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Abstract

This paper estimates the long-term trends in the daily maxima of tropospheric ozone at six

sites around the state of Texas. The statistical methodology we use controls for the effects of
7

meteorological variables because it is known that variables such as temperature, wind speed
and humidity substantially affect the formation of tropospheric ozone. A nonparametric
regression model is estimated in which a general trivariate surface is used to model the
relationship between ozone and these meteorological variables because there is little, or no,
theory to specify the functional dependence of ozone on these variables. The model also allows
for the effects of wind direction and seasonality. Each function in the model is represented
as a linear combination of basis functions located at all of the design points. A trivariate
basis is used for the function representing the combined effect of temperature, wind speed
and humidity, while univariate bases are used to represent the other functions in the model.
To estimate the functions nonparametrically we use a Bayesian hierarchical framework with
a fractional prior. Due to the high dimensional representation of the signal, a Markov chain
Monte Carlo sampling scheme employing Gibbs sub-chains that ‘focus’ on t.he basis terms

that are most likely to contribute to the signal is used to carry out the computations. We




also estimate an appropriate data transformation simultaneously with the function estimates.
The empirical results indicate that key meteorological variables explain most of the variation
in daily ozone maxima through a nonlinear interaction and that their effects are consistent
across the six sites. However, the estimated trends vary considerably from site to site, even

within the same city. A simulation based on the design of the data indicates that the Bayesian

approach is substantially more efficient than MARS (Friedman, 1991).

Key Words: Data transformation; Focused sampling; Nonparametric regression; Reproducing

kernel; Trivariate Radial Basis
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1 Introduction

A major issue with the analysis of data on tropospheric ozone is to establish whether observed
trends can be attributed to the effects of pollution control programs implemented over the
past two decades, or whether they are the result of meteorological changes affecting the
conditions under which ozone is generated. Tropospheric ozone refers to ozone in the ambient
air, not ozone in the upper atmosphere. Ozone in the ambient air is an air pollutant and
can have a significant impact on people’s health, particularly in children, the elderly and
those with lung disease. Therefore, one would like to see a downward trend through time in

tropospheric ozone levels.

The formation of ozone results from a chemical reaction in the ambient air involving
nitrogen oxides and volatile organic compounds. The chemical reaction that produces ozone

is complex and not completely understood, even in the laboratory. However, it is known that

the reaction is largely driven by a combination of key meteorological conditions in what is
7

likely to be a nonlinear manner. Therefore, even if pollution control programs are successful
in reducing the emissions of toxic gases into the atmosphere, a downward trend may not be
observed in the raw ozone data due to the effects of changing meteorological conditions. Such
conditions should be taken into account to obtain a reliable estimate of the long-term trend

in daily ozone levels.

This paper uses a Bayesian approach to estimate a nonparametric regression model for ob-
servations of daily tropospheric ozone maxima at six monitoring stations in Texas during the
period 1980-1997. The model incorporates the combined effect of the key variables of wind
speed, temperature range (which acts as a proxy for sunlight) and humidity as a nonparamet-
ric trivariate interaction surface. The effects of wind direction, seasonal and trend variables
are accounted for as additive univariate nonparametric functions. Each of the functions are
modeled as linear combinations of basis terms, with locations at all the unique design points.
A wide variety of basis expansions can be employed. We use a trivariate radial basis to
represent the function relating ozone to wind speed, temperature range, and humidity; uni-

variate reproducing kernels as the basis functions for the univariate functions relating ozone




to wind direction; a dummy ﬁriable basis to represent the function modeling seasonality; and
a linear regression spline for the trend function. To estimate the regression coefficients we
use an adaptation of the hierarchical Bayesian model initially discussed in Smith and Kohn
(1996), coupled with a fractional prior of the type discussed by O’Hagan (1995). To deal
with the high dimensional basis representation of the regression functions an adaption of the
focused sampling scheme introduced in Wong, Hansen, Kohn and Smith (1997) is used for
the computations. As the empirical work here demonstrates, the resulting estimator is both
automatic and applicable to complex multiple nonparametric regressions with large sample

sizes.

There have been several recent studies of tropospheric ozone. For example, Nychka, Yang
and Royle (1998) discuss optimal location of monitoring sites in the Chicago urban area for
spatial models of ambient air ozone, but are not concerned with identifying long-term trends
or the role of meteorological variation. Carroll, Chen, George, Newton, Schmiediche and
Wang (1997) also develop a spatial model for twelve monitoring sites in Harris County, Texas.
Their analysis examines a global trend for the county, but does not consider local site-based
trends, nor take account of the complex nonlinear relationship between key meteorological
variables and ozone levels. Smith and Huang (1993) and Shively (1990) analyzed exceedences
of legislative thresholds for tropospheric ozone using extreme value theory. However, following
Cox and Chu (1992), Bloomfield, Royle and Yang (1993) and Niu (1996) we examine daily

ozone maxima. This provides a better understanding of the trends in long-term (chronic)

exposure to relatively low levels of ozone than threshold exceedences; an issue that is of keen

interest to the Texas Natural Resource Conservation Commission, who collected the data in
this study. Figure 1 provides boxplots of the daily maxima for the Aldine monitoring site,
indicating that a data transformation may be required to ensure that a Gaussian model for
the errors is appropriate. Therefore, we estimate a data transformation from a discrete set of
potential Box-Cox style power transformations simultaneously with the unknown functions.
These transformations are normalized to be location and scale invariant to make it easier to

interpret the empirical results.




—Figure 1 About Here.—

Other authors have also accounted for meteorological variation in tropospheric ozone.
Bloomfield et al. (1993) control for a large number of meteorological variables using a two
stage procedure. First, they use ‘loess’ (Cleveland, Grosse and Shyu, 1992) to suggest appro-
priate parametric functional forms for the bivariate relationships between (i) ozone, temper-
ature and wind speed; and (ii) ozone, temperature and humidity. These are then included in
a nonlinear parametric regression. It is difficult to obtain reliable function estimates using
this approach because loess relies on a subjective exploratory approach to determine an ap-
propriate smoothing parameter, while the two stage procedure can induce a mis-specification
problem because each of the functional forms determined in the first stage are obtained with-
out controlling for the other independent variables. Alternatively, Smith and Huang (1993)
account for an interaction effect between temperature and wind speed by using a parametric

model with the multiplication of temperature and wind speed as an independent variable.

Rather than pre-determine a parametric regression model, Niu (1996) develops an additive
nonparametric model in the meteorological variables, where the functional relationships are
estimated from the data. He adapts a back-fitting algorithm to estimate all the functions,
while also estimating a parametric time series model for the error terms. Smoothing splines
are used as the univariate smoothers, with smoothing parameters estimated using generalized
cross-validation. However, efficient determination of the smoothing parameters that drive
each of the underlying smoothers is often difficult with the mis-specification of any single
parameter possibly resulting in poor estimates for all component functions. Importantly, the
model is an additive model and no interaction effects between key variables are considered.
Similarly, Shively and Sager (1997) use an additive model of univariate smoothing splines
(Wahba, 1990). To attempt to account for interactions some pairwise multiplications of

the meteorological variables, as well as the meteorological variables themselves, are included

as regressors. However, it is not clear that such an additive structure is appropriate and

secondly, no attempt to account for three way interactions is undertaken.

In comparison to previous work, our procedure does not require the explicit estimation




of smoothing parameters and can easily incorporate full nonparametric interaction surfaces
through the use of an appropriate basis, such as the trivariate radial basis in wind speed,
temperature range and humidity introduced in section 3. Our empirical work suggests that
daily ozone maxima are greatly affected by such interactions. Few alternative data-driven
methodologies exist that can estimate high dimensional nonparametric regression models
with interaction surfaces and higher sample sizes. For example, tensor product multivariate
smoothing splines (Gu, Bates, Chen and Wahba, 1989) are O(n?®) and are computationally
infeasible for the large sample sizes used here. While local regression based techniques theo-
retically also extend to such multivariate models, estimation of the bandwidth parameter(s)
is also computationally infeasible. One viable alternative is MARS (Friedman, 1991) which
uses a search algorithm on tensor product regression splines. To assess our empirical results,
a simulation is performed that generate data from both our fitted model and that resulting
from a MARS fit to the same regression model. We show that in both cases the Bayesian
approach is better than MARS at reproducing the true models.

The paper is organized as follows. Section 2 contains a description of the data analyzed
in the paper. Section 3 describes the nonparametric regression used to model the ozone data,
including the bases used to model each of the functions. Section 4 discusses how such a model
can be interpreted in a Bayesian hierarchical framework and develops the ‘focused’ Markov
chain Monte Carlo sampling scheme used to undertake the computation. The empirical
results are presented and discussed in section 5. The simulation comparison with MARS is

undertaken in section 6, while section 7 contains some conclusions.

2 The Data

The data used in this paper were collected at six Texas monitoring sites and provided to
us by the Texas Natural Resource Conservation Commission (TNRCC). Figure 2 provides
a map showing the location of the sites. The Aldine, Clinton and Northwest Houston sites
are located in Houston, the Fort Worth Keller and Dallas North sites are located in the

Dallas-Fort Worth Metroplex area, while the final site is located at Beaumont. These sites




are of particular interest to the TRNCC as they represent the two major metropolitan areas

of Texas and a major industrial area (Beaumont).

—TFigure 2 About Here.—

The data consists of daily maximum ozone values observed at these sites during the
months May-October over the eighteen year period 1980-1997. The months May-October are
considered the “high ozone” season and is the time of the year when ozone in the ambient

air typically creates a problem. Also collected at each site were daily values of important

meteorological variables. The variables we use in our analysis are given below.

e Ozone (OZ): The daily ozone value used in this study is the maximum of the 13 hourly

ozone readings (in parts per hundred million) taken each hour from 6am to 6pm.

Temperature range (T'R): Difference between the minimum and maximum hourly tem-
perature readings for the period 6am to 6pm. The temperature range is a well-accepted
proxy for the amount of sunlight occurring during the day because the temperature
range increases as the amount of sunlight increases. (A direct measure of sunlight is
not available at the monitoring sites). The expected relationship between temperature

range and ozone levels is positive.

Wind speed (WS): Average of the hourly wind speed readings for the period 6am to
6pm. The expected effect of increased wind speed is to reduce ozone levels because

higher wind speed tends to disperse pollutants present in the ambient air.

The datasets also include four wind direction variables measuring the proportion of time
between 6am and 6pm when the hourly wind direction fell into one of four 90 degree quad-
rants. These quadrants differ from site to site and they are defined in table 1. We define
WDy, WD2,WD3 and WDy to be the percentage of time from 6am and 6pm that the wind
direction fell into each of these four quadrants. Because these variables sum to one, we only

include WD,, W D3 and W Dy into our analysis.




—Table 1 About Here.—

Two other variables are also used in our regression model and are:

e Monthly variable (M N): Here, MN = 5,6,7,8,9 or 10 if the observation occurs in
May, June, July, August, September or October, respectively. This variable is used to
model seasonality in the ozone data during the high ozone season, over and above that

captured by the meteorological variables above.

e Annual trend term (YR): YR; =1,2,...,18 if day ¢ is in 1980,1984, . ..,1997, respec-

tively. This variable is used to model the long-term trend in ozone values.

The following missing data convention is used for the ozone and meteorological data. If
more than 7 hourly readings in the period 6am to 6pm are missing on a given day for the
ozone or for any meteorological variable, then the data for that day are considered to be
missing. Table 2 outlines the years during which data from each station were collected, along

with the number of observations and percentage of missing data.

——Table 2 About Here.—

3 The Nonparametric Regression Model

We model daily ozone maxima at each of the six sites with the nonparametric regression
model
T\(0Z;) = a+ fi(TR;,WS;, HMD;) + fo(WDy;) + f3(WDa;)
+  fa(WDjs;) + fs(MN;) + fe(YR;) + e . (3.1)

Here, f; is a smooth, but unknown, trivariate function that models the interaction effect of

temperature range, wind speed and humidity. The wind direction effects enter the model




additively as nonparametric univariate functions fs, f3 and f;. Any seasonal effect over and
above that pertaining to the meteorological variables, is captured by fs. The function fg
measures the long-term trend in ozone, controlling for the effect of meteorological conditions

and seasonality.

Figure 1 highlights the highly skewed distribution of daily maxima of hourly tropospheric
ozone values. Previous authors consider various Box-Cox style data transformations, but do
not attempt to estimate such transformations in combination with the signal. Therefore, we
estimate the most appropriate transformation simultaneously with the unknown functions
in the regression model at (3.1). We consider a location and scale invariant transformation

T5(0Z), indexed by ], of the form

TA(0Z) = ay + byt\(02)

(0Z+1)* ifA>0

ta(02) = q log(0Z +1) ifA=0

—(0Z+1)* ifA<0
for the discrete set of values of A € A = {-1,-0.75,-0.5,—0.25, 0, 0.25,0.5,0.75,1.0}. The
‘base’ transformation ¢, is a monotonic Box-Cox style power transformation where we add
one to OZ because min;(0Z;) = 0. For the data collected from each monitoring site, this
transformation is then normalized by constants a) and by, to produce the data transformation
T). These constants are calculated as in Smith and Kohn (1996) so that the data have
approximately the same median and inter-quartile range before and after transformation.
This normalized transformation is used because it does not alter the scale or location of the

data and therefore eases the qualitative interpretation of the regression results.

Each of the unknown functions in the regression at (3.1) is modeled as a linear combination

of basis functions, so that for any point 2z in the domain of the independent variable,

Fiz) =Y _Bibl(z) forj=1,2,...,6.

The ﬂf are coefficients requiring estimation and the bf € B’ are basis functions located at




every unique design point. The type of each of the bases B*, B, ..., B® are chosen according

to the nature of the effect and are listed below.

e For the trivariate function we use a radial basis (Powell, 1987; Holmes and Mallick,
1997), with B! = {21, 20, 23, ||z — @1||*log(||z — z1]]),---, ||z — za||?log(||z — zx||)}.
Here, x; = (TR;, WS;, HM D;)" and z = (21, 22, 23)’.

For the univariate wind direction functions f2, f3 and f4 we used a reproducing kernel
basis (Luo and Wahha, 1997) which Wong et al. (1997) demonstrate is a good basis for
the estimation of smooth univariate functions. It is defined for each wind direction as
B! = {z,R(z,z1),...,R(2,z,)}, where z; = WD;; and

Ly 7

1
)’ ' ‘5)2_240>/24

The reproducing kernel basis is defined over the unit interval, so the wind direction

independent variables are scaled to [0,1] upon calculation of the terms, though the

results are interpreted on the original scale.

The seasonal component f5 is modeled using a dummy variable basis which is intended
to capture significant monthly deviations in ozone maxima from the mean a. The basis

is defined as B® = {I(z,z;),...,I(2, )} where z; = M N; and

1 ifz=uz;
I (z » Ti ) =
0 otherwise
The trend component fs uses a linear regression spline because the basis terms are
ramp functions that capture any significant alterations in the trend. The basis is

B® = {z,(z — 21)4,..., (2 — ) +} where z; = YR; and (z); = max(0,z).

If there are no replicated values, each of these bases would contain approximately n terms.
However, in our datasets there are large number of replicated values for the independent
variables, especially for the wind directions, month and year. Table 3 details the number of
basis terms for each function and the resulting dimension of the basis representation of the

signal for the data arising from each monitoring site.




——Table 3 About Here.—

4 Methodology

4.1 Hierarchical Bayesian Model

Given these basis terms and the index of the data transformation, A, the regression for a

particular site is simply a parametric linear model of the form
y=XB+e (4.1)

Here, the (n x p) design matrix X is made up of all the basis terms introduced above,
along with a column of 1’s for the global intercept c. The p-vector 8 = (B1,02,...,5p)
contains the regression coefficients, e = (ey,...,en)' ~ N(0,02I,) are errors and y, =

(T\(0Z,),...,TA(0Z,))" is the vector of dependent variable values.

One way to render this regression nonparametric is to estimate the regression parame-
ters B (and hence the unknown functions in equation (3.1)) using a Bayesian hierarchical
model. This model was discussed in Smith and Kohn (1996) and explicitly accounts for the

uncertainty that each term will enter the regression; a brief exposition is given below.

Let 4 be a p-vector of indicator variables with the ith element ~;, such that v; = 0 if
Bi =0and v; = 1if §; # 0. Given 4, let B, consist of all the nonzero elements of 8 and
let X, be the columns of X corresponding to those elements of 4 that are equal to one.

Therefore, the linear model can be rewritten conditional on v as

Y= X‘)‘ﬂ'y_l'e

To form the hierarchical model, the following prior assumptions are made on the model

parameters:

Al: Following O’Hagan (1995) we take a fractional conditional prior

2(B,lv,0%,)) « p(y»lB,,7, 0%, N,

9




so that

B3 A ~ N (p,no®(X5X,)7)

where p., = (X,’,X,,)‘lXiyy - This provides little information on the location of 8., compared

to the likelihood because the conditional prior variance is scaled up by a factor of n.

A2: The prior of o2 is taken a priori independent of v and ), so that p(o?|y,\) « 1/02. This

is a commonly used prior for o2 because it makes log(o?) uniform.

A3: The prior for < is taken a priori independent of A and the elements are independent and

identically distributed p(v;|v;i) = 1/2. This ensures that the prior p(y) = 277.

A4: All nine potential transformations are assumed equally likely a priori, with p(A =£) =1/9

fori=1,2,...,9.

Using these priors, the posterior probability of any particular subset of variables ¥ can be

calculated as

P(YlY) o< (n+1)74/2 3" S, A)T2 ;.
AEA

Here, S(v, ) = y\y) — yf\X7(X.’7X7)“1X!,y % Ja is the Jacobian of the data transformation
(see Smith and Kohn (1996) for details on its calculation) and ¢, = 3-F_, ; is the number of
non-zero regression coefficients in model . This is almost the Schwarz (1978) information
criteria for a particular subset of regression terms in the linear model at (4.1). The problem
here is that - has support on 2P possible subsets and due to the basis representation of the
signal is a formidable nuisance parameter in estimating both the regression coefficients 3 and

transformation A € A in the hierarchical linear model (4.1).

4.2 Focused Sampling Scheme

Because of the high dimension of the basis representation of the signal, estimating the re-
gression and transformation parameters in the hierarchical model using the ‘one at a time’
Gibbs sampling scheme discussed in Smith and Kohn (1996) would be complitationally bur-

densome. Alternative sampling schemes include the reversible jump sampler (Green, 1995)

10




which has been applied to univariate nonparametric regression models by Denison, Mallick
and Smith (1998) and radial basis functions by Holmes and Mallick (1997). However, to solve
this problem we use the following generalization of the Gibbs sampling scheme discussed in

Smith and Kohn (1996) and focused sampling steps discussed in Wong, et al., (1997).

Focused Sampling Scheme.
Step (0): Select initial state v = ~[°!
Step (1): Choose S C {1,2,...,p} in a probabilistic manner
Step (2): Repeat the following M times:
Sequentially generate v;|y;zi,y fori € S

The selection of S in Step (1) is performed so that Pr(: € S) > 0 for i = 1,2,...,p. In this
case the resulting Markov chain is irreducible and aperiodic and therefore converges to its

invariant distribution, which is 4|y (Tierney, 1994).

The scheme is run in three stages. The first is a warmup period of length 2000 iterations,
after which the sampler is assumed to have converged. The second is a sampling period of
length K3 = 1000 iterations in which the distribution of A|y is estimated and from which the
mode estimate ) is obtained. The third sampling period is of length K, = 4000 and conditions

on this mode transformation, so that the distribution from which generation is undertaken in

Step (2) is now ;|vjzi, A = X, y. We condition on such a single best transformation, rather

than smooth over its distribution, to make analysis of the results simpler as advocated in

Box and Cox (1982).

Step (2) is a Gibbs sub-chain of length M that converges to the conditional posterior
distribution of the subvector v;es|vigs, y. Note that if S = {1,2,...,p} in Step (1) for every
iteration of the sampler, then this scheme simply reduces to Gibbs sampling. However, in
our problem p is large, so to both reduce the number of generations required and reduce the
dependence among Markov chain iterates we use the following at Step (1), for any iteration

k, to adaptively focus on basis terms that are more likely to be important.




Step (1) at iteration k
(1a) S = {ihf =1} 5 =0
(1b) doi=1,..,6 |
(1b-i) P = max(5;%-,0.05)
(1b-ii) P = min(1, P)
(1b-iii) Add the indices of the each of the basis terms associated
with function f; to S; with probability P.

(Ic) S =S US,

Here, p; is the number of basis terms arising from function f; (see table 3), while ¢; is the
number of basis terms actually selected as non-zero for f; in the previous (k — 1)th itera-
tion. These steps ensure that the binary variables for those terms that were significant last
iteration are always generated again, labeling them with the index set S;. We choose a sub-
set of the remaining binary variables, labeled with the indexing set Sz, using the following
probabilistic rule. For each of the functions, we select binary variables to generate with a
probability that, on average, ensures at least 5% of the binary variables for each function are
generated. However, if a function is highly oscillatory and requires more basis terms in the
previous iteration, then a large number of additional indices are selected for generation. This
ensures that (i) generation of terms is dynamically allocated to those binary variables whose
corresponding basis terms are likely to be significant. (ii) Despite the wide discrepancy in
the number of basis terms for each component signal in the regression model at all six sites

(see table 3) equal focus can be maintained on each component function.

This scheme is computationally efficient, compared to the equivalent full Gibbs sampler,
in that time is not allocated to repeatedly generate the majority of the many binary variables
that are unlikely to have a significant impact on the function estimates. We use the iterates

{~1,..., 4]} to calculate mixture estimates for the posterior distribution p(Aly) with

, 1 & . .
PY) = 7 S p(A\*,y)  and X = argmax, 4 p(My)
k=1

12




The iterates {y!X1t1 . . 4[]} are used to estimate the posterior function means

E[fi(2)|y, A = A] with the mixture estimate

~ . A - 1 K2 ”
filz) =2"B" where B=—- 3 E[By",x=14] (42)
2 k=K1+1

Here, = is the p;-vector of terms arising from calculating the basis terms for f; at point
z. 'The vector ,[:Ji is a subset of the elements of ﬁ that correspond to basis terms for
fi- The conditional expectation at (4.2) can be calculated exactly as B; = O|y; = 0 and
E[B, |7, A y] = (X,X5) T Xy,

The estimate of the posterior standard deviation of f; evaluated at a point 2 is calculated

R ) 1/2
3i(2) = (E z(f} J(2))? - (fj(Z))z)

k=1

where fJ[k] (2) is the estimate of f;(z) based on the coeficients E[B|y/*], A\ = }, y]. Estimates

for the 25% confidence intervals can therefore be derived as f;(z) + 1.965;(=).

5 Empirical Results

We estimated the regression model for the data arising from each of the six monitoring sites.
Starting at a variety of initial states, the Markov chain appears to converge reliably for
each of the six data sets. For example, figure 3 contains éome summaries of the Markov
chain iterates resulting from the estimation with the Aldine site data, with initial state
v =(0,0,...,0)',A = 0. Figure 3 (a) demonstrates that the posterior probability p(vV]|y)
converges to a stable distribution. Figures 3 (b) and (c) provide plots of the number of
non-zero coefficients q,15) and the cardinality of S, respectively. These plots highlight that,
at any particular iteration, there are around 25-40 non-zero regression coefficients and that
the sampler only focuses on around 140-190 terms. Therefore, the sampler undertakes about
one thirteenth of the number of generations required by a Gibbs sampler that generates all

the binary indicators.




—~Figure 3 About Here.—

Table 4 contains a summary of the normalized data transformation estimates for the
ozone readings collected at all six monitoring sites. Four are logarithmic transformations,
while the other two are very similar, with A = 1/4 for the Dallas North data and A = —1/4
for the Northwest Houston data. These confirm the type of transformations imposed on such

data by several previous studies.

—Table 4 About Here.—

5.1 Meteorological Effects

Figure 4 plots surface slices of the estimate of the trivariate surface f; arising from the Aldine
data. The slices are in humidity, with the nine panels corresponding to the n/10,2n/10,...,9n/10th
value of the sorted humidity variable. The surface slices all show an interaction between TR
and WS, in that it is a combination of high temperature range and low wind speed that
results in high ozone levels. There is also a strong humidity effect, with high overall ozone
readings when the humidity level is low. Moreover, the effect of humidity appears to oc-
cur as an interaction with the temperature range and wind speed, with the surface slices
altering substantially as humidity levels increase. For example, at the higher humidity levels
the temperature range is low and does not have much impact on ozone formation, while

high wind speeds tend to disperse the precursors to ozone formation very effectively at high

humidity levels.” At the lower humidity levels, the temperature range has a large effect on

ozone formation, though even in combination with high wind speeds the precursors to ozone

formation are not dispersed as effectively as at high humidity levels.

—Figures 4 and 5 About Here—




Figure 5 provides a plots surface slices of the function 1.965;(T'R, W S, HM D) arising
from the estimation with the Aldine data. To enable a comparison, the scale on the vertical
axis is the same as that for the function estimate fl found in figure 4. This indicates that the
trivariate confidence intervals are quite tight, although the standard error values are higher
in areas of the domain where the data are more sparse and at the boundary of the convex
hull of the data. The latter is the same boundary value effect frequently seen in bivariate

and univariate function estimation.

The estimates of the trivariate surfaces are remarkably consistent across sites, even though
some are located far apart, suggesting this is a fundamental meteorological determinant of
ozone formation. For example, figure 6 plots the corresponding surface slices arising from
the estimates at the Fort Worth Keller monitoring site. Note that for figures 4 and 6, the
domain of the estimates will differ because we have plotted the function estimates over the
convex hull of the each data set. These two trivariate surface estimates reveal the same basic

non-linear interaction in the three variables— a profile that is also confirmed by the estimates

7
from the remaining four sites.

—Figure 6 About Here.—

Table 5 provides the ranges of the estimates of all the functions at each of the sites and
demonstrates that, by this measure, humidity, wind speed and temperature range have the
greatest impact on ozone levels. The table demonstrates that the wind direction variables
corresponding to fg, f3 and f4 are relatively minor in comparison to the meteorological effects
captured by fl. We tried replacing the wind direction variables with their interaction with
wind speed (that is, use the variables WD; * WS) but this did not affect the results in a

noticeable manner.

—Table 5 About Here.—




Figure 7 plots the estimates of these functions for the Aldine data, along with the approx-
imate 95% confidence intervals. Notice that the intervals are quite tight (reflecting the fairly
large sample size used) and that they are tighter for lower values of W D;. This is due to the
non-uniform distribution of the wind direction variables, with observations clustered at, or
close to, WD; = 0. As the wind increasingly blows from the South/West and North/East
(that is, higher values of WD, and/or WD3) there is a decrease in ozone formation. This
may be because cleaner air is being blown in, compared to the East/South quadrant where
the precursors to ozone are thought to be blown in from the Beaumont shipping channel.
However, as the wind increasingly blows from the West/North there is a more indeterminant

effect.

—Figure 7 About Here—

Notice that f3 and f4 are distinctly nonlinear, while the estimate fl is close to linear.

Table 6 summarizes the wind direction estimates by outlining whether they were noticeably
nonlinear and the nature of the function. The summary is coded as AB, where A represents
linear (L) or nonlinear (N) and B represents increasing (1) decreasing ({) or indeterminant
(—) levels of ozone as W D; increases. They reveal that the effects are often nonlinear, which
is not surprising as wind blowing constantly from one direction could result in any locally
formed precursors to ozone being blown clear of the monitoring site, while wind blowing only
partially from’any single direction may not result in the precursors being blown clear of the
monitoring site. In short, the relationship between these wind direction variables and ozone

levels are probably smooth, but potentially prone to nonlinearity.

——Table 6 About Here—




5.2 Seasonal and Trend Estimates

Figure 8 plots the seasonal estimate f5 for all six sites, along with the respective 95% confi-

dence intervals. Five of the six sites have the same basic profile, with a decrease in residual
ozone levels during May and June, stable levels in July, August and September and a further
decrease in October. Only the data from the Dallas North monitoring site has a noticeably
different profile, with stable or increasing residual ozone levels in May and June, followed
by a gradual decrease until October. The high degree of similarity in the profiles of f5 at
each of the sites could result from meteorological variation not captured by fi,...,fs and

not random over the period May-October.

—Figures 8 and 9 Here.—

The trepd estimates are plotted in figure 9 and reveal substantial variation in trends at
the six mon?coring sites. This can be partly explained by the different environments in which
the stations are located. For example, the estimate in the trend at the Beaumont monitoring
site is highly variable, which could be due to the concentration of a sizable part of the world’s
petrochemical plant in the area. Such industrial activity is thought to have a high impact on
the formation of ozone and the level of industrial activity is not even throughout the period
1980-1997. In particular, the years 1991-1995 appear to be periods in which ozone levels
were high at all sites, apart from Clinton. This could well be due to increased economic
activity during this period, relative to the previous period. Lastly, figure 10 provides plots
of the annual means of the raw ozone at each site. A comparison with the trend estimates

in figure 9 reveals that the meteorological variation appears to mask the undertlying trend

values quite substantially.

—Figure 10 About Here.—




6 Comparison with MARS

A popular alternative method for estimating such multivariate nonparametric regression
models is MARS (multivariate adaptive regression splines) proposed by Friedman (1991).
Other methods include that of Stone, Hansen, Kooperburg and Truong (1996) which is
similar to MARS in the regression case. We compare the Bayesian estimate to that obtained
using MARS via a simulation based on the design of the data from the Clinton monitoring
site. We chose this dataset simply because it has the smallest sample size and therefore is

the fastest on which to run the simulation.

In this simulation we estimated the regression model at (3.1) using MARS (version 3.6).
The procedure does not allow for estimation of a data transformation and therefore we simply
used the transformed data as the dependent variable. The MARS program uses somewhat
different bases for the various components, including a tensor product regression spline basis
for the trivariate function f;, univariate regression splines for the additive functions fo, f3
and f4 and dummy variable bases for fs5 and fg. However, linear regression spline terms are
used instead of the cubic regression spline terms during the search for suitable knot locations
to provide speedy computations. Once these locations have been determined, estimation is

undertaken with cubic regression spline terms using these knot locations.

To compare both the Bayesian estimate (BAYES MODEL) and that provided by MARS
(MARS MODEL), we simulated data from both and fit both estimators to the data. There-

fore, the simulated datasets have the same design as the original Clinton data (that is, the

same indepe'ndent variable values), though we simulated fifty replicates of dependent variables

form each of the two models. We measured the performance of the estimators on reproducing
both true models by calculating the following distance measure for each replicated dataset

and both estimators
1804

1
I - _— 7 5.)2
Here, 9i,...,91804 are the fitted values from the original data (obtained using either the
BAYES MODEL or MARS MODEL), while 4, ..., 91804 are the fitted values obtained from

the simulated data using either procedure. Lower values of this distance measure indicate
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that the estimate is closer to the true model.

—Figure 11 About Here.—

Figure 11 provides the log(ISFE) values for both the estimators for data generated from
the BAYES MODEL and MARS MODEL. It can be seen that the Bayesian estimator more
faithfully reproduces the BAYES MODEL, which is to be expected as this model is the
Bayesian estimate from the original data. However, the Bayesian estimator also more accu-
rately estimates the MARS MODEL. This is remarkable as the Bayesian procedure is not
only a different estimation procedure, but is using a different basis than the MARS MODEL.
These results suggest that the Bayesian approach is substantially more efficient than MARS
when applied to the regression model at (3.1) with the design presented by the Clinton data.

This corresponds to the simulation results presented in Smith and Kohn (1997) for the case
7

of bivariate surface estimation.

7 Conclusion

This paper has a number of objectives. First, it demonstrates that the proposed Bayesian
nonparametric regression method can be applied to a complex regression problem in a larger
sample size environment. This methodology is very general, with the user able to select
which bases with which to work. In particular, we demonstrate this by using a trivariate

radial basis to model the response of the key meteorological variables.

Second, a high dimensional basis representation is obtained by locating the basis terms at
each of the design points. Such a large basis cannot be handled effectively using the ‘one at
a time’ Gibbs sampling scheme discussed in Smith and Kohn (1996) and requires an alterna-
tive, such as the focused sampling approach. Third, by using a fractional prior for B, at Al,
the methodology is fully data-driven. Moreover, an appropriate transformation of the depen-
dent variable from a discrete set of location and scale invariant candidate transformations is

estimated along with the regression surfaces.
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Fourth, we have contributed an empirical study that improves understanding of the de-
terminants of tropospheric ozone levels. Here, we have estimated the functional form of the
dependence of daily ozone maxima on key meteorological variables in a more general and
flexible way than previous authors who assume a parametric or additive structure. These
estimates are made more meaningful by their consistency across six different monitoring sites
in areas of concern in Texas. In addition, we provide estimates of meteorologically adjusted
long-term trends and show they differ substantially from that observed in the unadjusted

ozone data.

Lastly, we compare our estimator to MARS, one of the few alternative nonparametric
regression procedures capable of estimating such a multivariate regression model with the
sample sizes in our data. We do this using a simulation study based on the design of the

data at one of the monitoring sites. The results indicate that for this problem, contemporary

Bayesian nonparametric regression is substantially more reliable than MARS.
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Quadrants

Monitoring Site

Quad 1 (WD,)

Quad 2 (WD) Quad 3 (WD3;) Quad 4 (WDy)

Aldine

Clinton

Northwest Houston
Dallas North

Forth Worth Keller

Beaumont

180-270
45-112.5
180-270
225-315
158-248
180-270

90-180
325-45
90-180
135-225
68-158
90-180

270-0

112.5-202.5

270-0
315-45
248-338
270-0

0-90
202.5-325
0-90
45-135
338-68
0-90

Table 1: Definitions of the quadrant directions in degrees, where 0=North and 180=South.

Monitoring Site

Period Data Collected

Sample Size (n)

% missing

Clinton
Aldine

Beaumont

1/5/83-31/10/95

1/5/80-31/10/97
25/9/80-30/9/97

Dallas North
.Fort Worth Keller

Northwest Houston

1/5/80-31/10/97
1/5/83-31/10/97
1/5/81-31/10/97

1804
2614
2373
2737
2309
2433

18.30%
21.07%
24.28%
17.36%
16.34%
22.22%

Table 2: Period over which data was collected, resulting number of full observation and

percentage of data missing within the respective collection periods for all six sites.




Domain Clinton Aldine Beaumont Ft. Worth Keller NW. Houston

TR,WS,HMD | p, | 1476 2247 2077 2152 2230
WD, | p2| 40 36 36 31 41 48
WD; | ps | 47 35 33 29 31 33
WDy | ps| 43 37 34 28 31 44
MN |[ps| 6 6 6 6 6 6
YR |ps | 13 18 18 18 15 17
Total | p | 1625 2379 2204 2634 2276 2378

Table 3: Total number of basis terms p; for each component function f; for the data corre-
sponding to each of the six sites. Here, p is the total number of basis terms, including the

global intercept c.

Monitoring Site t5 a3 b

A
Clinton 0 log(OZ +1) -5.0476  6.1658
Aldine 0 log(OZ +1) -8.0035  7.7103
Beaumont 0 log(OZ +1) -4.3399 5.7708
Dallas North 0.2
Fort Worth Keller 0 log(OZ +1) -7.3976  7.3989

Northwest Houston | -0.25 (0Z +1)~1/4 33.9083 43.7684

5 (0Z+1)Y% -20.8463 17.1196

Table 4: Estimated transformations for the data at all six sites.




Range of Function Estimate
Monitoring Site fi f2 f3 fa fs fo
Aldine 15.154 2.8983 2.029 2.655 1.413 1.966
Clinton 10.189 1.5789 1.094 1.135 1.631 1.484
Beaumont 7.518 1.3882 1.125 0.965 1.314 5.074
Dallas North 16.142 0.703 1.119 2.188 1.518 1.683
Fort Worth Keller | 9.936 1.656 2.462 2.013 1.505 1.258
Northwest Houston | 13.596 3.457 1.583 1.790 1.491 2.681

Table 5: Range of the estimated functions fl, ceey f5 obtained from the data collected at all

six monitoring sites.

Monitoring Site fr f3 fa

Aldine LI N— N|
Clinton Nt N— N-—
Beaumont LI N—» N-—
Dallas North LT NI L}
Fort Worth Keller | L] L} L}
‘Northwest Houston | L N— NJ

Table 6: Summary of the estimates for fz, f3 and f4 for the data collected at each of the six
data sites. The profile of these functions is summarised as a pair AB, where A represents
linear (L) or nonlinear (N) and B represents increasing (1) decreasing (|) or indeterminant

(=) levels of ozone as W Dy, W D3 and W Dy increases.
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Figure 1: Boxplots of the daily maxima of hourly tropospheric ozone concentrations (in
parts per hundred million) during the period 1980-1997 at the Aldine monitoring site. Note
that the US Environmental Protection Agency’s national ambient air quality standard in 12

pphm.
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Figure 2: Map providing location of monitoring sites. All six are located in areas of particular

concern to the Texas Natural Resource Conservation Commission.
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Figure 3: Summaries of the Markov chain iterates for the estimation of the regression model

with the Aldine monitoring site data. (a) The posterior probability p(y"!|y). (b) The number

of non-zero coefficients g,(;). (c) The cardinality of the focus set S. The plots are produced

for iterates from the warmup and two sampling periods.
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Figure 4: The trivariate surface estimate fi;(TR,WS,HM D) estimated from the Al-
dine site data. The nine surfaces plotted are of fl(TR, WS, HMD = z) for z =
n/10,2n/10,...,9n/10th ordered value of HMD. The bottom left hand panel corresponds

to low humidity, while the top right hand panel corresponds to high humidity.
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Figure 5: The estimate of the upper confidence interval 1.963; for the trivariate function f;

estimated from the data collected at the Aldine monitoring site. The nine surfaces plotted
are of 1.963, (TR, WS, HM D = z) for z = n/10,2n/10,...,9n/10th ordered value of HMD.
The range of the vertical axis is set to that used in the plot of f; in figure 4 to enable

comparison.
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Figure 6: The trivariate surface estimate fy(TR, WS, HM D) estimated from the Forth
Worth Keller site data. The nine surfaces plotted are of f;(TR,WS,HMD = z) for
z = n/10,2n/10,...,9n/10th ordered value of HMD. Note that the humidity levels in

which the slices are made will therefore differ slightly from that found in the surface slices

from the Aldine site.




Figure 7: (a)-(c) Plots of fs, f3 and f4 (bold lines), respectively, for the data collected at the

Aldine monitoring site. Also plotted are the 95% confidence intervals (dotted lines).
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Figure 8: The estimated residual seasonal effect for each of the six monitoring sites. In
each panel, the bold line is the estimate of f},, while the dotted lines provide 95% confidence

intervals.
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Figure 9: The estimated long-term trend in ozone levels for each of the six monitoring sites.
In each panel, the bold line is the estimate of fg, while the dotted lines provide 95% confidence

intervals.
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Figure 10: Plots of the mean values of the transformated ozone data collected at each of

the sites. The transformations used are the estimated data transformations and enable a

comparison with the trends plotted in figure 9.
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Figure 11: Simulation comparison of the MARS and focused sampling based estimates.
Panel (a) is for data generated from the MARS MODEL and panel (b) is for data gener-
ated from the BAYES MODEL. Each boxplot is constructed from the fifty log(ISE) values

resulting from the fifty simulation replicates for each of the two models.







