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Abstract

Recent empirical work has questioned the consistency of U.S. fiscal policy with an
intertemporal budget constraint. Empirical results have tended to indicate that the
deficit process has undergone at least one structural shift during recent decades, with
the deficit becoming either unsustainable or sustainable in only a weak sense in the post-
shift period. In this paper, we re-examine sustainability using a new approach, based
on a cointegration model with multiple endogenous breaks. A Bayesian methodology is
applied, incorporating Markov chain Monte Carlo simulators. In contrast to previous
analyses, we find evidence of a sustainable deficit process over the 1947 to 1992 period,
despite the occurrence of breaks during the 1970's and 1980's.



1 Introduction

Over the past decade or so, empirical work has focussed on whether or not U.S. fiscal policy is
consistent with a intertemporal budget constraint, i.e. is sustainable in the long run. A fiscal policy
which implies that debt will explode over time at a faster rate than the growth rate of the economy
is obviously not sustainable. Hence, the emphasis has been on assessing the statistical properties
of debt. Analyses have concentrated on both the univariate properties of debt (see Hamilton and

Flavin, 1986 and Wilcox, 1989) and the cointegration properties of revenues and expenditure (see
Trehan and Walsh, 1988 and 1991, Hakkio and Rush, 1991, Haug, 1991, Tanner and Lui, 1994 and

Quintos, 1995) with an important aspect of certain analyses being the incorporation of structural

breaks. Overall, results have suggested that the U.S. deficit process has undergone a shift in recent
times, with the deficit being either unsustainable or sustainable in only a weak sense in the post-shift
period.

In this paper, we re-examine the sustainability issue using a new approach, based on a cointe-
gration model for U.S. government revenue and interest inclusive expenditure, with allowance made

for multiple endogenous breaks in both the intercept and slope parameters. The methodology pro-

duces simultaneous inferences about the presence of cointegration, the value of the cointegrating

parameters and the size and timing of shifts in the relationship. Thus, inference about cointegration

is not conditional on pre-imposed breakpoints, nor is inference about the breakpoints conditional

on the presence of cointegration. Rather, a (potentially) cointegrating relationship, with possible

deterministic shifts is estimated over the whole sample period and one set of results derived. The

inferential approach is Bayesian, with results being based on Markov chain Monte Carlo (MCMC)

posterior simulators.'

Previous methodological papers most closely related to the present paper include the following.

Zivot and Phillips (1994) provide a Bayesian approach to unit root/structural break inference,

while De la Croix and Lubrano (1996) conduct Bayesian cointegration/structural break inference

on a restrictive form of mode1.2 An MCMC sampling approach to single and multiple changepoint

inference respectively in a variety of models, including stationary regression models, is used in

Carlin, Gelfand and Smith (1992) and Stephens (1994). Chib (1997) applies an MCMC approach

to univariate models in which multiple changes are modelled via Markov switching processes. In
terms of classical work, Gregory and Hansen (1996a and b), extend the standard residual-based

cointegration tests to accommodate a single shift in the cointegrating parameters at some unknown
time point, whilst Bai and Perron (1995) consider estimation of multiple breaks in a standard

linear regression model. Hendry and Clements (1998) consider the implications for forecasting of

multiple breaks in cointegration models, as well as introducing the concept of 'co-breaking', in

which deterministic structural breaks are removed by taking linear combinations of variables.

The paper is organized as follows. In Section 2 we provide a brief motivation of the use of

a cointegration framework to analyze deficit sustainability. Section 3 outlines the model used to

'Computer programs written using the GAUSS software are available from the author on request.
'These authors allow for a single break in the slope coefficient only. As shown in Section 3, our model allows for

multiple changes in both the intercept and slope parameters plus general autoregressive processes for both error terms
in the model.
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accommodate both cointegration and multiple parameter shifts. In Section 4, the joint posterior
density function is defined, whilst Section 5 briefly describes the MCMC numerical procedures used
to produce empirical results on sustainability, with details of the algorithms given in appendices.
Section 6 reports the empirical results, based on quarterly U.S. data from 1947(2) to 1992(3). The
results provide evidence of cointegration between revenue and interest inclusive expenditure, as
well as evidence to suggest that the pre-shift coefficient on expenditure is unity. As such, strong
sustainability of the deficit process, prior to any shift, is indicated. Shifts in both the intercept
and slope of the deficit process are estimated as occurring in 1975(2), 1985(1) and 1987(1). The
most substantial shifts occur in the intercept term, effecting a net increase of 50% in the level of
the regression. The slope shifts, on the other hand, are small and almost offsetting. A stronger
result in this direction occurs when the model is reparameterized to allow for slope shifts only. In
that case, small slope shifts which effect almost no net change from an initial value close to unity,
are estimated as occurring in 1975(1), 1984(4) and 1987(1), implying a maintenance of strong
sustainability over the full period.

2 A Deficit Model

In this section, we motivate the use of a cointegration framework in testing for deficit sustainability.
We follow closely the model development in Quintos (1995), and refer the reader to that paper for
a more detailed discussion.

We begin with the government's one-period budget constraint, given by

ABt = art — Rt (1)

where Bt is the real market value of federal debt, GIt = Gt+rtBt_i is real government expenditure
inclusive of interest payments in period t, Rt is real tax revenues in period t and rt is the real
interest rate, assumed to be stationary around a mean r. The quantity in (1) defines the real
interest inclusive deficit. Further defining

Et = Gt+ (rt — r)Bt—i (2)

we can express debt as

Bt — (1 + r)Bt—i = Et — Rt (3)

or
, 1  , 1

Bt = 

+ r
kitt±i — Et-Fi +  

+ r)Bot+i 
(4)1 

Solving for Bt in (4) via forward substitution yields

-±1
Bt =  rE( )3+ (t+3+1 Et+3+1)+  r )3 (5)

j=0 1 + 

Defining E(.) as an expectation conditional on information at time t, intertemporal budget balance,
or deficit sustainability, holds if and only if

-
lim Et(—,

1 
)3+113t+i+1= 0,

J--400 + r

3

(6)



since this implies that the current value of outstanding government debt is equal to the present
value of future budget surpluses. In words, the deficit is sustainable if and only if the stock of debt
held by the public is expected to grow no faster on average than the mean real rate of interest,
which can be viewed as a proxy for the growth rate of the economy.3

The cointegration framework can be motivated in a number of different ways. (See Trehan
and Walsh, 1988 for a particularly thorough motivation). Quintos (1995) proceeds by taking first
differences in (5), yielding

ABt = art — Rt
co

/  1 v.a.c-Lt_f_j+1 — A.Et+j+1) .lim
. „ 1 + r 3-+00 -t-3=u

She then associates sustainability with the condition

\urn E(_
1

,+ r 
j+1 

LABt+i-1-1 =0, (7)

which, in turn, imposes conditions on the statistical properties of the interest inclusive deficit.4
Quintos shows that (7) holds when ABt is either stationary or nonstationary, with the rate at
which the zero limit is approached being slower in the latter case.5 She refers to these two cases as
defining 'strong' and 'weak' sustainability respectively. With art and Rt viewed as /(1) processes,
the cointegration properties of these two processes can be used to shed light on (7). Defining a
regression model of the form

Rt = a + 1301t + ut, (8)

Quintos demonstrates that:

1. The deficit is 'strongly' sustainable if and only if the /(1) processes Rt and GI are cointegrated
and 13 = 1. •

2. The deficit is 'weakly' sustainable if 0 < < 1, irrespective of the cointegration status of Rt
and art.

3. The deficit is unsustainable if < 0, again irrespective of the cointegration status of Rt and
G/.6

Strong sustainability, in turn, means that the budget constraint holds and, at the same time,
the undiscounted debt process, Bt, is /(1). Weak sustainability means that the constraint holds,

3Expectations are assumed to be formed rationally by the government's creditors and, therefore, to be consistent
with the assumed generating process for B.

4A more detailed derivation of the link between the present value constraint and the behaviour of ABt can be
found in Trehan and Walsh (1988).

6ABt is allowed to be mildly explosive, as long as the explosive roots behave as exp(C/T), with C> 0.
6Note that > 1 is not consistent with a deficit, since revenues are growing at a faster rate than (interest inclusive)

expenditures.
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but with Bt exploding at a rate which is less than the growth rate in the economy, as approximated
by the mean real interest rate. As Quintos points out, although the latter situation is consistent
with sustainability, it may well have implications for the ability of the government to market its
debt and is, therefore, the less desirable scenario. An unsustainable deficit is one which implies
that Bt is exploding at a rate equal to or in excess of the growth rate in the economy, such that
the intertemporal budget constraint in (6) is violated.

All previous cointegration analyses of the U.S. deficit process have been based on a model of
the form of (8), with both full-sample and sub-sample results being produced. Using U.S. annual
data for the period 1890 to 1986, Trehan and Walsh (1988) find cointegration over the full period
and a value for 0 close to unity, suggesting strong sustainability for the full period. Haug (1991)
effectively draws the same conclusion, based on quarterly U.S. data for 1960(1) to 1987(4).7 Using
quarterly U.S. data extending from 1950(2) to 1988(4), Hakkio and Rush (1991) determine sub-
periods over which estimation is performed via an arbitrary imposition of breakpoints in 1964
and 1976 respectively. They conclude that the deficit process has effectively undergone a shift,
since the post-1964 and post-1976 results suggest a lack of cointegration, whereas the full-sample
results support cointegration.8. Based on quarterly U.S. data from 1947(2) to 1992(3), Quintos
(1995) finds evidence of cointegration over the full period, but a value for 0 between zero and
one, suggesting weak sustainability. Applying the parameter stability test of Hansen (1992) to
the (assumed) cointegrating relation, she then imposes the estimated breakpoint in order to define
relevant sub-samples. Since the Hansen test suggests two possible shiftpoints, at 1975(2) and
1980(4) respectively, Quintos performs sub-period analysis based on each. The evidence supports
strong sustainability in both pre-break periods, but only weak sustainability in both post-break
periods, including a lack of cointegration. Applying rank constancy tests, Quintos finds some
evidence that the cointegration status of the relationship also changes in the early 1980's. Based
on quarterly U.S. data for 1950(1) to 1989(4), Tanner and Lui (1994) impose a dummy variable
for a level shift in their cointegration model at both a pre-defined point, 1982(1), and at a point
determined via the univariate pre-test procedure of Christiano (1992), namely 1981(4). With this
level dummy incorporated, they find cointegration and acceptance of the null hypothesis that 0 is
equal to unity.

As is evident from this outline of previous work, analysis of the sustainability issue has both
lead to conflicting results and been based on a conglomeration of cointegration and structural break
methods. The approach adopted in this paper, being an integrated cointegration/structural break
methodology, is ideally suited to tackle this type of empirical problem. In particular, by allowing
for multiple shifts in both level and slope parameters, we are able to pinpoint whether or not shifts
in the deficit process have occurred, the nature of the shifts and whether or not the shifts impinge
upon conclusions regarding sustainability.

7Haug (1991) actually tests for cointegration between Bt_1 and (Rt — Gt). A finding' of cointegration, with coin-
tegrating vector [r, —1] is equivalent to a finding of stationarity in ABt. Athough he finds evidence of cointegration,
he does not formally test the value of the coefficient on Bt--1.

8They conclude that the deficit in recent times is unsustainable, since they do not invoke Quintos' definition of
weak sustainability.
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3 The Cointegration/Structural Break Model

To accommodate m shifts in the parameters of the cointegration model in (8), we define the following
model:

where

Rt = a1 + (a2 ai)i(ri)t + • • • +(an, — ani_i)i(rn,)t+
01 art + (02 — 01 ) art (ri )t • • - + (Om — Pm—i)art(rm)t ut,

GI = att—i + vt,

0 for t < rk
i(rk)t = for t > rk 7

0 for t rk
GI(rk)t = GI for t > rk

= 1, 2 • • MO

(9)

The only formal restriction on the number of breaks, m, is that the supports of the associated rk
do not overlap and that each support contains at least two sample points. In practice, however,
sensible inferences would also entail that the value of m is not too large relative to the size of
the sample. In particular, the specification of a large number of parameter shifts would strain the
definition of cointegration to an unreasonable extent.

The error processes are specified as having the following autoregressive representations:

= et (10)

xli(L)vt = ,t1

where .1.(L) and If(L) are defined as finite order polynomials in the lag operator L,

=
i=1

(L) = ,
i=1

with the restriction that 00 = = 1, and et = (Et, TO is a disturbance vector, assumed to be
bivariate Normal of the form

•
[eLi N(0, E =[0 

]

.11 0-12 )

0-2.1 Gr22 7

(12)

with E a (2 x 2) symmetric positive definite matrix.
The roots of 111(L) in (11) are assumed to all lie outside the unit circle, such that rit is a stationary

process and xt an /(1) process as a consequence. In examining the cointegration properties of Rt
and GIt we follow Phillips (1991a, b and 1993) and Zivot and Phillips (1994) in reparameterizing
43(L)ut as:

= Ut OlUt-1 — • ' OpUt—P

= Ut PlUt-1 -
i=2

6



where:

Pi = 01+ 02 ± • • • + Op

and

Pk

The parameter pi is the appropriate parameter for capturing the long-run behavior of ut, as it
is the key parameter in determining the behavior of the spectrum of ut at the origin. Inference
concerning the presence of cointegration between the two /(1) processes, Rt and art, can be based
on the marginal posterior density function for pi, with a test of cointegration being based upon a
comparison of Pr(pi <1) and Pr(pi > 1).

The marginal posterior mass functions for the breakpoints, rk, provide the basis for estimating
the timing of the parameter shifts. The marginal densities for the (ak+i — ak) and the (f3k+1 — 13k)
provide the basis for both point and interval estimates of the magnitude of the intercept and
slope shifts respectively. Such inferences complement those about the rk. Conditional on (9) being
viewed as a cointegrating relation, al and 01 represent the parameters of the pre-shift cointegrating
relationship, with point and interval estimates of them being produced via their respective marginal
posteriors. Estimates of these parameters and of the magnitudes of the shifts can be used, in turn,
to produce estimates of the intercepts and slope values associated with each regime implied by the
breaks. The alternative approach of parameterizing the model so that the intercept and slope in
each regime were directly estimated was not taken, since the presence of shifts per se is as of as much
the focus of the paper as anything else. Hence, the marginal posteriors for the shift magnitudes, in
conjunction with the marginal breakpoint posteriors, is the more natural output of the analysis.9

The sharp null of Ho : [31 = 1 can be tested against the alternative H1 : 01 1 by determining
whether or not the value of unity is contained in an appropriate Highest Posterior Density (HPD)
interval for 01.10 Conditional on acceptance of /31 = 1, evidence of small and offsetting values for
the (/3k+1 — Pk) can be viewed as evidence in favor of f31 = 1 for the full period. Note that this part
of the analysis is necessarily informal. The sharp nulls of (3v- k+1 13k) = 0 for all k = 1,2,... , m
cannot be formally tested, since, as explained in the following section, these subspaces (of measure
zero) are effectively viewed as being deleted from the support of the joint posterior. To test Ho
against the one-sided alternative H1 : 0 <j31 < 1, we apply a posterior odds test, with the odds
ratio estimated from the simulation output in the manner of Chib (1995).

4 Posterior Distribution Specification

The model defined by (9) to (12) has two potential identification problems associated with it. First,
for all k = 1,2, ... , m, when ak±i — ak = fik+i — 13k = 0, rk is not identified, since GI(rk)t drops

9We note that the method is applicable to a multiple regression relationship, with more than one /(1) regressor
and with all parameters undergoing change simultaneously. The partial stuctural change scenario of Bai and Perron
(1995) can also be accommodated.

1°An HPD interval is an interval with the specified probability coverage, whose inner density ordinates are not
exceeded by any density ordinates outside the interval.
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out of the model. In a classical context, in which ak+i — = Ok+1 — 13k = 0 is a null hypothesis to
be tested, inference involves nonstandard distribution theory, as a consequence of the parameter rk
being unidentified under the nu11.11 In a Bayesian framework, in which a joint posterior distribution
for the full parameter set is to be defined over some appropriate support, the manifestation of the
lack of identification of rk is a posterior which is "flat" in the direction of rk in this subspace of the
support. Although not improper, due to the fact that the change point rk is defined over a finite
interval of the sample period, such a distribution is not, in principle, a sensible basis for inference.
However, the fact that the subspace has measure zero means that the exact lack of identification
can formally be eliminated by deleting the subspace from the support of the density, with no impact
being felt on the final results.12

The second identification problem concerns the pre-shift cointegrating parameters, with al and
01 being unidentified when there is an exact unit root in the error term ut. The nature of this
problem is detailed in Martin (1996) and is very similar to that discussed in Martin and Martin
(1997). As in that work, and in the spirit of Kleibergen and van Dijk (1994) and Chao and Phillips
(1996), we offset the identification problem via an information matrix-based prior.13 This prior
serves to offset not only the exact lack of identification of al and OD but also the distortion to
inferences resulting from the near lack of identification in the region around pi = 1. The near
identification problem manifests itself in terms of asymptoting behavior in the marginal density
of pi in the region around the singularity at pi = 1. This feature of the pl marginal, in turn,
distorts inferences by strongly favoring a lack of identification irrespective of the true cointegration
status of the model. Full derivation of the prior is provided in Martin (1996). As is made clear
therein, due to the nature of the identification problem, the information matrix-based prior is
defined for /3 = (al, a2 — ai , . . am.+1 — am, ,81, 02 — 131 , . ,8m+1 — Om)/ conditional on fr, p,20,
where r = (7.1, r2, rm)', p = (P17P27 • • • 7 pr)' and ,1k = (OD '1/)2'. , .

In total then, assuming a priori independence between E and the remaining parameters, a priori
independence between r, p and V) respectively, specifying a standard Jeffreys prior for E and making
the simplifying assumption of uniform priors for each of r, p and 0, we have a joint prior for the
full parameter set 1 = {E, 0,r, p,0} of the form

p(n) = P(E) x MO) x P(r) x P(P) x P('P)
oc 1E1-312 ixixil/2

The matrix X is defined as

X= [i*, i(rm)*, Gr7GI(ri)*, ar(rm)*,

where the columns of X are, in turn, defined as follows. GI* denotes the n-dimensional vector for
.1.(L)GIt = = GIt — p'G4P21, where

G/A = (Gh--1, G/t_17...7 AG/t_p+iY,

(13)

"For a recent discussion of this of issue see Andrews (1993) and Hansen (1996).
"In the context of the sampling method, this simply involves discarding any simulated values for (ak+1 — ak) and

(Ok+1 — Pk) which are simultaneously equal to zero.
13De la Croix and Lubrano (1996) also encounter this identification problem, tackling it in a way which amounts

to a Bayesian version of the Engle/Granger two-step procedure.
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whilst Gl(rk)*,k . 1727... m, denotes the n-dimensional vector for .T.(L)Ggrk)t = ar(rk); =
GI(rk)t — pVI(r)119)1, where

ar(rk)1!)-1 — (GI(rk)t--17 Aar(rk)t-17 •.. ,AGI(rIc)t-p-1-1Y-

Defining it = 1 for all t, i* denotes the n-dimensional vector for 1.(L)it = 4 = it — p'4!21,  where

i•09) =
t-1

= (it-17 07 • • • 7 O)''

(it-1) it-1 - it-27 • • ' 7 it-p+1 - it-p)f

It follows that 4 = 1 — pi for all t. Finally, i(rk)*7 k = 1, 27...m, denotes the n-dimensional vector
for .1. (L)i(rk)t = i(rk) = i(rk)t — p'i(r)t(P21, where

i(rk)1P)i = (i(rk)t-i, Ai(rk)t-i, • • • , Ai(rk)t-p+iY,

whilst GI** denotes the n-dimensional vector for W(L)Aart = air = AGIt — itp'AGIA where
AG/A = (AG/t_bAart-2, • • • , Aart-q)'•

Given the assumption of Normality, the likelihood function for f) is

L(fIR, GI) o( lErn/2 exp{(4)tr(E-1S), (14)

where R and GI respectively denote the n— dimensional vectors of observations on Rt and GI
and S = Etn-i etdt. Applying the joint prior as defined in (13), the joint posterior density14 is thus
given by

p(lJR,GI) 0( !Er (n+3)/2 exp{(4)tr(E-1S)} x IrX11/2 7 (15)

with f2 defined on the complement of F*7 where F* = F n In; '8k+1 - /3k = 0 n ak+i — ak =
0; k = 1,27... mb F = gm x R2(n+1) x Irk' 1Z3[:nk-i'nk) x RP X IIV and ZkEnk-1,nk) denotes the set of
integers in the semi-closed interval [nk_i, nk), k = 172, ... m. The [nk_i, nk) define non-overlapping
intervals which span the interval [1,n — 1] and which contain at least two data points.15

5 Numerical Procedures

5.1 Discussion

The aim of this section is to outline the numerical procedures used to produce inferences on deficit
sustainability, as based on the joint posterior density function in (15). Empirical results are based
on estimates of the pertinent marginal posterior densities associated with (15) as well as on an
estimate of the posterior odds ratio for testing Ho : 0, = 1 against Hi . 0 </3, < 1. Estimation
of the odds ratio involves estimating, under both Ho and Hl, ordinates of (15), ordinates of the
likelihood function in (14) and ordinates of the joint prior in (13). Section 5.2 briefly outlines the
numerical algorithm used to estimate the marginals, whilst Section 5.3 outlines the way in which
the odds ratio is estimated.

14The use of the term density is loose, since the rk are discrete.
151n practice, the [nk-1,nk) intervals do not have to span the full interval [1,n — 11, but can be defined over the

parts of the sample in which the search for breaks is to be concentrated.
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5.2 Estimation of the Marginal Posteriors

The MCMC algorithm used to estimate the marginal posteriors is a hybrid of the Gibbs and
Metropolis Hastings (MH) sampling schemes. (See Tierney, 1994, Chib and Greenburg, 1996 and
Geweke, 1997, for details of these algorithms). Briefly, Gibbs sampling involves an iterative gen-
eration of random drawings from all of the conditional (posterior) distributions associated with
the joint posterior. So long as certain conditions are satisfied by both the joint posterior and the
induced conditionals, these drawings represent a realization of a Markov chain with equilibrium
distribution equal to the joint posterior. Once convergence to the equilibrium distribution has
occurred, continued iterative simulation from the conditionals ultimately produces a sample of 7'

j3() ,r(), p(i), On values from the joint posterior. A Gibbs-based scheme thus potentially in-
volves simulation from the conditional posteriors for all parameter blocks included in l. There are
two problems associated with the use of these full conditionals, both of which concern the condi-
tional of 0. First, the j conditional is flat in the direction of al in the subspace pi = 1 and nearly
flat in the surrounding subspace. Even if pi = 1 were to be deleted from the support, the flatness of
the conditional in the surrounding subspace is enough to cause the Gibbs-based scheme to become
'stuck' in the region. Formally, the scheme is nearly reducible (see Tierney, 1994). Secondly, the
univariate conditionals for the intercept shifts, as implied by the joint conditional for p, although
well-defined, have been found to be very dispersed. Simulation from highly dispersed conditionals
has been found to impact badly on the accuracy with which the marginals are estimated, and thus
deemed to be undesirable.

The solution adopted here is to integrate out E and analytically from (15) using the known
integrating constants for the inverted Wishart and multivariate Student t densities respectively,
and to produce simulations from the posterior distribution for (r, p . Marginal densities for the
elements 3 (and E, if required) can then be backed out in the manner to be described.

The form of the joint posterior distribution of (r, p, 0) is detailed in Appendix A. The natural
'blocking' of the Gibbs sampler in this case is in terms of r1, r2, p and V), which defines, in
turn, the conditional distributions on which the scheme is to be based. These conditionals are all
nonstandard and those of p and (potentially) multivariate. We use an MH scheme to simulate from
the conditional distributions of p and itP respectively at the ith iteration of the Gibbs sampler. Since
the conditional mass functions of each of the breakpoints r, j = 1,2, ... , m are one-dimensional
they are amenable to simulation via the inverse cumulative distribution function technique (termed
Griddy Gibbs by Tanner, 1993). Details of the MH scheme and of the convergence properties of
the hybrid Gibbs/MH scheme are given in Appendix A.

Once the simulated values (r(i), p(), , i = 1,2, ... , T have been produced via the hybrid
algorithm, the marginal density of pi and marginal mass functions of the ri can be estimated as
finite mixtures. For pi, for example, this estimate is given by

P(PiiR, GI) = (1/T) >TI pool ir(2), p,11) R, (16)

where pi- denotes the elements in p other than pi. Since P(Pi Jr,Pr, b, R, GI) is known only up to
a constant, (16) requires one-dimensional numerical normalization of the T component densities.

10



The MCMC sample can also be used to produce, say, the estimate

p(011R, GI). (11T)ETi iP(/3 r0, P(i) CI), (17)

with p(f3dr(i) , p(i) , , R, GI) denoting the univariate Student t density for 01 implied by the
multivariate conditional for 0, conditional on values for r, p and from the ith iteration of the
MCMC algorithm. Since pPi I, r, p, R, GI) is of a standard form, (17) requires no numerical
normalization of the component densities.

5.3 Estimation of the Posterior Odds Ratio

5.3.1 Discussion

In the order to test the null hypothesis of Ho :131 = 1 against H1 : 0 </3k <1, we need to construct

P (HoIR, G P(110) fnELPIR,GI , HOP(C21H0)] c/C2
P (1111R, GI) P(Hi) afs-2 CI, HOp(01H1)] c/C2

P(Ho) P(R, arlHo)
P(H1) x p(R,G1-1H1)

= Prior Odds x Bayes Factor

An analytical treatment of the Bayes factor is not feasible in the present situation. Various nu-
merical alternatives could be used (see Geweke, 1997, for an outline). The method of Chib (1995),
translated to the present problem, is based on recognizing that for Hi, i = 0, 1, the marginal
likelihood under Hi is given by

R GIIH = 
L(C2IR, GI , Hi)p(C21Hi) 

p(,i) 
p(S2jR, GI , Hi)

for any point in O. However, whilst the likelihood function and prior can be evaluated at any
point in E2, the posterior density cannot be, since its nonstandard nature renders computation of
the necessary integrating constant infeasible. Chib's suggestion is to estimate the joint posterior
ordinate P(fIR, GI, Hi), for some given fl = S-2* by exploiting both knowledge of the conditional
and marginal posteriors into which the joint posterior can be decomposed, and the output of the
MCMC scheme which, by construction, produces simulated values from the joint posterior. With
the likelihood and prior evaluated exactly at this same Sr', an estimate of the marginal likelihood
under Hi, i = 1,2, is given by

L(Cr1R, GI , Hi)p(SrlHi) p(R, G/ 111-i) =
p(0*(R, CI, Hi)

and an estimate of the posterior odds ratio thus attainable.
The simulation output used to estimate the joint posterior ordinate p(C2 IR, CI, Hi) must be

produced with Ho and H1 imposed respectively. With these hypotheses both involving restrictions
on /31, the analytical treatment of as multivariate Student t, used in integrating out and basing
a simulation scheme on the posterior for (r, p 0P) is not legitimate. In the following section, we
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describe a simple reparameterization of the model which enables the appropriate simulation output
to be produced. We describe the use of this output in estimating the odds ratio, relegating details
of the simulation scheme itself to Appendix B.

5.3.2 Estimation of a Posterior Odds Ratio for Ho : f3i = 1 versus H1 : 0 </3k <1

What is required here is a simulation scheme which involves the estimation of the endogenous shift
points, but which avoids simulation from the problematic intercept/intercept shift conditionals.
The approach taken is to demean the data to accommodate a non-zero intercept and allow for
slope shifts only. This invokes a reduced parameter set C2 = (E, @, r, p, 0), where /3 = (01, 02 —
0i, ... 713,2+i —firr )'. The limitation of this approach is that a constant intercept is imposed for the
full sample period.

Based on this parameterization, we require the evaluation of

L(21R, GI) = (27)—n lErni2 eXp{T—itr(E-1S)}

P() = kl X 1E1-3/2 p
cx11/2 and

P(2IR, GI) = k2 X lEr(n+3)/2 x
---1

exp{(T)tr(E-1S)} IX'XI1/2 .

at some Sr, where the matrix X is now defined as

X = [GI* ,GI(ri)*,...GI(rm,)* ,GI**1.

Calculation of k1 would involve both an arbitrary truncation of the parameter space and multidi-
mensional integration. Our solution to this problem is to define the same prior (and, hence, the
same implicit truncation) under both Ho and H1, so that the arbitrary integrating constants cancel.

Simulation of C2 occurs under both Ho and H1, with /31 = 1 and 0 </3k <1 imposed respectively.
Details of the hybrid Gibbs/MH scheme used are given in Appendix B. Once the simulated values
have been obtained, the posterior odds ratio is estimated as follows. First, both the likelihood and
(unnormalized) prior function are evaluated at some S2* = (E*, [3* , r*, p* ,0*). Typically, SI* repre-
sents some high density point, like a mean or a mode. Secondly, the joint posterior is decomposed
appropriately, with each component density evaluated at S2*. For example, in the case of the deficit
example, in which r = (ri,r2, r3)' is specified and a preliminary model selection procedure chooses
p = pi and 0 = OD we have

p(12* I R, GI) = p(E* , 0* ,14, plc , r* I R, G I)
= p(E* 1[3*, 01:, pi' ,r* , R, GI)

xp((0'2` — 01)103; — 02), PI — j3), PI , IS plc, r*, R, GI)
xP((/3; — 02)1(0:1 —

xP(03*.i — /3)J/3, p, r*, R, GI)

12
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xp(f31 114, , R, GI)

xp(IPT 1/4, r*, R, GI) x p(pIlr* , R, GI)

xp(rnr1,71, R, CI) x p(r Ir33K, R, GI) x p(r;IR,

The conditional for E is known in its entirety (as Inverted Wishart) and thus able to be evaluated
automatically at E*. The marginal p(r3IR, GI) can be estimated as a finite mixture from the out-
put of the simulation scheme and evaluated at r. The intervening conditionals must be handled
differently. The one-dimensional conditional p((132 — /)I.) can be normalized numerically and eval-
uated at (i3 — On. The remaining conditionals can be estimated as finite mixtures from additional
applications of the same simulation scheme, but with the appropriate sets of parameters fixed. For
instance, the conditional p(V33 — 02)1.) is estimated as

p((/33 -132)1.)
(i/T)ETi P((33 — 132) IE(i) (32 — 01) (i) (134 03)*03'1,74,pI, r* , R,

In this application of the scheme, only E, 132 --p, and 03 —02 are allowed to vary, with the remaining
parameters fixed at the pre-specified values. Each additional application of the simulation scheme
is a reduced version of the original scheme and hence faster, as well as involving no additional
computer code. The conditional for Oi is degenerate with value one under Ho and restricted to the
support 0 < 131 <1 under H1.

6 Empirical Results on Sustainability

6.1 Data and Model Specification

We produce results based on the same data set as used in Quintos (1995).16. The data set comprises
quarterly U.S. data on real revenues and real government expenditure inclusive of interest paid on
debt, over the period 1947(2) to 1992(3). Details of the construction of the data set can be found
in the Quintos paper, as can results pertaining to the univariate time series properties of the series
in question. Figure 1 plots the data over the 1947(2) to 1992(3) period. It is clear that the two
series are essentially moving together, but with some sort of shifts occurring in the relationship
from the mid 1970's onwards. We initially allowed for two shifts, with the sub-periods over which
the shifts were "searched for" ranging from 1970(4) to 1983(1) and 1983(3) to 1989(3) respectively.
However, the marginal mass function for the second break point ascribed large probability mass
to two time periods, namely 1985(1) and 1987(1). As a consequence we re-estimated the model
with three breaks, over the respective sub-periods of 1973(3) to 1980(4), 1981(2) to 1985(3)) and
1986(1) to 1990(4).

A lag length of one for both 1.(L) and CO is selected from lag lengths ranging up to four, via a
preliminary model selection procedure based on the posterior information criterion (PIC) criterion
of Phillips and Ploberger (1994). Given the imposition of a unit root in art, the lag length for T(L)
is chosen from alternative AR specifications for the series AG/t. In choosing the lag length for the

16The data is publicly availaible at the Journal of Business and Economic Statistics web site.
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autoregression in ut, the PIC procedure is applied to the residuals resulting from OLS estimation
of Rt on GIt. Since the first 6 observations are used for lag specification in the preliminary model
selection, final results are based on data from 1948(4) to 1992(3).17

6.2 Empirical Results

To highlight the impact of allowing for endogenous breaks, we begin by presenting in Table 1 results
for the full sample period with no breaks estimated, in which case the cointegration model defined
in (9) reduces to

Rt = al + /31G-it + ut,
(18)GI t = art-i + vt,

with the errors still as defined in (11) and (12). Details of the MCMC scheme applied to this model
are given in Appendix C. Once again, since direct estimation of an intercept is problematic, the
data is demeaned and an intercept indirectly accommodated. For comparison, we report the 01
estimates and t ratios based on the Fully Modified Least Squares (FMOLS) procedure of Phillips
and Hansen (1990). As with the Bayesian method, the classical estimate is based on demeaned
data. We include a PIC posterior odds test of the sharp null of pi = 1, in order to complement
the inference based on the marginal posterior of pi. As noted in Phillips (1993), with a flat prior
specified on pi, there is a tendency for the probability of cointegration to be slightly larger than if
a true noninformative prior on pi were specified. The PIC test, on the other hand, as explained
in Phillips and Ploberger (1994), represents an objective Bayesian assessment of the unit root
hypothesis, with no inherent tendency to conclude either in favor of or against the presence of
a unit root. If prior odds of unity are specified, the criterion leads to rejection of the unit root
hypothesis if PIC <1.18 Both the PIC and ADF results are based on OLS residuals.

The results in Table 1 provide overwhelming evidence of cointegration over the full sample
period, with the marginal density of pi ascribing 100% probability to pi < 1 and both the PIC
and ADF tests leading to rejection of a unit root in the residuals. However, both the Bayesian and
classical point estiTates of pi. are clearly less than one, with the classical t test leading to rejection
of 1/0 : 01 = 1. The 95% HPD interval for 131 excludes unity. The posterior odds ratio for testing Ho
against the alternative Ho : 0 <31 <1 is less than one, implying rejection of the null hypothesis.19

17Although not reported here, we have conducted elsewhere extensive Monte Carlo experiments to guage the
repeated sampling performance of certain aspects of the methodology applied in this paper (see Martin, 1996). In
order to base conclusions on a reasonable number of replications, each experiment is based on a model with only
a single slope shift accommodated and the lag polynomials specified as: 4(L) = 1 — piL and T(L) = 1. This
parameterization allows the marginal densities to be estimated via a combination of analytical and low-dimensional
numerical integration, which, in turn, is much faster (for the lower dimensional parameterization) than the MCMC
method. This parameterization also enables comparison with the classical cointegration test of Gregory and Hanson
(1996a), which allows for a single shift only. Classical estimates of the slope parameter and the slope shift are obtained
by applying Fully Modified Least Squares (FMOLS) to the model with a breakpoint, as implied by the preliminary
Gregory and Hansen test, imposed. In summary, the Bayesian inferences display accurate finite sample behaviour,
superior, in the main, to the classical alternatives. Although not directly applicable to the multiple break scenario,
these results give some cause for confidence in the sampling behaviour of the extended methodology.

18The PIC criterion, as described in Phillips and Ploberger (1994), leads to rejection of the unit root null if PIC
> 1. We report the reciprocal of the statistic.

19The posterior odds are based on prior odds of unity. Comparison of the odds ratio with one implies a symmetric
loss function, with equal prior expected loss ascribed to both Type 1 and Type 2 errors. The lower bound of pi = o
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These results suggest that the deficit is only weakly sustainable over the full period, a conclusion
which tallies with that of Quintos (1995), who also finds evidence of full sample cointegration and
a slope coefficient less than unity.20

Table 1: No Breaks Estimated

Cointegration Tests Results for [31

Pr(pi <1)

PIG

ADF

1.00

0.02

-3.39

fl i Mode

95% HPD Interval

PO (Ho :131 =1)

FMOLS

t Test (Ho : [31 = 1)

0.79

(0.65,0.92)

0.11

0.78

-11.71

The results in Table 1 are, however, clearly deficient, given the evidence of structural shifts in
Figure 1. Table 2 reports the results of estimation based on Model (9). Graphs of the corresponding
marginal density/mass functions are presented in Figures 2 to 4. As mentioned earlier, initial
exploratory analysis indicated the presence of three shift points. Thus (9) is estimated with m = 3
imposed, over the ranges described above. Once again, the evidence in favor of cointegration over
the full period, with parameter shifts now accommodated, is conclusive, although less overwhelming
than in the no-breaks case. The marginal mass functions for the ri pinpoint breaks in 1975(2),
1985(1) and 1987(1). The two latter breaks are ascribed more than 70% probability, whilst the mass
function for r1 ascribes a total probability mass of almost 100% to 1975(2) and 1975(1) together.
The modal point estimates indicate that the most substantial shifts occur in the intercept term.
With the implied intercept after the third break being 0.91, the results suggest a net increase of
50% in the level of the regression over the sample period. However, interpretation of the point
estimates of the intercept terms must be tempered by the fact that the variability in the mass
functions is very high, with associated HPD intervals being very wide.

Estimation of the slope and slope shift parameters is much more accurate. The point estimate
of the pre-shift 01 is 0.95, with the 95% HPD interval easily covering one. This latter fact, in
combination with HPD intervals for the slope shifts which cover zero, can be viewed as evidence in
favor of a slope of unity over the full sample period. Consideration of the modal point estimates
alone suggest that the net effect of the breaks is to effect a slight downward shift in the slope, with

has no qualitative impact on the results, with few simulated values of pi being less than or equal to zero. This implies
that there is no point in constructing an odds ratio for Ho : p, = o versus H1 01 > 0.

20Note that Quintos also includes a polynomial time trend in her regression, the order of which is not reported.
This, in addition to her use of the full 1947(2) to 1992(3) sample may explain why her estimate of pi differs from
ours.
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the implied slope coefficient after the third break being 0.90. The main point to glean here is that
the most substantial shifts would appear to be confined to the level of the deficit series and not the
slope. With these level shifts accommodated, the evidence for a slope shift and, hence, a change
in the nature of the sustainability, is not strong. This result tallies with that of Tanner and Lui
(1994).

Table 2: Intercept and Slope Shifts

Pr(pi <1) 0.96

Structural Break Inference

Parameter Mode 95% HPD Interval

al 0.61 (-0.46,5.42)
(a2 - ai) -0.13 (-3.23,3.65)
(a3 — a2) -1.06 (-8.66,5.54)
(a4 — a3) 1.50 (-4.87,8.21)

01 0.95 (-0.07,1.27)

(02 —/3k) -0.03 (-0.54,0.43)

(133 — 02) 0.08 (-0.58,0.86)

(04 — 03) -0.09 (-0.75,0.50)

1975(2)

r2 1985(1)
7.3 1987(1)

The marginal density/mass functions resulting from estimation of the model which accommo-
dates three slope shifts only, are presented in Figures 5 and 6. These functions, plus the associated
results in Table 3, other than the posterior odds ratio, involve unrestricted estimation of )31. As is
clear, with a constant level imposed, the probability ascribed to a slope break occurring in 1975(1)
is almost 100%. The 70% probability mass ascribed to a break in 1985(1) in Figure 2c is, in Figure
5c, shared between 1984(4) and 1985(1), with the former time period having the higher probabil-
ity. A slightly lower probability mass of 57% is now assigned to a breakpoint in 1987(1). As the
results in Table 3 indicate, the HPD intervals are consistent with zero change in a pre-shift slope
parameter of unity. The point estimates of the slope shifts, like those reported in Table 2, are small
in magnitude. In this case they are almost totally offsetting, implying that the pre-shift slope of
unity is essentially maintained throughout the full period.

The posterior odds ratio, in which 131 is restricted to the interval 0 < 131 < 1 under the
alternative, gives substantial support to the null hypothesis that )31 = 1. Given the evidence in
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favor of cointegration and the evidence of small and offsetting slope shifts, this odds test result
effectively represents acceptance of the null of strong sustainability against the alternative of weak
sustainability, for the full sample period.21

Table 3: Slope Shifts Only Estimated

Pr(pi <1) = 0.92

Structural Break Inference

Parameter Mode 95% HPD Interval

(02
(03 -/32)
(04 -/33)

ri
r2
7-3

PO (Ho : 01 =1)

0.93
-0.10
0.04
0.05

1975(1)
1984(4)
1987(1)

6.94

(-0.06,1.30)
(-0.15,-0.05)
(-0.07,0.07)
(-0.04,0.08)

7 Conclusions

This paper has presented new results relating to the sustainability of the U.S. deficit. The results
indicate that the relationship over the 1947 to 1992 sample period is a cointegrating one, with three
shifts having occurred, in 1975, 1984/5 and 1987 respectively. The precise timing of the breakpoints
depends on the parameterization of the model (i.e. whether or not intercept shifts are accommo-
dated) However, apart from one-quarter variations, the shift point estimation is invariant to the
parameterization. In all cases, the probability mass assigned to either one particular period, or two
adjacent periods, is substantial, usually well in excess of 50%. The most substantial shifts appear
to have occurred in the level of the regression, although the level parameters are not accurately es-
timated by the model. On the other hand, the slope estimation is precise, as measured by marginal
posterior variability, and indicates that the initial, pre-break situation of strong sustainability is
maintained, despite small deviations, throughout the full sample period. The results are all jointly
produced and, as such, are not subject to the usual pre-test biases. Further, they are based on the
full sample and therefore, not affected by the degrees of freedom problems encountered in previous
sub-sample analyses.

21For interest, the posterior odds ratio for the test of Ho : f3, = 1 against H1 : pl 1 was also calculated. The
computed value of 8.85 gives strong support to the null.
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Appendix A: MCMC scheme for Section 5.2

The joint posterior density for (r, p, 0) is given by

--112 D—(n-2(m+i))12p(r, p, 01R, GI) cc(GI"' GI**) (19)

where D is defined as

D = E — FV-1 F.

The matrix C is symmetric of dimension (2(m+ 1) x 2(m+ 1)), with upper diagonal elements given
by:

C11 = (i*Y)(GI**/ GI") — (f" GI**)2 ,

C12 = ihr)(GI"' GI") — (i*FGI**)(i(ri)*' GI")

Cim+1 = (i4 i(rm)*)(Gr" GI") — (i'GI**)(i(rm)*i GI")

C22 = ihr)(GI**VI**) — GI**)2

C23 = i(r2)*)(GI**VI**) — GI**)(i(r2)*i GI**)

C2m4-1 = (i(ri)*'i(rm)*)(ar*far**) - (ihr'ar**)(i(rm)*'ar**)

qm+2)(m-1-2) = (GP' ar)(GI**' GI") — (GP' GI**)2

C2(m+i)2(m+i) = (G/(rm)*iG/(rm)*)(G/**V/**) — G/(rm)*iG/**)2.

The scalar E is defined by

E = (1?" R*)(GI**VI**) — (R*IGI**)2

and the 2(m +1) vector F defined by the elements

= (R*i*)(GI**VI**) —

F2 = (ff"i(ri)*)(GI**VI**) — (R*1 GI**)(i(ri)*' GI**)

Fm+1 = (R*Ii(rm)*)(ar"lar**) - (R*far**)(i(rm)*'W**)

Fm+2 = (R*VITGI**VI**) — (R*1 GI**)(Gr' GI**)

F2(m+i) = (R*V1-(rm)*)(GI**VI**) — (H"GI**)(Ggrmri GI"),

where R* denotes the n-dimensional vector for .1.(L)Rt = = Rt — with

RIP21 = (Rt_i, ARt—i, ARt-p+1)'-
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The conditional densities on which the Gibbs-based scheme are to be based are par, b, R,
p(rip,O, R, GI), p(ri Ir2, , rm., R, GI), . . , p(rm Iri , , rm_1, p, R, GI), and p(t*, p, R, GI) ,
all of which are defined as the density in (19) viewed as a function of the argument of interest.
All densities are non-standard in form. The MH schemes for p and respectively are both based
upon Normal candidate distributions. In the case of p for example, the mean and covariance
matrix for the candidate distribution are, respectively, the modal value of In(p(pl.)), To say, and
(-52 in p(pPlapop') IP, where p(pl.) denotes the conditional posterior function for p given /0-1)
and r(i-1). The corresponding parameterization occurs in the case of 0.

Both the joint distribution for (r, p, 0) and its induced conditionals satisfy the sufficient condi-
tions for the outer Gibbs chain to be simply ergodic. (See Tierney, 1994, Chib and Greenburg, 1996
and Geweke, 1997 for details of these conditions). Given the use of Normal candidate distributions
in the MH subchains, the latter are based on bounded weight functions and, therefore, uniformly
ergodic for the relevant conditionals. The average acceptance rate of the subchains is approxi-
mately 90%. With T denoting the final number of sample values on which inferences are produced
we simulate a total of M ± (10 x T) iterations for the outer Gibbs chain. We use T = 3000 and
M = 100, as well as performing 20 iterations of the Metropolis subchain before taking a value as
a realization from the relevant conditional density. This simulation scheme is conservative, in that
the estimated marginals differ only negligibly from those based on a smaller number of iterations.

Appendix B: MCMC scheme for Section 5.3

The vectors GI and R now denote the vectors of demeaned observations on GI and Rt respec-
tively and X is as defined in Section 5.3.2. Under H1 the full set of conditional densities induced
by the joint density for Si = p, O) are as follows:

(n+3)/2 
exp{-2---ltr(E-1,5)},p(E10,r, R, GI) c c I (20)

p(01E, r, AO, R, GI) a expL -1  (0 - -4)A2(0 — 73)}; 0 < 01 <1, (21)2o-11.2

p(ri 17-2, R, GI) cc exp{-2--ltr(E-1S)}, (22)

p(rmiri, , rm-i, E, p, , R, GI) cc exp{ (23)

-1 
p(p1,3, E, r, R, GI) oc exp{

2crii.2(P -16)G2(P -1311 

ix X/X11/2, (24)

-1 
POPP, E, r, p, R, an oc exp{ (10 - )B2(0

1/ 22.1

X (ar"' Gi**)-1/2 XIX 1/2
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with 73 = AVAi, 'TP = B2-1B1 and mij = G2-1G1 and the additional notation used defined as
follows:

A1

A2

X*

B1

B2

G1

G2

0-11.2

(722.1

= X1R- (0121.722)GI*1,

=

= [Gr,Ggrir,...,GI(rm)*]

= - (0-121(711)(R- X* O)},

viv'

= UR- X-0)- (0-121.722)arl,

[GI,Ggri),...Ggrm)]

== Up' Up

ri 1 1 - c12/0-22 and

(722 /511 -

Further notation used is: Up = , u(1) ,u(P-1)-u(P)) and Vq = (AG/(1), AG/(2), 
with uU) = - R2_j — , Rn—j — Xn—j13)1 = 1,2,. ,p, AGIU) denoting
the n dimensional vector for AG/t_i, j = 1, 27 ... 7p, and AGI being the vector for Aart-

The conditional for E is Inverted Wishart and thus able to be simulated from directly. The
densities of and p are proportional to the product of a Normal kernel and the prior factor, viewed
as a function of and p respectively. We simulate from these conditionals indirectly via an MH
algorithm, with the Normal kernel used as the basis for the candidate density. In this case, the ratio
of the target to the candidate density collapses to the (unnormalized) prior factor. Since this factor
is bounded over any finite range for p (or 0) the condition for uniform ergodicity for the candidate
subchains is satisfied.. The average acceptance rate for the MH subchains is approximately 75%
for p and approximately 98% for 0. The conditionals for r17 r2, , rm are, once again, amenable
to the Griddy Gibbs approach. The conditional density for 3 is (m + 1)-dimensional Normal
truncated from above at 131 = 1 and below at 01 = 0. This means that 13 is simulated from the
(m+1)-dimensional Normal defined as in (21), but with values for 131 beyond the range 0 </31 <1
discarded.

Under H07 the conditionals and simulation scheme remain the same except as regards 0. With
131 = 1 imposed, Od = (02 - 01, ... /377,44 - 13m)' is simulated from the m-dimensional Normal
defined by

P(Pc11131= 17 E, r, p,O7R,GI) cc exp{ 
-1  (od ijamod -ija)}

20.1 
.2 7

—d
where 3 = AVAi and notation is redefined as

A1 = X*I[R* - (0-121.0-22)GI** - GI*],

A2 = X*IX* and

X* = [Ggri)*7- • -ar(rm)*i-

Appendix C: MCMC scheme for model (18)
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The same type of MCMC scheme as outlined in Appendix A could be applied to the joint
posterior for (p, 0), obtained by analytically integrating out E and )3 = (a1, 3)' from the joint for
(E, , p, 0), defined, in turn, as (15) with X = (GI* ,GI**) and an appropriate redefinition of the
remaining terminology. However, it is computationally faster to base a scheme on the full set of
conditionals defined by the parameter set (E, 0, p, . With the data demeaned in order to cater
for an intercept term, the four conditionals for f3i, E, p and V) respectively are simulated from, with
an MH algorithm, once again, being used to cater for the non-standard nature of the conditionals
for p and 0. It is the nature of this MH scheme, in comparison with the MH scheme described in
Appendix A which produces the computational gains. If required, a marginal for al can be backed
out of the simulation output in the same fashion as described in (17) in the text for 01.

With GI and R again denoting demeaned observation vectors, the conditionals induced by the
joint posterior for (E,i3i, p, 0) are

P(E1131,P,O, R, cx tEr-
(n+3)/2 exp{ —2ltr(E-1,5)}7 (26)

W1lE7P,71), R, oc exP{ 
-1 

(1) 

(27)

P(PIODEOP, R, GI) oc 
ex13{; 

za11.2(N2A2)-1(131 - -41)21,

3)G2(P if5)} x IrX11/2 , (28)
111.2 

-1 
P(PIOD E, p, R, GI) oc exP{ 20.2 OP -17))B2(0 - CP)}

22.1

X IXIX11/2 (29)

with ;31 = A1/A2, 17) = ./c1B1 and ;a= GVG1, X redefined as X = (GI*, GI") and the additional
notation used defined as follows:

A1 = GI1R - ((712 0-22)arl,

A2 = Gr" GI* ,

B1 = V:KAG - (0.12 0-11)(R - GI* 01)1,
B2 = VIVql

= U;KR - a101) (0.12/0-22)Grl

G2 = U;Up,

U11.2

U22.1

= O11 — i2/0-22 and

a22 a12/a11•

Further, Up and Vg are as defined in Appendix B, but with u(i) = - R2-3
- arn_j131)1 = 1, 2, ... ,p. The same type of simulation scheme as described

in Appendix B is appropriate here, apart from the deletion of all references to the rj and associated
Ok+1 Ok7 k= - - 7 rn.
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Figure 1: Real U.S. Govt. Exp. and Rev. : 1947(2)4992(3)

Figure 2: Marginal posterior functions for pl, ri, r2 and r3
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Figure 3: Marginal posterior densities for al and the intercept shifts
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Figure 4: Marginal posterior densities for 01 and the slope shifts
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Figure 5: Marginal functions for pi, r1, r2 and r3 (no intercept shifts)

0

a. 201Rho1

0.45
o 0.40
• 0.35
-cni 0.30
0
cl 0.25
- 0.20
c 0.15
ER0.10
0.05
0.00

0.6 0.8

Mode = 0.94

1.2 1.4

c. Breakpoint 2

1981.5 1983.0 1984.5

r2

1.0
o 0.9

•Fi, 0.8
-4c-n 0.7
o 0.6

T3 0.4
•S 0.3

0.2
o 0 1•
0.0

" 0.6

T: • 0.5

1-r; 0.4

cL 
0.3

c 0.2

to 0.1

0.0

b. Breakpoint 1

Mode = 1975(1)

1974 1976 1978

r 1

d. Breakpoint 3

1986 1988

r3

1980

1990

27



Figure 6: Marginal densities for )31 and the slope shifts (no intercept shifts)
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