 0.232 0.370 0.519
(0.020) (0.028) (0.034) (0.015) (0.022) (0.026)

Standard ML /30=0.50 0.511 0.503 0.515 0.500 0.508 0.503
(0.0315) (0.038) (0.080) (0.013) (0.020) (0.035)

/31 =-1 -1.025 -1.028 -1.031 -1.016 -1.015 -1.007
(0.036) (0.042) (0.060) (0.017) (0.022) (0.026)

132= 1 1.019 1.034 1.042 1.013 1.011
,

1.007
(0.081) (0.103) (0.195) (0.036) (0.048) (0.076)

P 0.319 0.484 0.651 0.323 0.492 0.660
(0.0154) (0.092) (0.009) (0.008) (0.006) (0.004)

Gibbs Sampler 00= 0.50 0.542 0.528 0.540 0.514 0.519 0.516
(0.036) (0.041) (0.075) (0.014) (0.021) (0.036)

01 =-1 -1.082 -1.069 -1.068 -1.043 -1.034 -1.028
(0.045) (0.049) (0.066) (0.020) (0.024) (0.028)

' 02= 1 1.072
(0.092)

1.071
(0.113)

1.069
(0.191)

1.039
(0.039)

1.030
(0.050)

1.027
(0.077)

P 0.400 0.535 0.688 0.363 0.517 0.680
(0.090) (0.160) (0.321) (0.041) (0.095) (0.214)

1
Average parameter estimates over 1000 Monte Carlo repetitions with Mean Squared Errors in parentheses.
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a

Table=

'
N=100

...__ ...... _
N=200

.
0

o-;= 1
7 1 2 1

72" 1 2
Probit 00=0.5 0.421 0.364 0.295 0.413 0.360 0.293

(0.021) (0.035) (0.062) (0.015) (0.028) (0.052)
01 =-1 -0.833 -0.721 -0.591 -0.818 -0.712 -0.582

'

(0.040) (0.090) (0.179) (0.039) (0.089) (0.180)

02= 1 0.826 0.709 0.589 0.819 0.710 0.572 
.

(0.057) (0.118) (0.210) (0.046) (0.100) (0.201)
Solomon-Cox 00=0.5 0.484 0.451 0.398 0.476 0.448 0.400

(0.020) (0.030) (0.052) (0.011) (0.017) (0.030)

01 =-1 -0.962 -0.900 -0.804 -0.946 -0.891 -0.793
(0.016) (0.024) (0.052) (0.010) (0.019) (0.049)

02= 1 0.981 0.944 0.887 0.974 0.946 0.862
, (0.037) (0.065) (0.107) (0.020) (0.031) (0.061)

P 0.288 0.452 0.638 0.290 0.460 0.638
(0.006) (0.008) (0.006) (0.004) (0.005) (0.004),

Standard ML /30=0.5 0.514 0.510 0.509 0.504 0.506 0.498
(0.022) (0.033) (0.075) (0.011) (0.017) (0.032)

131 =-1 -1.016 -1.012 -1.008 -0.999 -1.004 -0.994
, (0.017) (0.019) (0.022) (0.008) (0.010) (0.011)

02= 1 1.007 1.000 1.008 1.000 1.000 0.969
(0.039) (0.072) (0.162) (0.020) (0.032) (0.070), ,

P 0.324 0.488 0.652 0.327 0.494 0.646
(0.005) (0.088) (0.004) (0.002) (0.002) (0.002)

Gibbs Sampler 00=0.5 0.524 0.520 0.517 0.509 0.511 0.511
(0.023) (0.033) (0.058) (0.011) (0.017) (0.026)

' 01 =-1 -1.033 -1.025 -1.026 -1.007 -1.011 ' -1.009
(0.018) (0.020) (0.023) (0.009) (0.010) (0.011)

02= 1 1.020 1.008 1.021 1.007 1.005 0.989
(0.040) (0.070) (0.121) (0.021) (0.032) (0.056)

P 0.356 0.512 0.677 0.342 0.507 0.669
_ (0.027) (0.070) (0.187) (0.012) (0.039) (0.111)

1
Average parameter estimates over MO Monte Carlo repetitions with Mean Squared Errors in parentheses.
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Table . = 1_ .....,
N=100 -

.,........ ... ......
N=200

a
1
7 _ 1 2 1

17 1 2
Probit 00= 0.5 0.416 0.358 0.299 0.410 0.360 0.292

(0.018) (0.035) (0.056) (0.015) (0.027) (0.053)
131 = -1 -0.823 -0.713 -0.586 -0.819 -0.711 -0.582

(0.035) (0.086) (0.175) (0.034) (0.085) (0.176)

02= 1 0.816 0.707 0.577 0.816 0.707 0.579
, (0.053) (0.113) (0.212) (0.044) (0.098) (0.195)
Solomon-Cox 00= 0.5 0.438 0.366 0.305 0.431 0.371 0.295

(0.020) (0.048) (0.081) (0.014) (0.031) (0.069)

01 = -1 -0.962 -0.905 -0.814 -0.958 -0.905 -0.811

'

(0.006) (0.013) (0.038) (0.004) (0.011) (0.037)

02= 1 1.026 1.028 0.967 1.027 1.032 0.975
(0.031) (0.060) (0.096) (0.017) (0.028) (0.053)

P 0.327 0.512 0.716 0.328 0.516 0.719
(0.003) (0.005) (0.007) (0.002) (0.002) (0.005)

Standard ML 130= 0.5 0.508 0.500 0.525 0.501 0.505 0.514
(0.017) (0.033) (0.088) (0.010) (0.016) (0.052)

/31 = -1 -1.005 -0.998 -0.991 -1.001 -0.998 -0.986
(0.005) (0.005) (0.006) (0.002) (0.003) (0.003)

02= 1 0.995
(0.029)

0.988
(0.067)

0.974
(0.194)

0.997
(0.015)

0.993
(0.003)

0.974
(0.109),

p 0.328 0.484 0.626 0.329 0.484 0.619
. (0.003) (0.003) (0.004) (0.001) (0.001) (0.003)

Gibbs Sampler 00= 0.5 0.511 0.502 0.513 0.503 0.508 0.504
(0.017) (0.028) (0.043) (0.009) (0.014) (0.027)

131 = -1 -1.011 -1.004 -1.010 -1.004 -1.005 -1.007
(0.005) (0.005) (0.007) (0.003) (0.003) (0.003)

02= 1 1.003 0.997 0.994 1.000 0.999 1.000
(0.029) (0.054) (0.096) (0.015) (0.024) (0.052)

P 0.347
(0.015)

0.505
(0.041)

0.671
(0.129)

0.339
(0.007)

0.503
(0.021)

0.669
(0.077)

1
Average parameter estimates over 1000 Monte Carlo repetitions with Mean Squared Errors in parentheses.
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