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Abstract

The segmentation problem arises in many applications in data mining, A.I. and statis-
tics. In this paper, we consider segmenting simple time series. We develop two Bayesian
approaches for segmenting a time series, namely the Bayes Factor approach, and the
Minimum Message Length (MML) approach. We perform simulations comparing these
Bayesian approaches, and then perform a comparison with other classical approaches,
namely AIC, MDL and BIC. We conclude that the MML criterion is the preferred crite-
rion. We then apply the segmentation method to financial time series data.

1 Introduction

In this paper, we consider the problem of segmenting simple time series. We consider time
series of the form:

Yt4-3. = Yt + ft
where we are given N data points (yi , yN) and we assume there are C 1 segments
(j E {0, ... C}), and that each Et is Gaussian with mean zero and variance (7.. We wish to
estimate

— the number of segments, C 1,
— the segment boundaries, {v1, , vc},
— the mean change for each segment, pj, and
— the variance for each segment, ay.

This model is a simplification of the TAR models proposed by Tong [24]. Figure 1 gives anexample of a time series with two segments. Such models may be useful for segmenting datafrom (for example) (0 economic time series, (ii) electrocardiogram measurements and (iii) eyemovement measurements from a sleeping person [22].
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Figure 1: A time series with 2 segments

Maximum likelihood estimation is a frequently used technique for fitting the segment pa-
rameters (in our simplified case pi and (Y). However, maximum likelihood is an inappropriate
method for selecting the number of segments, since it will result in a model with homogeneous
regions containing only one datum each. A variety of criteria have been used for determining
the number of segments in data, including:

• Tong [24, Section 7.2.7] used AIC [1] for the segmentation of a TAR model; Liang [11]
used AIC for image segmentation.

• Koop and Potter [9] use Bayes factors to compare the hypothesis of a linear model (one
segment) with a single alternative of either a threshold autoregressive (TAR) model with
a prespecified number of segments or a Markov Trend (or a so-called 'Hamilton') model
where the number of segments is estimated using the method of Albert and Chib [2].

• Li [10] used MDL [19] (equivalent to BIC [21]) for image segmentation; Dom [7], Pfahringer
[17] and Quinlan [18] refined the criterion within the context of the segmentation of binary
strings.

• Baxter and Oliver [3] used MML [25, 27] (a Bayesian method for point estimation) for
the segmentation of line segments with Gaussian noise.

In this paper we concentrate on the Bayesian approaches to segmentation (Bayes factors and
MML). We develop the Bayesian approaches for segmentation, and highlight differences between
them. We perform simulation experiments comparing the Bayesian techniques with each other,
and with a variety of classical criteria. We then apply the segmentation method to financialtime series data.
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2 Notation

Through out this paper we describe models using the following notation:
(0 0 is the vector of continuous parameters of dimension d

0 = < . • • , pd/2, , ad/2 >7
(ii) v is the vector of cutpoint parameters of dimension C

V = <V1 • • • 7 VC >7

(iii) çf is the vector of both types of parameters of dimension d+ C

< • • • , /142, al, • • • 7 642) V17 • • • 7 VC >7
(iv) 11(.) is the prior distribution function for a vector of parameters,
(v) A, q, a and 3 are hyper-parameters of the prior distributions for means and standarddeviations, and
(vi) j is used to index the segments; hence (j E 10, 1„ 2, ... CD.

3 Bayesian Approaches for Segmentation

3.1 Prior Distributions For Parameter Values
We draw a distinction between the cutpoint parameters v and the continuous parameters 0(0 = 0 U v). We now consider prior distributions for segmentations with C cutpoints. Weassume that the prior distributions are independent:

h(Oc) = h(v) 11(0c)

If we let Vc be the set of possible segmentations with C cutpoints and assume that all segmen-tations with C cutpoints are equally likely:

1
h(v) =

Vc I
where VI is the number of elements in set V.

3.1.1 Prior Distributions For the Continuous Parameters

(1)

We consider three prior distributions over the continuous parameters it and u. We used Prior #1as it made the integrations easier for the Bayes factors approach. We used two data based priordistributions (Prior #2 and Prior #3) as these prior distributions may reflect a reasonablecompromise between general knowledge of an area and 'ignorance'.
For the two data based prior distributions we use the data to determine the average differencebetween data points and the average variability in this difference. We therefore calculate theaverage difference

EN-ii
yt) YN 

N — 1 N —1
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and the standard deviation of the differences

Up v

‘---1v-if
z-t.i. kYti-i — Yt — 116,02

N — 1

3.1.2 Prior #1 (A Mathematically Convenient Prior)

We assume the frequently employed mathematically convenient prior specification for each
(jki, a') (see Zellner [28])

it j 1 a2 ,,, N (A, 4 I q) (2)
a? , r-1(a, /3) (3)2

where a, 13 , A and q are hyper-parameters for the prior distribution.

3.1.3 Prior #2 (An Improper Prior)

We considered using improper prior distributions analogous to the distributions used in the
context of mixture modelling [25, 15].

We considered using a uniform prior for each cri and each /Li inversely proportional to the
standard deviation of the differences:

1

o-Ay
1

h(o) oc

li(iti) oc orAy
We assume that the parameters are independent:

for cy-3 >-0, j = 0, ... , C

for iii E [-00, cob j = 0, ... , C

1
h(it ori, j) a oly = 0_1i y (4)

We use p = 1/2 as this reflects that each o-j is uniform between 0 and the standard deviation
of the differences, and each tij is uniform in the region within one standard deviation of the
average difference.. We find that this prior distribution is scale invariant (i.e., when using
Bayesian methods such as Bayes factors or MML we obtain equivalent results independent of
whether we measure our time series in dollars or cents).

3.1.4 Prior #3

We assume that each o-j is a priori distributed according to a Gamma distribution [4, p. 560]
, r(a, g). Again, we assume that we have rough knowledge about the average difference

between data points and the average variability in this difference.
A convenient way to make this prior scale invariant is to set 0 = o-Ay. We obtain a

reasonable prior distribution if we set a = 1 since this doesn't exclude small a- j and allows
unbounded values of o-j (but with small density):

cri f,-, r(a = 1, /3= o-Ay) (5)
We assume that each IL i is a priori distributed according to a Gaussian distribution:

Pi "i MitAy, (744) (6)

4

,



3.1.5 Discussion of the Prior Distributions

These three prior distributions over a, along with the traditional -1 prior distribution are shown
in Figure 2(a) for the value a-Ay = 1. The I; prior distribution is normalised to be in the range
[0.01,21.

10

a
a
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Figure 2: (a) The priors with o-Ay = 1 Figure 2: (b) The priors with crily = 10

To see the scale invariance of Prior #2 and Prior #3, Figure 2(b) gives the prior distributions
with 47,4 = 10 and renormalises the 1-, prior to be in the range [0.1,20].

3.2 The Bayes Factor or Evidence Approach
Due primarily to the recent development of fast algorithms for approximating high dimensional
integrals, interest has been renewed in Bayes factors for use in Bayesian model selection proce-
dures; see Kass and Raftery [8]. In particular, Koop and Potter [9] have used Bayes factors to
compare linear and nonlinear models in time series.

The basic setup for comparing hypotheses H0, , Hm using Bayes factors is as follows:
Let fc(xi , xn 0c), and h(0c) denote the likelihood function and prior density functions,
respectively, for each of the models corresponding to hypothesis Hc under consideration.

For the segmentation problem, it is convenient to partition the hypotheses to correspond tothe number of cutpoints:
H0: there are C = 0 cutpoints,

HM: there are C = M cutpoints.
Then, the marginal probability density for model Hc is given by

mc(m., • - • YN) = vEevc h(v) fc(Yi, • . • YN OC, Oh(OC)d0C (7)

If the hypotheses have equal prior probabilities, then the Bayes factor approach selects the Hcwith maximum mc. Once the hypothesis is chosen, point and interval estimates for parametersbased on posterior distributions are formed conditional on the chosen hypothesis.
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3.3 Calculating the Marginal Density for the Observed Data
To calculate the Bayes factor for segmented models, we first calculate the marginal density of
the observed data conditional on the number and location of the cut points. Then, we sum
those (conditional) marginal densities having the same number of segments, and divide by the
total number of such marginal densities to obtain the unconditional marginal densities. This,
of course, assumes the location of cut points are a priori equally likely.

3.3.1 The Marginal Density for a Gaussian Sample

To calculate the conditional marginal densities, we suppress the notation regarding the location
and number of cutpoints, and calculate the marginal density of the observed data within a
segment. Consider X1, X2, , Xn an independent sample from a Normal distribution having
mean p and variance 0.2. We can obtain data ;n this form by applying the transformation

Xn = Yn+1 Yn

The marginal probability density for the data , xn, is calculated by integrating the product
of the likelihood function,

f (xi, • • - it, (72)
1 x—,71 „= (27)-12o--" exp{ — — 

)2}

zo-

(n 2:2)52 

{ n
P — 2cr2 1°2

}  ex = (270-722o--n exp

and the prior joint density function (for mathematical convenience we used Prior #1):

o-2) h(g 1 0-2)40-2)

1 

1

= 
(270_51 2 expf (it A)21 r(;,_)fiao__2(a+i) exp.{ 020 /

with respect to the unknown parameter variables g and o-2.
Integrating first with respect to p, we obtain

777,G(Xi, Xn cr2) = I Asi,...,xn ii,(72)h(p I 0-2)dp

_ fly + q(p _ A121
I —(n-1-1)a 2 a

" }clic
= -1(270,4_, exp{  

2

(n — 1)s2  
} 10° expf {,n."(x ‘(72 2a2

i —(n+1) (n — 1)s22
= ‘1 

fia 

72±1 exp{  }2o-2(27r) 2 

(72, + 0)2 (n-c2 + qA2)
} 
r 

exp{ 
(n -I- q) 

(it — it*)2}clit
• exp{ 

2(n + 072 2a2 2(72
1

472 1 (n — 1)s2 nq(5; — ))211_  i o--n exp{ 
+

2  a- 2 2(n + q) j
...._

j.(27r) 3 (n + q)Y



where ii* = (n-± q)t)/(n q).
Multiplying the above with the marginal prior for o-2, and integrating with respect to a-2,

we obtain the marginal probability density:

MG(X Xn) = MG(Xi, Xn 0-2)402)d0-2

00 0-0.-2(11-Fa+1) 
f 1 1(n —1)s2 nq(- A)2 2

(271-)111(n q)ar(a)pa exPi 0-2 2 + 2(n + q) 4". 
}dc r2

+ a) [(n — 1)s2 — A)2 11
(27r)(n q)ill(a)f3c( 2 2(n + q) 

3.3.2 The marginal probability density for a segmented model

Let v be a segmentation with C cutpoints (v E Vs). Let v segment the xl, , xN_i into:

Xlm, X02, • •• , XOno

Xii, X12, • •• , xml

XC2, •

where n; is the number of points in segment j.
Assuming that each segment is independent:

m(Y1, yN I v)

XCnc.

MG(Xji, Xj2, 

Substituting this equation and Equation (1) into Equation (7) gives us:

mc(Yi, • • • YN) =

which is the quantity we wish to maximise.

3.4 The Minimum Message Length Approach
Wallace et al [25, 26, 27] advocate the use of Minimum Message Length (MML) for Bayesian
point estimation. The MML approach can be interpreted as partitioning the parameter space
into regions, where the models within a region are considered similar. Each region, R, is
identified by a representative vector of parameter values O'R where O'R E R. We construct a
two-part message of the form:

EvEvc m(Yi, • • • , yNI v)
117c

• Part 1 specifies a region R, and

• Part 2 describes the data under the assumption that O'R is true.

(8)



The essential aspect of MML which distinguishes it from traditional Bayesian methods is the
determination of the size of each region. The partitioning of the parameter space is done in
such a way as to minimise the expected length of a message.

An example partitioning (with representative points) might be:
ROA: C = 0, so E [.4, .6], E [0, .2].

0'(RoA) = (so = 0.5, JLo = 0.1)
ROB: C = 0, oro E -6], /to E [.2, .4].

Oi(RoB) = (cro = 0.5, 12o = 0.3)

Rom: C =0, so E [.6, E [0, .4].
0'(Rom) = (50 = 0.75, /to = 0.2)

RON: C = 0, E [-6, .9], IL0 E [.4,
Oi(Rom) = (so = 0.75, Ito = 0.6)

Rox: C =0, E [-9, E [0, .5].
0'(Rox) = (So = 1-1, Ito = 0.25)

ROY: C = 0, so E [-9, 1-3], PO E [.5, 1.0].
0'(Roy) = (So = 1.1, ito = 0.75)

C = 1, v E [5, 8], (To E [A, -6], E [0, -2], si E [-4, 111 E [.2,
0'(RiA) = (v = 6.5, ao = 0.5, go = 0.1, si = 0.5, iti = 0.3)
C = 1, v E [8, 12], so E [A, -6], Ito E [0, .2], i E [.4, .6], i E [.2,

6P(RiB) = (v = 10, = 0.5, /to = 0.1, si = 0.5, pi = 0.3)

3.4.1 The Wallace and Freeman MML Approach

Wallace and Freeman [27] used the following method to approximate the message length of y
encoded using 0 (a vector of continuous parameters).

Under certain regularity conditions, the volume of a region whose representative point is 0'
is of size:

Vol(0') =
T

iCd

det(F(0'))

where d is the dimension of 0, det(F(0')) is the determinant of the Fisher Information matrix,
and nd is the d dimensional optimal quantizing lattice constant (given in Conway and Sloane
[6]). The volumes (Vo/(0')) will vary around the parameter space. For example, that part of
the parameter space with low si will have a smaller regions than that part with high ai (see
Section 4.2 of [14]).

We approximate the prior probability of region R (with representative point 0/R) as:

JR h(0)d0 Vol(0) h(O'R)

4



where h(0) is the assumed known prior density on 0. The probability of obtaining data y under
the assumption that O'R is true is:

f(YWR)Sy
where f(y10) is the likelihood function and 8y is the precision to which y was measured.

The probability we associate with y and O'R is therefore:

Prob(y&O'R) = Vol(01R)h(0'R) x f(yle'R)Sy

We wish to extend the method to 0 which are not representative of some region. Doing this
leads (on average) to a message which is d/2 nits longer. The message length is therefore
approximately':

MessLen(y&O) = — log Prob(y&O) (9)

3.4.2 Applying MML to Cutpoint-like Parameters

The Wallace and Freeman approach (leading to Equation 9) is not directly applicable to the
segmentation problem. Cutpoint-like parameters v do not satisfy the regularity conditions
required, and the Fisher Information matrix is not defined for this type of parameter.

Oliver, Baxter and Wallace [16] derive expressions for the width of a region for cutpoint-like
parameters:

Width(v) 4
(no — n1) log - RSS0 —RSSi +no D2 + RSSi —RSS0 4-ni D2

Co 
"11

2o1 2o

where no and n1 are the number of points in the segment either side of v', co and ai are the
variances of the segments either side of v', RSS0 and RSSI are the residual sum of squares of
the segment either side of v', and D is the difference in the means.

Let v'R be the representative cutpoint for region R. The probability we associate with y, viR
and O'R is therefore:

Prob(y&IIR&O'R) = ol(01R)h(0'R) x Width(v)h(v) x f (y10 , v)8y (10)

Again, we wish to extend the method to v which are not representative of some region. Oliver,
Baxter and Wallace [16] show that on average this introduces an additional length of C nits.
Hence the message length is approximately

MessLen(y&v&O) = — log Prob(y&v&O) + :5- C

3.5 Why is the MML Different from the Bayes Factor Approach?
A number of authors who advocate the Bayes factors (or Evidence) approach have suggested
that MDL is equivalent to Bayes factors[5, 12], and that MAIL is an approximation to Bayes
factors [13] :

'By coding theory, we can encode an event of probability P in a message of length — log P nits. A nit is theunit of message length when we take logarithms to the base e. Hence 1 nit 1.44 bits.

9



"The effectiveness of MML and MDL methods which use two-part codes is because
they approximate the log of the evidence. It is more appropriate to approximate
the evidence directly."

To examine this issue we give procedures for the two approaches"' in Figure 3.

MML inference procedure:

1. Identify q5 the parameters we wish
to estimate.

2. Partition O's parameter space into
regions such that using these re-
gions would minimise the expected
length of a two part message. As-
sociate region 1 as hypothesis Hi.

3. Select the H1 with minimum mes-
sage length; this will typically be
the model with maximum associ-
ated probability by Equation (10).

Bayes Factor inference procedure:

1. Identify the parameter w we determine as
suitable for estimating in the first stage of
inference.

2. Partition w's parameter space into regions.
We often set hypothesis Hc to be the models
with w = C.

3. Select the
probability.

with maximum posterior

4. Estimate the remaining parameters with the
constraint that the parameters are in the
preferred H.

Figure 3: The MML and Bayes Factors Inference Procedures

The MML and Bayes factors procedures have the following differences:
• The MML procedure treats the parameters in a symmetric way, where the Bayes Fac-

tor procedure encourages us to distinguish between discrete parameters and continuous
parameters.

• The Bayes Factor procedure has the subjective choices of which parameter to select as w
(Step 1), and how to partition w's parameter space (Step 2).

The subjective choices we made in applying the Bayes factors approach to segmentation were:(a) w = C, the number of cutpoints, and
(b) we should partition the hypotheses into:

Ho: there are C = 0 cutpoints,

HM: there are C = M cutpoints.

2The MML inference procedure uses two part messages in Step 2. Rissanen. [20} advocates one part messages(which are shorter). The consequence of using one part messages is that the partitioning in Step 2 results ineach point in the parameter space having its own partition — no parameter estimation is achieved.'In MacKay's terminology Steps 1-3 of the Bayes Factor procedure are 'Level 2 Inference' and Step 4 is'Level 1 Inference'.
4The estimators used in Step 4 of the Bayes Factor inference procedure may include the mode of the posterior(MAP), the mean of the posterior, etc.

10



4 Simulations

We use the following criteria:

• AIC, using log f(1c) d C [11].

• BIC, using — log f(y10) log n [10].

• MDL, using —log f(y10) c2-1 log n -I- log ( ) [7, 17, 18].

• BF, the Bayes Factor approach described in Section 3.2-3.3, with Prior #1 (with hyper-
parameters A, q,a and /3) given in Relations (3) and (3).

• MML1, using Equation (11) of this paper, with Prior #1 (with hyper-parameters )., q, c'
and (3) given in Relations (3) and (3).

• MML2, using Equation (11) of this paper, with Prior #2 (the uniform improper prior)
given in Equation (4).

• MML3, using Equation (11) of this paper, with Prior #3 given in Relations (5) and (6).

• ORAC, an oracle which selects the correct number of segments.

The criteria estimate parameters in different ways. The AIC, BIC, MDL and MML1-3 criteria
select the set of parameter values which minimise the criteria. This results in the AIC, BIC
and MDL criteria selecting the maximum likelihood estimates for v, pj and (3-. from the set of
segmentations with the value of C which minimises the criteria. The MML methods do not use
the maximum likelihood estimates for v, /Li and al, rather these methods use the estimates for
v, /Li and ol which minimise the message length. The BF and ORAC methods first select the
number of cutpoints, and then use the maximum likelihood estimates5 for v, /I; and cr..

4.1 Simulation #1

The first simulation involved creating time series data using Prior #1 (from Section 3.1.2). We
set the hyper-parameters of the prior distribution to be:

q=0.01 a=3 151 = 1 and A=0

We generated n data points and applied the criteria in Section 4 to estimate the parameters of
the distribution.

For the MML1-3, AIC, BIC and MDL criteria we performed an exhaustive search of seg-
mentations where each segment contained 3 or more data items, searching between k = 1 andk = 3 segments.

For the Bayes Factor criteria (BF) we evaluated the posterior probabilities

Prob(k =ily), Prob(k = 2Iy) and Prob(k = 3)y)
'For the BF method this is equivalent to selecting the MAP estimate under a flat prior over v, pi and cry.

11



Counts
k=1 k=2 k=3

Mean
KL

n=20
AIC 45 17 38 13.992
BIC 74 15 11 12.841
MDL 92 4 4 9.408
BF 100 0 0 0.063

MML1 100 0 0 0.058
MML2 97 3 0 0.086
MML3 100 0 0 0.058
ORAC 100 0 0 0.063

n=40
AIC 17 14 69 14.606
BIC 84 8 8 10.275
MDL 98 2 0 0.070
BF 100 0 0 0.034

MML1 100 0 0 0.032
MML2 100 0 0 0.032
MML3 100 0 0 0.032
ORAC 100 0 0 0.034

n=80
AIC 5 6 89 11.129
BIC 94 2 4 3.082
MDL 100 0 0 0.013
BF 100 0 0 0.013

MML1 100 0 0 0.013
MML2 99 0 1 0.015
MML3 100 0 0 0.013
ORAC 100 0 0 0.013 _

Counts '
k=1 k=2 k=3 ,

Mean
KL

n=20
AIC 0 38 62 4.094
BIC 3 63 34 3.686
MDL 3 83 14 3.267
BF 6 93 1 0.244

MML1 9 91 0 0.134
MML2 5 94 1 0.126
MML3 8 92 0 0.130
ORAC 0 100 0 0.182

n=40
AIC 1 30 69 3.326
BIC 4 74 22 2.742
MDL 6 83 11 2.597
BF 7 91 2 0.084

MML1 7 92 1 0.072
MML2 6 91 3 0.070
MML3 7 91 2 0.070
ORAC 0 100 0 0.080

n=80
' AIC 0 25 75 0.741
BIC 2 88 10 0.180
MDL 2 94 4 0.094
BF 2 97 1 0.043

MML1 3 95 2 0.043
MML2 2 96 2 0.040
MML3 2 97 1 0.040
ORAC 0 100 0 0.040

Table 1: (a) True no. of segments = 1 Table 1: (b) True no. of segments = 2

Table 1 lists the number of times the criteria estimated each value of k from 100 simula-
tions. In addition, Table 1 gives the average Kullback-Liebler distance (Mean KL) between the
predicted distribution, and the underlying distribution 6.

6The Kullback-Liebler distance (given for example in [23, Chp. 9]) between a true distribution N(it, (7?)and a fitted distribution N(/21, j) is

f 1 1 2

gt 2 2af

12



4.2 Simulation #2

4.2.1 The Search Method

It is impractical to consider every possible segmentation of data once we consider multiple
cutpoints. We therefore used the following search method. Given a set of data, we consider every
binary segmentation (i.e., one cutpoint) and identify those cutpoints which are local maxima
in likelihood. We then perform an exhaustive search of segmentations using the cutpoints
which are local maxima in likelihood. The segmentations are also required to have a minimum
segment length of 3.

4.2.2 Results

True no. of segments = 1
k Mean

1 2 3 4 5 KL
n=20

AIC 48 31 17 4 0 15.620
BIC 79 16 5 0 0 14.646
MDL 94 5 1 0 0 14.101
MML2 100 0 0 0 0 0.065
MML3 100 0 0 0 0 0.065
ORAC 100 0 0 0 0 0.071

n=40
AIC 27 17 31 19 6 8.969
BIC 80 15 5 0 0 6.199
MDL 94 6 0 0 0 2.216
MML2 100 0 0 0 0 0.028
MML3 100 0 0 0 0 0.028
ORAC 100 0 0 0 0 0.029

n=80
AIC 15 11 35 16 23 2.736
BIC 93 7 0 0 0 0.675
MDL 99 1 0 0 0 0.267
MML2 100 0 0 0 0 0.013
MML3 100 0 0 0 0 0.013
ORAC 100 0 0 0 0 0.013

n=160
AIC 3 12 41 27 17 4.822
BIC 94 4 2 0 0 1.580
MDL 100 0 0 0 0 0.006
MML2 97 3 0 0 0 0.008
MML3 99 1 0 0 0 0.007
ORAC 100 0 0 0 0 0.006

Table 2: (a) True no. of segments = 1

13

True no. of segments = 2
k Mean

1 2 3 4 5 KL
n=20

AIC 19 47 30 4 0 17.882
BIC 40 44 16 0 0 17.330
MDL 66 26 8 0 0 14.757
MML2 88 11 1 0 0 0.200
MML3 98 2 0 0 0 0.171
ORAC 0 100 0 0 0 7.129

n=40
AIC 3 34 35 21 7 15.025
BIC 30 51 16 3 0 14.138
MDL 59 34 6 1 0 12.336
MML2 56 38 6 0 0 0.159
MML3 75 24 1 0 0 0.145
ORAC 0 100 0 0 0 2.200

n=80
AIC 0 25 34 26 15 5.322
BIC 15 79 6 0 0 2.510
MDL 30 66 4 0 0 2.397
MML2 22 72 5 1 0 0.075
MML3 33 66 1 0 0 0.078
ORAC 0 100 0 0 0 0.279

n=160
AIC 0 18 33 34 15 3.940
BIC 1 95 4 0 0 2.263
MDL 3 95 2 0 0 2.182
MML2 1 94 5 - 0 0 0.026
MML3 2 97 1 0 0 0.026
ORAC 0 100 0 0 0 0.024

Table 2: (b) True no. of segments =



The data used in Simulation #2 were generated according to the following distributions:

• Table 2(a) — One segment generated by the time series yt+i = yt Et-

• Table 2(b) — Two segments with the first half generated by yt+i = yt + et, and the
second half generated by yt+i = yt + 1 + Et-

• Table 3 — Three segments with the first third generated by yt÷i = yt + Et, the middle
third generated by yt+i = lit + 1 + et and the last third generated by yt+i = yt + 2 + Et•

In all cases the Et were generated from a Gaussian with mean 0 and variance 1, N(0, 1).

1 2
k
3 4 5 6

Mean
KL

n=20
AIC 2 51 37 9 1 0 16.393
BIC 11 66 20 3 0 0 16.014
MDL 28 57 13 2 0 0 15.621
MML2 55 42 3 0 0 0 0.340
MML3 77 23 0 0 0 0 0.338
ORAC 0 0 100 0 0 0 16.279

n=40
AIC 0 10 52 34 4 0' 13.727
BIC 1 73 23 3 0 0 11.733
MDL 7 77 15 1 0 0 11.603
MML2 3 67 29 1 0 0 0.192
MML3 21 74 5 0 0 0 0.199
ORAC 0 0 100 0 0 0 12.299

. 1 2 3
k
4 5 6

Mean
KL

n=80
AIC 0 3 33 42 16 6 2.657
BIC 0 61 34 5 0 0 1.956
MDL 1 82 14 3 0 0 1.201
MML2 0 42 58 0 0 0 0.099
MML3 1 58 41 0 0 0 0.110
ORAC 0 0 100 0 0 0 1.496

n=160
AIC 0 0 39 33 20 8 2.813
BIC 0 22 75 3 0 0 2.309
MDL 0 39 60 1 0 0 2.221
MML2 0 7 89 4 0 0 0.047
MML3 0 13 87 0 0 0 0.048
ORAC 0 0 100 0 0 0 2.229

Table 3: True no. of segments = 3

In each simulation, we generated n points from the time series. We applied the search
method described in Section 4.2.1 searching between k = 1 and lc = 5 or (k = 6) segments.
We applied the AIC BIC, MDL, MML2-3 and ORAC criteria during this search and identified
a preferred segmentation for each of these criteria. We did not use BF in this simulation
since (a) the search method used does not consider all the segmentations we are required to
sum in Equation (8), and (b) it is not clear how we would set the hyper-parameters for this
problem. Table 2 and 3 list the number of times the criteria estimated each value of k from
100 simulations, and give the average Kullback-Liebler distance (Mean KL) between the fitted
distribution, and the true distribution.

5 Discussion of Results

5.1 Discussion of Simulation #1
The results in Table 1 indicate that the Bayesian approaches (namely MML1, MML2, MML3and BF) were superior. This was to be expected for two of these approaches (MML1 and BF), -
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since they had access to the values of the hyper-parameters used to generate the data. The MML
approaches using 'ignorance' prior distributions, MML2 and MML3, performed exceptionally
well since they had access to the same information as AIC, BIC and MDL (they didn't have
access to the hyper-parameters' values).

5.2 Discussion of Simulation #2

There are three notable features of the results in Tables 2 and 3:

1. The AIC criterion appears to be inappropriate for this task.

2. The other criteria (BIC, MDL and MML2-3) appear to identify the number of segments
adequately.

3. Even though the ORAC criterion has access to the correct number of cutpoints, it gets
very poor mean Kullback-Liebler distances. The mean Kullback-Liebler distances for the
BIC and MDL criteria are also quite poor. We discuss this issue in the next section.

We provided results for MML using two prior distributions. The prior distributions used by
the MML method had an effect on the choice of the number of segments. However, the MML
method consistently selected segmentations with low Kullback-Liebler distances with both prior
distributions used.

5.3 Issues about the Kullback-Liebler Distance
The MML methods outperform the oracle (ORAC) method in mean Kullback-Liebler distance.This is a surprising result as the oracle (ORAC) method 'knows' the number of segments used togenerate the data. We suggest that the ORAC criterion is getting poor mean Kullback-Lieblerdistances because the Maximum Likelihood estimates of v are unreliable.

To confirm this hypothesis, we examined the simulations from Table 2(b) when n = 40.For these 100 simulations, we examined the Maximum Likelihood and MML estimates for v.Figure 4 gives histograms for the location of the selected cutpoints (out of the 39 possiblepositions). The MML estimates for v are clearly closer to the correct cutpoint (v = 19).Segmentations with cutpoints well away from v = 19 will have significantly higher Kullback-Liebler distances.

5.4 The Kullback-Liebler Distance of the Bayes Factor Approach
The Bayes Factor approach may suffer from the problem of selecting inappropriate cutpoints.If we use flat prior distributions over the v, iii and crj. then the MAP estimate for the cutpointwill be the same as the Maximum Likelihood estimate. The ORAC criterion is equivalent toan optimal Bayes Factor approach with flat prior distributions (such as Prior #2) and usingthe MAP estimate for v, pj and ai.

If one uses a two stage Bayes factors procedure, then it is unclear to us as to how to correctthe problem of estimating the v, tki and cri in a 'traditional' Bayesian manner:
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Figure 4: (a) MML estimates of v (b) Maximum Likelihood estimates of v

• The MAP estimate will be the same as the Maximum Likelihood estimate for flat prior
distributions. The Maximum Likelihood estimate will often produce models with high
Kullback-Liebler distances.

• The mean or median of the posterior may be sensible estimators for the C = 1 case. To
do this, we might use the mean or median of the posterior over v to select v, and then
estimate pi and cri conditional on v. This approach appears difficult to apply to the
C> 1 case.

6 Applications

6.1 The US GNP 1947 — 1966
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Figure 5: The US GNP 1947 — 1966

We segmented the quarterly gross national product (GNP) for the United States from 1947
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— 1966 [22]. Figure 57 shows the preferred MML2 segmentation for this data. The BIC and
MDL criteria also preferred this segmentation, while the AIC criterion preferred a segmentation
with 7 segments.

6.2 The Canadian 10 year Bond Yield 1989 - 1996
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Figure 6: The Canadian 10 year bond yield 1989 — 1996 with 8 cut points
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Figure 7: The Canadian 10 year bond yield 1989 — 1996 with 12 cut points

We then considered segmenting a larger data set, namely the Canadian 10 year bond yield.
The data set consists of 1514 values of the Canadian 10 year bond (measured in Canadian
dollars) for the period 1989 — 1996. The segmentation program took 24 minutes and 31 seconds
to examine segmentations of up to 30 segments on a DECstation 5000/20 using a greedy search
strategy. The MML2 criterion found evidence for there being at least 8 cut points (see Figure 6)
since the message length of the data with no cut points was 5501.9 nits and the message length
with 8 cut points was 5295.1 nits. The minimum message length (with 12 cut points — see
Figure 7) was 5282.8 nits.

7The units in the figure are billions of (non constant) dollars.
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7 Conclusion

This paper compared two Bayesian approaches to the segmentation of time series, namely the
Bayes Factor (or Evidence) approach and the Minimum Message Length (MML) approach. Ifone is genuinely only interested in estimating how many segments are inherent in a time series,then the Bayes factors approach is preferred. However, if one is also interested in estimatingmore parameters (e.g, when the segments start and finish), then the MML approach was moresuited to the segmentation problem considered. The reasons for this are:

• Firstly, the Bayes Factor approach does not offer an adequate method for selecting the
position of cutpoints. The Maximum Likelihood estimate for the position of cutpoints is
shown to have high Kullback-Liebler distances.

• Secondly, the Bayes Factor approach encourages the use of prior distributions which are
mathematically convenient. Mathematically convenient prior distributions may not reflect
out prior beliefs, or may have hyper-parameters which are difficult to set.

• Thirdly, the MML method uses approximations which involve less computation than the
Bayes Factor approach.

Furthermore, our preferred segmentation technique (MML with data-based prior distributions)significantly outperformed the classical approaches in the simulations we performed.
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