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Summary

A new regression based approach is proposed for modeling marketing databases.

The approach is Bayesian and provides a number of significant improve-

ments over current methods. Independent variables can enter into the

model in either a parametric or nonparametric manner, significant vari-

ables can be identified from a large number of potential regressors and

an appropriate transformation of the dependent variable can be automati-

cally selected from a discrete set of pre-specified candidate transformations.

All these features are estimated simultaneously and automatically using a

Bayesian hierarchical model coupled with a Gibbs sampling scheme. Being

Bayesian, it is straightforward to introduce subjective information about

the relative importance of each variable, or with regard to a suitable data
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transformation. The methodology is applied to print advertising Starch

data collected from thirteen issues of an Australian women's monthly mag-

azine. The empirical results highlight the complex and detailed relation-

ships that can be uncovered using the methodology. 1 2

Key words: Bayesian analysis; Gibbs sampler; Nonparametric regression;

Starch print advertising data; Bayesian Variable Selection; Subset Selec-

tion.
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1 Introduction.

A large proportion of research in marketing attempts to understand the factors affect-

ing consumer behavior. The number of factors is frequently large and often complex

and interrelated. With the growing sophistication of computing tools there is a shift

from separated to integrative data bases (Curry 1993) which provide the capability

of modeling these complex inter-relationships. Researchers modeling such data as a

regression are faced with decisions on key issues, such as which variables and interac-

tions to include in the analysis, the functional form of the effect of each independent

variable, and the appropriate transformation for the dependent variable.

This paper introduces a highly flexible Bayesian regression approach to the mar-

keting literature which addresses such issues and has the following advantages over

existing approaches to regression.

(a) Independent variables can enter the model either parametrically or nonparamet-

rically. By parametric we mean that the functional form of the independent

variable in the regression is known (for example, an independent variable can

enter linearly or as a quadratic), while by nonparametric we mean that the func-

tional form is not prescribed, but is estimated from the data. This is particularly

important in modeling marketing data because the form of the relationship be-

tween the dependent and any particular independent variable is often unknown,

and is usually chosen subjectively.

(b) The procedure identifies regressors that have a high probability of being sig-

nificant determinants of the dependent variable. It does so by estimating the

posterior probability that each of the regression coefficients are non-zero, condi-

tioned only on the information in the dataset. Traditional approaches to identify

significant regressors include all-subsets regression and stepwise regression. How-
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ever, all-subsets regression is computationally impractical in datasets with a large

number of variables (George and McCulloch 1993). Stepwise regression is also

often unsatisfactory because at each stage only the probability that each regres-

sor is non-zero, conditional on full knowledge of the significance (or otherwise)

of other regressors, can be identified. This results in a procedure which consid-

ers only a restricted number of subsets and often identifies completely incorrect

subsets (Kass and Raftery 1995). Our approach uses a Bayesian hierarchical

regression model that is estimated using a Gibbs sampling scheme, an estima-

tion methodology that involves a stochastic search which traverses most of the

likely subsets of variables. The result is a variable selection procedure that does

not suffer from the unreliability of stepwise regression, nor the computational

problems of all-subsets regression. This is particularly useful with the large and

complex datasets that often arise in marketing.

(c) The Bayesian hierarchical model we use enables consideration of datasets where

there are large numbers of independent variables, including cases where these

are collinear. This can even include cases where there are more regressors than

observations, but many of which are redundant.

(d) An appropriate transformation of the dependent variable is selected from a dis-

crete number of candidate transformations. Traditional regression approaches

usually assume that an appropriate transformation of the dependent variable is

known before model estimation takes place.

(e) The functional forms of those variables that are modeled nonparametrically, the

effect of the other independent variables, their probability of significance and the

choice of the transformation of the dependent variable are estimated simultane-

ously. It is crucial that these aspects of the regression model are not estimated

conditionally upon each other. For example, if an inappropriate transformation
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is chosen then the wrong variables may be identified as significant and their

effects incorrectly estimated. Conversely, if the wrong variables are identified,

then there will be so much variability in the regression estimates that it may be

difficult to choose the appropriate data transformation. Current approaches to

regression either select the variables, given the data transformation, or choose

a data transformation from a family of transformations, but do not select vari-

ables at the same time. To the best of our knowledge there are currently no

other approaches that simultaneously identify significant variables, fit any re-

quired regressors nonparametrically, and select a suitable transformation for the

data.

(f) As this approach is Bayesian, it allows the researcher (and the manager) to in-

troduce into the analysis prior subjective information on the relative importance

of each independent variable. This is in addition to the information in the data,

and enables the modeler to incorporate 'soft' data. It also permits the user to

determine the sensitivity of the estimates to various if-then scenarios.

The Bayesian analysis is carried out by using a Bayesian hierarchical regression

model that is estimated using a Gibbs sampling scheme. The Gibbs sampler is an es-

timation procedure similar in scope to maximum likelihood, with introductions given

in Gelfand and Smith (1990) and Casella and George (1992). The hierarchical model

in this paper was proposed in Smith and Kohn (1996) and improves and extends the

work on such models by Mitchell and Beauchamp (1988) and George and McCul-

loch (1993). It makes it feasible to identify significant regressors from a large number

of such variables, whereas this was not practical with previous approaches. Further-

more, previous approaches did not consider data transformations. A survey of current

Bayesian approaches to variable selection using hierarchical models is given by George

and McCulloch (1997).
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The features outlined above make our methodology particularly useful in exploratory

analysis of large marketing datasets. We illustrate this by applying it to Starch print

advertising data from an Australian women's monthly magazine. Such data contains

measurements of advertisement (ad) readership, along with a large number of content

and product category variables. One feature of this data is that there is likely to be

substantial interaction between these two groups of variables, though exactly which

variables is unknown. This gives rise to a dataset with a large number of main ef-

fects and interaction terms (in our case over two hundred) from which those of key

importance require identification. In addition to such interactions, there are regressors

(such as position of the ad in the magazine issue) that are unlikely to be related to

the readership scores in linear manner, but where the true functional form is unknown

a priori. Finally, the readership scores themselves are far from normally distributed,

being bounded between zero and one and also skewed, and require an appropriate data

transformation to normalize the dependent variable. To estimate such a regression

model using any existing alternative methodology would require the researcher to sub-

jectively make the decisions about data transformations and functional form before

carrying out variable selection using techniques such as forward or backward selection.

The paper is organized as follows. Section 2 describes the data and the proposed

model and relates them to the current literature on print advertising. Section 3 de-

scribes the Bayesian approach to semiparametric regression. It sets out the Bayesian

hierarchical model, discusses the prior assumptions and briefly discusses estimation

using the Gibbs sampler. However, for details on the implementation and further dis-

cussion of the sampling scheme the reader is referred to Smith and Kohn (1996; 1997).

Section 4 reports the results of the application to the Australian print advertising

data, while section 5 summarizes the implications of the methodology for marketing

researchers. The appendix lists all the variables used in the study.



Modeling the Starch print advertising data

2.1 Introduction

Creating ads that attract consumer attention to their products is one of the major

tasks facing companies. It is particularly important for advertisers to get an insight

into the factors affecting readership of print ads (the largest category of ads) because

the advertiser has much less control over the consumer's response than in a highly

emotive medium like television (Rossiter and Percy 1987). This knowledge will help

advertisers in their creative and media strategies.

Researchers have tried to determine what aspects of print advertising affect read-

ership for over three decades. Previous research investigating print advertising can

be classified into two groups. The first investigated the influence of specific aspects

of print ads, such as the presence or absence of pictures (Edell and Staelin 1983),

position in the magazine (Frankel and Solov 1962), type of headline (Soley and Reid

1983), the presence and use of color (Gardner and Cohen 1966) and size (Starch 1966;

Trodahl and Jones 1975). Most of this research used controlled experiments, with a

few variables investigated at any one time.

The second group of research was more integrative, and examined the collective

impact of a number of ad characteristics on measures of ad effectiveness (Twedt 1952;

Diamond 1968; Hanssens and Weitz 1980). These studies typically used some measure

of recall or recognition as the dependent variable with a number of ad characteristics

(both mechanical and content related) as the independent variables.

While previous research added to our understanding of the key drivers of readership,

it had two important methodological limitations. First, all the models in the literature

assumed that the functional relationship relating the dependent variable and the inde-

7



pendent variables was known (except for a few parameters that were estimated from

the data). Most of the research used linear or log-linear regression models (Twedt 1952

and Diamond 1968) or a fixed nonlinear relationship (Hanssens and Weitz 1980). In

practice, the form of the relationship for some of the regressors (such as position of the

advertisement in an issue) is likely to be nonlinear, but difficult to pre-determine and

needs to be estimated from the data. Second, few of the papers explicitly modeled the

interaction between the ad content and product category variables, which would result

in a large number of interaction terms, but used a multiplicative model to implicitly

capture these interactions (Hanssens and Weitz 1980).

Using Bayesian semiparametric regression, such limitations no longer apply, with

unknown functional relationships being modeled nonparametrically and the large num-

ber of interaction and main effects (even if collinear) entered into the regression and the

key determinants identified. As such, the Starch data forms an interesting demonstra-

tion of the Bayesian methodology. To give our results face validity, they are compared

to those obtained by previous researchers, as well compare the procedure's predictive

ability with some common alternatives.

The data investigated in this paper are collected for all advertisements in each issue

of a leading Australian women's monthly magazine. They consist of three attention-

relevant scores and about fifty ad content and product characteristics (the variables

used in the study are listed in the appendix). The three attention-relevant scores

are 'noted' scores (indicating the proportion of respondents who claim to recognize

the ad as having been seen by them in that issue), 'associated' scores (indicating

the proportion of the respondents who claim to have noticed the advertiser's brand

or company name or logo) and 'read-most' scores (indicating the proportion of re-

spondents who claim to have read half or more of the copy.) These have the struc-

ture where a noted score is at least as large as the corresponding associated score

for an ad, which in turn is at least as large as the read-most score. Therefore, we
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normalized these so that y(1) = (raw noted), y(2) = (raw associated/raw noted) and

y(3) = (raw read-most/raw associated) and we use these measures as our dependent

variables.

The data used in the study are for the thirteen months between March 1992 and

March 1993. During this period 1030 ads appeared in the magazine, but 25 were

dropped because of missing observations on some of the independent variables. The

data from the first twelve issues were used to fit the model (n = 943 observations),

while this data from the thirteenth issue (62 observations) was used as a hold-out

sample. The independent variables in the data can be divided into the following four

categories: (i) variables relating to the position of the ad in the magazine, including

inserts, (ii) variables describing the major features of the ads, (iii) variables describing

the product category, (iv) variables describing the message in the ad. How each of

these were defined and modeled is discussed below.

2.2 Variables relating to the position of the ad

Previous research has found the page number of the ad in an issue to be an impor-

tant factor influencing readership (Diamond 1968). The Starch data include the page

number of the ad and the total number of pages in all our issues. This was used to

construct the continuous variable

P .
page number

number of pages in issue

which takes values between 0 and 1, and is defined as the relative position of the ad

in an issue. The front and inside-front cover are coded as the first two pages, while

the inside-back and the back cover as the last two pages. Figure 1 plots the raw noted

score against the position variable, indicating a distinctly nonlinear relationship.

The usual approach to modeling such a nonlinear response is to assume a specific

9



functional form, for example a linear or a quadratic function. Such an approach is

called parametric, as the functional form is specified a priori. This paper takes a non-

parametric approach instead, in which the shape of a response function f is estimated

from the data. We do so by using a cubic regression spline, which is a piecewise cubic

polynomial between m so-called 'knots' which partition the domain of the independent

variable (in this case P E [0, 1]) into m 1 subintervals. If the location of the m knots

is given by the points pi, p2, ,Pm, then the regression spline approximation for the

function f is written as

772

(P) = bo biP b2P2 b3P3 + >2b3+(P pi4 where (x)3+ = max(0, x)3. (2.1)

It can be readily shown that such an approximation for the unknown response function

f is not only continuous, but has continuous first and second derivatives. Such regres-

sion splines are used frequently in practice because they form a linear model where the

bi's are regression parameters and the terms {P, P2, P3, (P — (P — pn2)3+} are

terms in a regression.

An important issue with regression splines concerns m, the number of knots. If too

few knots are used then f will have 'local bias' (that is, where important features of

f are missed) as knots will not be located in all the appropriate positions to capture

variations in the nonlinear relationship. However, if too many knots are used and the

parameters are estimated using least squares, then f will have high 'local variance'

(that is, the estimate will not be smooth). Our solution is to introduce a lot of knots

(m = 20), but instead of ordinary least squares we use a hierarchical Bayesian model

(as discussed in section 3) that explicitly accounts for the possibility that many of

them are redundant. This results in an estimation procedure that provides smooth,

flexible and reliable estimates for f (Smith and Kohn 1996).

Alternative nonparametric regression methodologies exist including the popular

local regression and smoothing splines, for which general references are Hardle (1990)
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and Eubank (1988), respectively. However, the methodology presented here has several

distinct advantages that lead us to prefer it in the empirical analysis of our Australian

Starch data. First, it is locally adaptive in the sense that it allows the curvature of

the regression function to change across its domain. Both local regression and spline

smoothing work best when the curvature of the regression function does not vary

greatly across the whole domain.

This property is important in identifying the effect of the position variable on

readership scores. To demonstrate this, we estimated the univariate nonparametric

regression model

Y(l) = f 1(P) e where e r•-• iid N(0, a2).

Figure 1 plots the results of the estimation, with the bold line being the estimate ft,
from the Bayesian approach discussed above.' This captures the profile of the effect

of the position variable on noted scores, while remaining smooth. The dotted line

denotes the estimate from a local regression with a smoothing parameter set so that

the peak in the noted scores for the last tenth of the issue could be caught. However, an

unavoidable by-product of this is that the rest of the curve is non-smooth. The dashed

line corresponds to a local regression where the smoothing parameter is set larger so

that the estimate is smooth, but key features of the curve (such as the exposure of the

middle fifth and last tenth of magazine) are bleached out.4 A further discussion of the

comparison of local regression, Bayesian regression and other approaches can be found

in Smith and Kohn (1996).

The second advantage of our approach is that there are no alternative nonparamet-

3This was produced using the Splus compatible package 'br' freely available from Michael Smith.
4The local regression was undertaken using the default local regression estimator 'loess' in Splus

with the smoothing parameter set to 0.18 for the first fit and 0.75 for the second. No smoothing

parameter for such an estimator would enable an estimate which is both smooth and captures the

underlying profile.
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ric regression approaches that can extend to the large integrative regression models of

the type developed here.

—Figure 1 About Here.—

In addition to ads within the magazine, each issue had a few ads that were inserts

and thus had no page number. To deal with these a dummy variable / was created for

the presence (/ = 1) or absence (I = 0) of inserts. In our integrative regression model,

the combined effect of position in the magazine and inserts is:

aI ± (1 — f (P) =

aI bo(I — 1) ± bi(1. — 1)P ± b2(I — 1) P2 + b3(1. — 1)P3

4-b4(I — 1)(P — .1)1). ± • • • ± b23(1 — 1)(P — P20)± (2.2)

which is obtained by substituting in a regression spline of the type outlined at (2.1)

with m = 20 knots. When an ad is an insert, equation (2.2) is equal to an intercept a;

when an ad is within a magazine it is equal to f (P).

2.3 Variables describing the major features of the ad

Previous research investigating the impact of major features of the ad on magazine

readership found significant effects for size of the ad (Trodahl and Jones 1975; Diamond

1968), presence of pictures (Edell and Staelin 1983) and type of headline (Soley and

Reid 1983). There are thirty three independent variables in the data that describe

the major features of the ad such as color, size of ad, presence or absence of bleed,

headline type, etc. The appendix lists these, including variables X1, , X31 that are

mostly binary and therefore enter the regression linearly as M1 f3iXi. The other two

variables are the size of the ad (S) and its brand prominence (B) which we model
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nonparametrically. Each assumes a discrete, but small, number of levels (0-3 and 0-4,

respectively) and it is inappropriate for such variables to be modeled using a cubic

regression spline (Smith, Sheather and Kohn 1996). Instead, we use a dummy variable

basis for each, so that

3 4

g(S) = E c1(S) and h(B) = E d2(B) where Z(x) =
i=1 i=1 0 otherwise

Here, g and h measure deviations from the base exposure attributable to an ad with

S = 0 (size less than a full page) and B = 0 (brand not present). The terms ci and

di are regression coefficients that we estimate using the Bayesian hierarchical model.

This ensures g and h measure significant deviations from the base cases of S = 0 and

B = 0, as opposed to those that would be obtained using least squares. Therefore, the

model for the main effects of the major features of the ad is:

31 31 3 4

E PiXi ± g(S) ± h(B) = E pixi ± E ciii(s) ± E dili(B). (2.3)
i=1 i=1 i=1 i=1

2.4 Variables describing the product category

It is likely that consumers have different ad readership scores for different product

categories. Hanssens and Weitz (1980) addressed this issue by classifying products

into three groups— routine, unique, and important products— and modeled each group

separately. In contrast, our model allows the simultaneous estimation of product effects

by introducing specific interactions between the product type variables and ad content

variables. This allows the investigation of product-specific ad characteristics that affect

the readership of the ad.

There are twenty-three product types, T1,. . . , T23, recorded in our Starch data,

which are described in the appendix. These variables are binary and enter the model

as main effects, but are thought to be mainly of significance as linear interactions with
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budgetary and design variables. In order to explicitly model these interactions, we

grouped the product types into four categories based on the criteria in Rossiter and

Percy (1987, pp.166-1744— the type of decision and the type of motivation. Rossiter

and Percy (1987) categorize decisions into two broad types— low involvement decisions

which have a low level of perceived risk (both economic and psychosocial) for the

consumer and high involvement decisions which have a high level of perceived risk.

Similarly, there are two types of motivations for product purchases— informational

(which reduce the negative motivation associated with the purchase) and transforma-

tional (which increase the positive motivation associated with a purchase). We call

the four categories G1 G4 and define them as follows. G1: low involvement and

informational; G2: low involvement and transformational; G3: high involvement and

informational; G2: high involvement and transformational. Each product type Ti is

classified as belonging to one of the four categories, with the classification given in

the appendix. For example, T1 is women's apparel and accessories and is classified

as G4 (high involvement and transformational). There are 136 linear interactions of

G1,. G4 with the ad attributes X1, ... X317 S, B and I; which we model as simple

multiplicative interactions in (2.4) below. We use the Rossiter and Percy (1987) cate-

gories to illustrate the methodology, but there are other ways to classify products and

the results may vary according to the classification.

The variable R for the presence or absence of recipes was treated as a special case

and only its interaction with G2 (the group that is low involvement and transforma-

tional, and includes food and drink products) is included. The following terms were

included in the full model:

23 4 31
E R G2 R E Gi(OBiB + OsiS E
i=1 j=1 i=1
%.1=11111111111MINIONOf

product type main effects
recipe interaction

14
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2.5 Variables describing the message in the ad

Twenty eight ad message binary variables XiLi] were created from four original Starch

categorical variables for the purposes of inclusion in the model. These variables are

described in the appendix and include predominant feature (i = 1), headline appeal

(i = 2), predominant appeal (i = 3) and predominant color (i = 4) of the ad. They

enter into the model as main effects and the following terms included:

8 8 6 6

E ,31-41] E Nx12} + ,3x-131 OPC141 (2.5)
1=1 i=1 i=1 i=1

2.6 Issue number

The data consists of ads published in the thirteen consecutive monthly issues from

March 1992 to March 1993. The first twelve issues (M = 1, , 12) were used as a

calibration sample and the March 1993 issue was used as a hold-out sample for model

validation. It seems unreasonable to attempt to estimate any seasonal or trend com-

ponents because the data used to fit the model spans only a single year. Nevertheless,

it is important to control for issue specific effects. Consequently, we modeled the issue

effect nonparametrically with a dummy variable basis, so that

12

/(M) = E riz (m) (2.6)
i=2

The function / measures any significant deviations in readership scores for the April

1992- February 1993 issues from that of March 1992 and controls for any potential

monthly effects on the training sample. Here, ri denote regression coefficients and ii(.)

is as defined in section 2.3.
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2.7 Transforming the dependent variables

There are three measures of ad readership in the Starch data: noted, associated and

read-most scores, each of which is a proportion. Simple histograms and density es-

timates demonstrate that the raw scores are far from normally distributed and may

require transformation to satisfy both the additivity assumptions in a regression model

and the assumptions of a Gaussian error distribution. Previous researchers used trans-

formations such as arcsine (Finn 1988) or logarithmic (Hanssens and Weitz 1980).

These transformations are typically decided in advance and imposed on the data. We

considered nine different normalized transformations for the dependent variables of the

type

TA(y) = aA ± bAtA(y) .

In the above, A = 1,2, . . . , 9 indexes our nine transformations and t(y) is what we

call the 'base transformation'. This can be any monotonically increasing transfor-

mation, which we normalize using two constants aA and bA to get the actual data

transformation TA(y). These constants can be calculated from the data for each trans-

formation so that the dependent variable has the same median and inter-quartile range

pre- and post-transformation; see Smith and Kohn (1996) for details. In effect, these

constants normalize the base transformations considered to make them scale and lo-

cation invariant- a property that eases the qualitative interpretation of the regression

estimates.

-Table 1 About Here.-

Table 1 presents the base transformations that we consider, which include those of

Finn (1988) and Hanssens and Weitz (1980). The other seven are of the form (1.-1(V),

which are probit transformations with various values for the skewing parameter O. We

regard these transformations as useful because the inverse normal cumulative distri-
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bution function, 4.-1, maps the domain [0,1] directly onto (—oo, -i-oo), satisfying the

normality conditions for the error; whereas the arcsine and logarithmic transformations

do not.

It is important to note that the methodology allows a data-driven selection of

the most appropriate normalized transformation from those listed in table 1. A user

could well select any finite number of transformations considered likely to replace those

considered here and use the procedure to select between these. Traditional approaches

usually require the pre-specification of a single transformation of the data in an ad-hoc

manner. As implemented, our methodology may lead to different transformations for

the noted, associated and read-most scores.

3 Estimation Methodology

3.1 Introduction

All the terms constructed in the previous section listed at equations (2.2)-(2.6) can be

collected together to form a large design matrix X with p = 261 terms for each of the

three regressions

TA (yU)) = Xf3+ € for j = 1, 2, 3 . (3.1)

Here, we consider a regression for each of the three transformed readership scores; so

that TA(y(1)), TA(y(2)) and TA(y(3)) are n-vectors of the observations of the noted, asso-

ciated and read-most scores, respectively, transformed according to the transformation

TA. The vector 13 is made up of the regression coefficients introduced earlier (the a,

bi's, ci's, di's, ri's and various O's) while the vector E is made up of errors distributed

iid N(0, cr2).

Estimating such a regression using least squares presents a number of problems.
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First, there is often collinearity between the regressors. Second, even when collinearities

are eliminated, variability in the regression coefficient estimates would be large due to

a lack of degrees of freedom. Third, the estimates for the nonparametric function

components f, g, h and 1 would be non-smooth.

Commonly used approaches for tackling this problem are stepwise regression and

all-subset regression, both of which are severely limited. All-subset regression requires

2P regressions to be undertaken— something that is computationally infeasible. The

stepwise procedure, while feasible, traverses only a small number of subsets, which

often leads to the situation that forward and backward stepwise procedures result in

substantially different estimates (Kass and Raftery 1995).

All these problems lead us to use a Bayesian hierarchical model, coupled with a

Gibbs sampler, to estimate this large regression model. This approach can handle

a large number of variables (p = 261 in this case), even when collinearity exists,

without being hindered by the problem that there are only about four times as many

observations as coefficients to be estimated. It can do so because it reduces the effective

dimension of the problem by explicitly modelling the possibility that many of the

terms in the design matrix may be redundant. Using the Gibbs sampler to undertake

the computations results in the redundant variables being identified reliably. This is

because the search over the distribution of important subsets is stochastic, rather than

deterministic as in stepwise regression, and it traverses many more likely combinations

of regressors than the stepwise regression approach. Furthermore, all other approaches

require pre-specification of the data transformation, whereas the Bayesian methodology

can simultaneously select the appropriate data transformation and identify significant

variables.
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3.2 The Bayesian hierarchical model

This section briefly describes the Bayesian hierarchical model, with a full exposition

being found in Smith and Kohn (1996). The key idea behind such a model is that

we explicitly model the possibility that terms in the regression at (3.1) may be su-

perfluous and can be obmitted from the regression. To do this, we use the vector

'EY = (71, 72, , 7p)' of indicator variables, where each element is defined as

0 if f3i = 0
=

1 if f3i 0

That is, is a binary variable that indicates whether, or not, A is zero and there-
fore whether, or not, the corresponding independent variable enters the regression.

Therefore, the vector -y explicitly parameterises the subsets of regressors in the lin-

ear regression at (3.1). The regression can be rewritten, conditional on this 'subset'

parameter, as

TA(0)) = X7f3.7 ± for j = 1, 2, 3 .

Here, f3,7 are the regressors that are non-zero, given 7, and X7 is a design matrix

made up of the corresponding columns of X.

Because this is a Bayesian methodology it is necessary to place priors distributions

on the unknown parameters 7, A, and (72. Ideally, such priors are 'uninformative',

unless there is some real information on a parameter or group of parameters (for

example, from previous research). The priors we use here are listed below.

(i) The prior distribution of f31, conditional on -y, a-2 and A is N(0, no-2(X"),X7)-1).

The variance matrix in this prior is simply that of the least squares estimate of

0-r blown up by a factor of n and is therefore relatively uninformative. A fully

uninformative prior for 137 cannot be used as it results in what is commonly

called Lindley's paradox (Mitchell and Beauchamp 1988).
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(ii) The prior density for a2 given 7 and A is proportional to 1/o-2. This is a commonly

used prior for o-2 and means that log o-2 has a flat prior or uninformative prior

(Box and Tiao 1973).

(iii) We assume that given A, the 7i are a priori independent with Pr ("y = 0) =

71i, i = 1, ... ,p. The probabilities 7ri are specified by the user. In this paper

we take 7ri = 1/2 for all i which can be considered uniformative. However,

our methodology allows for a user to impose a prior assessment of the relative

importance of individual terms in the form of a non-uniform prior on 7. For

example, if X7 (photo used) is considered more likely to have an impact on ad

recognition than other variables, a higher value of iri could be imposed on that

variable.

(iv) We assume that each of the nine candidate transformations is equally likely, that

is, Pr(A = i) = 1/9 for i = 1,2, ... , 9. This is a uninformative prior for A,

although if a researcher wants to encorporate prior beliefs, some transformations

can be given a higher prior probability than others.

3.3 Estimation

Smith and Kohn (1996) develop a Gibbs sampling scheme to estimate this Bayesian hi-

erarchical model and show how it can be implemented. The sampling scheme produces

a Monte Carlo sample of the subset parameter 7 from its distribution conditioned only

on the data; that is, from its posterior distribution. As this is by far the most prob-

lematical of the parameters in the model, the sample enables Monte Carlo estimation

of the posterior probability Pr(A = iidata).

From this distribution we can pick the single most likely transformation and label

it the 'mode' transformation Am. Following Box and Cox (1982) we estimate the
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remaining features of the model conditional on this best transformation. The sampling

scheme is run again and another Monte Carlo sample for the subset parameter 7

obtained. Using this, estimates of the expected value of 3 given the data (called the

posterior mean), smoothing over the distribution of -y, can be obtained; that is, we

estimate EPIA = Am, data). Estimates of the probability each term in the regression
is non-zero (and therefore significant), given the data, can also be calculated; that is,

we estimate Pr(y = 11A = Am, data). Our implementation followed that outlined in

Smith and Kohn (1996), but where our sampling scheme was run for 10,000 iterations

for convergence and 20,000 iterations to obtain the Monte Carlo sample of 7. This is

a conservative sampling length and took approximately four hours on a standard DEC

UNIX workstation. Similar results were obtained with sampling runs of one tenth the

length and took under one hour to run.

This produces estimates of the transformation and the regression parameters that

are robust to the fact that it is unknown a priori which terms actually are in the

regression. This is in contrast to least squares regression which estimates the regression

coefficients given some particular known subset, or value for, 7, as well as a pre-specified

data transformation.

4 Empirical Estimates and Methodological Com-

parison

4.1 Introduction

We applied our estimation methodology to the integrative regression models for the

Starch scores noted (y(1)), associated (y(2)) and read-most (y(3)). The first 943 obser-

vations, consisting of the March 1992 till February 1993 issues, are used for estimation.
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The March issue, consisting of 62 ads, is used for model validation. Sections 4.2-4.5

below discuss various aspects of the model estimates. Section 4.6 discusses the predic-

tive performance of the model on the hold-out sample compared to the application of

standard regression approaches to such a dataset.

4.2 Data transformation estimates

The most likely transformations, given the data, were (once normalized) sin-1(y"),

4' (y'5) and sin-1(y") for the noted, associated and read-most scores, respectively.

The posterior probabilities of all nine candidate transformations for each of the three

scores are given in table 2.

-Table 2 About Here.-

The selected transformations normalize the errors effectively as shown in figures 2(a)-

(c) by the normal probability plots of the residuals from the three fits. The results

confirm the choice of the asymmetric arcsine transformation by Finn (1988) for two

scores, but show that it appears totally inappropriate for the associated scores. The

logarithmic transformation proposed by Hanssens and Weitz (1980) is most unlikely

for all three scores in our dataset.

-Figure 2 About Here.-

The posterior probabilities of the transformations seem to be fairly insensitive to

choice of the prior distribution. For example, we used an informative prior that ascribed

double the probability to the seven skewed probit transformations as prescribed for the

arcsine and logarithmic. That is, the prior Pr(A = i) = 1/8 for i = 1, ... , 7 and Pr(A =
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8) = Pr(A = 9) = 1/16. The data transformations selected using this informative

prior were the same as those using the uninformative prior; although the posterior

probabilities changed slightly and are given in table 2. These results are reassuring

because they demonstrate that the transformation selection is not 'prior driven' and

that there is ample information in the data on the appropriate data transformation.

Although these three different transformations make it difficult to compare parame-

ter magnitudes across scores, it is possible to examine the variation of ad characteristics

that determine the noted, associated and read-most scores. This is undertaken below.

4.3 Impact of variables related to the position of the ad

Figures 3(a.1), (a.2) and (a.3) outline the impact of P, the position of the ad in the

issue, on ad recognition scores. It is evident from these figures that the position of the

ad is a determinant of noted and associated scores, but is not related to the read-most

score.

-Figure 3 About Here.-

Figure 3(a.1) is a plot of the regression spline estimate of the response f for the

noted score y(1). This estimate suggests that advertising in the front end of the maga-

zine (the first 15%) is immensely beneficial from the point of view of attracting casual

attention to the ad leading to high noted scores. However, there is a dramatic decrease

in exposure as ads are placed further into the magazine, up to about 20% in from the

front page. This is consistent with previous literature (Diamond 1968; Hanssens and

Weitz 1980) which showed a significant negative coefficient for the page number vari-

able. However, the nonparametric regression is able to capture the more sophisticated

relationship between noted scores and position than the fixed linear relationships im-
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posed in prior research. After the rapid drop that occurs in the front of the magazine,

there is a resurgence in ad exposure for the middle 40% of the magazine. After this,

positioning an ad 80%-90% into the magazine appears to be the worst choice, while

the last 5% seems to be an improvement. Notice that the estimate for the effect is

slightly different than that uncovered in the univariate nonparametric regression found

in figure 1 because the current regression controls for other effects that are correlated

with the position variable, as well as having a transformed dependent variable.

Similarly, the estimate of f for the associated scores y(2) is given in figure 3(b.1).

The profile of the estimate differs substantially from that of the the noted score and

indicates that for high associated scores the worst place to advertise is 70%-90% into

the magazine, while the last 5% is advantageous.

The insert dummy variable I was a significant contributor to all three scores, with

table 3 providing the insert main effects and interactions with the product categories

that had a greater than 35% chance of being non-zero (ie: Pr(72 = 1 'data, = Am) >

0.35). Also included in the table is the estimated intercept of f (P) from (2.2), namely

the slope -60 of (1 — . Notice that inserts have a similar effect as advertising on

the front cover of the magazine, though for the associated and read-most scores they

achieve slightly higher exposure.

—Table 3 About Here-

4.4 Impact of the major features of the ad

The size of the ad has a strong effect on the noted scores, but the marginal gain

decreases after a full page ad (S = 1). That is, multiple page ads provide only a

small benefit over single page ads in terms of attracting casual attention. This is

24



illustrated in figure 3(a.2) which plots the estimate of the main effect g of size, S, as

the solid curve. Interestingly, for products that are classified as 'high involvement and

transformational' (for example, fashion apparel and accessories, household furnishings,

and jewellery), the size of the ad has a much more pronounced effect. When combined

with the main effect, it produces the relationship represented by the long dashed line.

This is caused by a value of 0.045 for the slope of the interaction G4S which is identified

as having a posterior probability of being non-zero of 0.946.

For the associated scores, ad size has an marginal main effect, although some effect

may occur on products that are high involvement and transformational as there is a

posterior probability of 0.411 that SG4 is non-zero and positive; something that is

reflected in the interaction plots in figure 3(b.2). Figure 3(c.2) shows that for read-

most scores there is a very flat main effect of ad size. However, in a similar manner

to associated scores, the figure indicates transformational products react positively to

increases in ad size. This is caused by positive slopes for SG2 and SG4 which are

non-zero with a probability of 0.649 and 0.765, respectively.

The relationships between the three scores and brand prominence are shown in

figures 3(a.3),(b.3) and (c.3). For both the noted and associated regressions there

are strong nonlinear main effects, while no significant interaction effects with any of

the four product categories. In particular, for associated scores it seems that brand

names have little effect unless they are highly prominent. For read-most scores, brand

prominence is negatively related for high involvement and informational products, with

the slope of BG3 being -0.039 with a posterior probability of being non-zero of 0.863.

In may be that a prominent brand may deter consumers from reading the ad copy in

detail.

Table 4 provides an interpretation of the empirical results of our analysis. The

table lists all the slope coefficients for terms in the three regressions (excluding those
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involving P,I,B,S and M) which have a posterior probability greater than 0.35 of

being non-zero. This indicates that a number of ad characteristic variables significantly

impact on ad recognition scores for this magazine, irrespective of product type. For

example, variables such as right hand position of the ad and headline color are likely

to be related to noted scores for all products.

4.5 Product specific effects

It is apparent from tables 4 that product specific effects are very important for the

three models. These effects show themselves in two ways. First, there are products

types which have likely main effects. For example, T12 (motor vehicles) has a negative

coefficient in all three regressions and a posterior probability (to three decimal places)

of being non-zero of 1.000,0.530 and 1.000 for noted, associated and read-most scores.

These, and the other product main effects found in table 4, appear consistent with

the positioning of the magazine as primarily for women with a focus on domestic and

entertainment issues.

Second, the product specific effects manifest themselves as interactions between

ad characteristics and the product categories G1 G2 G3 and G4 defined in section 2.4.

This has already been seen, to some extent, with their interaction effects with B (brand

prominence) and S (size of ad). However, there are many additional interaction terms

found in table 4. For example, for G2 (low involvement and transformational) products

more than fifty words in the copy (X24) appears to provide a decline in read-most scores,

with a posterior probability of 0.996 of having a non-zero slope coefficient. In all three

models the presence of a recipe has a positive interaction with low involvement and

transformational products with a posterior probability of being non-zero of 1.000 (to

three decimal places). Table 4 provides a large number of other such interaction effects

between product categories and both ad attribute and ad message variables.

26



(

i

In summary, our model estimates seem to have face validity and Bayesian semipara-

metric regression seems to work well in terms of identifying the important variables

modeled linearly, as well as obtaining smooth and reasonable nonparametric function

estimates.

4.6 Model validation

To demonstrate the effectiveness of our estimation methodology we compare its predic-

tive performance to some other alternative estimation procedures. The prediction is for

the 62 ads in the hold-out sample of the subsequent March 1993 issue of the magazine

and is undertaken for all three readership scores. Throughout, we use the transformed

dependent variables (as selected by our procedure) to enable a fair comparison of the

approaches.

The first alternative is a ordinary least squares regression based on the 260 linearly

independent regressors in our sample, which is included simply as a benchmark. The

second is a forward selection stepwise regression procedure coupled with Akaike's infor-

mation criteria, or AIC, (Akaike 1978). Here, the model uncovered during the forward

selection procedure with the maximum AIC value was selected as our regression model

and least squares used to estimate the regression coefficients. The last alternative uses

factor analysis on the 260 linearly independent regressors in our sample to reduce the

dimensionality of the problem and then use least squares to estimate the coefficients

for these factors. We used maximum likelihood factor analysis (Mardia, Kent and

Bibby 1979) with 30, 50 and 100 factors, which explained 54.62%, 66.71% and 81.85%,

respectively, of the variation in the design.

Using these procedures we forecast the (transformed) readership scores and calcu-

lated the sample correlation between these and the (transformed) actual readership

27



scores. These are found in table 5 and, by this measure, the Bayesian approach re-

sults in the best forecast. While these results demonstrate the advantage of using the

Bayesian approach, this is, of course, specific to this single dataset. For comprehensive

simulations on the reliability of such a semiparametric regression approach we refer

the reader to Smith and Kohn (1996; 1997).

Table 5 About Here.-

5 Summary and conclusion.

This paper provides a new modeling approach to regression which allows the data to

determine the functional form of the independent variables and to identify the signifi-

cant independent variables as well as an appropriate transformation of the dependent

variable. It can handle regressors that lead to a regression matrix that is collinear

(such as in the Starch print advertising dataset examined here) because it explicitly

accounts for the possibility that many of the regressors are redundant. It reduces the

subjective requirements of traditional techniques in pre-specifying functional forms and

transformations of the dependent variable. While an uninformative prior is used in the

analysis, if a researcher has strong prior information on which regressors are important,

or which data transformation is most likely, then it can be easily incorporated into the

• analysis.

Our results indicate that the Bayesian approach is able to identify the main de-

terminants of readership scores suggested by our dataset for our Australian women's

monthly magazine. It also provides an insight into the form of the relationship between

variables such as position of the ad in an issue, size of the ad and brand prominence and

the dependent variables. Its findings are consistent with prior research and compare
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favorably to standard regression approaches in terms of predictive ability.

With the growth of complex databases in marketing, we feel that our technique

provides the researcher with a powerful modeling tool which is practical, easy to im-

plement, and can be applied to complex datasets containing a large number of variables,

such as Starch print advertising data.

Appendix: Description of the data

There were 1005 observations. The first 943, March'92—Feb'93, formed the calibration
sample. The remaining advertisements, numbers 944-1005 from March'93, were used
used for model validation. The following is a list of the independent variables.

Advertisement attribute variables.

X1 color (0-2), 0=monotone, 1=2-color, 2=4-color

X2 left-hand position, (0,1)

X3 right-hand position, (0,1)

X4 size of Issue, (0-2) 0=296 pages or less, 1=300 to 320 pages, 2=more than 320 pages

X6 square finish in main illustration (0,1)

X6 silhouette or other shape in main illustration (0,1)

X7 photo used (0,1)

X8 size of photo (0,1), 0=<1/2 of space

X9 ad content relates to 'end result of using product' (0,1)

X10 ad content relates to 'finished result of using or eating the product' (0,1)

X11 ad content relates to 'actual product or package' (0,1)

X12 number of illustrations (0,1), 0=multi-illustrations, 1=single main illustration

X13 bleed (unbordered) (0,1)

X14 headline length (0,1), 0=<8 words

X16 large headline (0,1), 1=>1.3cm high

X16 small headline (0,1), 1=<1.3cm high

X17 headline above main illustration (0,1)
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X18 headline beside main illustration (0,1)

X19 headline below main illustration? (0,1)

X20 headline color (0-2), 0=no color, 1=partial color, 2=all color

X21 headline type (0-2), 0=all reverse, 1=partial reverse, 2=all straight

X22 headline case (0-2), 0=all lower, 1=partial upper, 2=all upper

X23 copy area (0,1), 1=>1/3 area

X24, number of words in copy (0,1), 0=<50 words

X25 opposite page both not part of the advert and color (0,1)

X26 opposite page is mainly other advert (0,1)

X27 opposite page is mainly related editorial (0,1)

X28 opposite page is mainly unrelated editorial (0,1)

X29 opposite page is mainly part of the same multi-page ad (0,1)

X30 advertorial (0,1)

X31 coupon (0,1)

P position in issue, continuous on [0,1], 0=front cover, 1=back cover

I insert, (0,1)

S size of ad (0-3), 0=Less that full page, 1=full page, 2=double page, 3=multiple pages

B brand prominence (0-4), 0=not present, 4=impossible to miss

R recipe (0,1)

M issue number (1-13), 1=March 1992, 13=March 1993

Product Type Independent variables.

All the variables take the values 0 and 1 only, where 1=true and 0=false. The category to which each

product belongs is provided in brackets. The product categories are G1 (low involvement & infor-

mational), G2 (low involvement & transformational), G3 (high involvement SE informational) and G4
(high involvement & transformational).
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Ti. (G4) women's apparel/accessories

T4 (G1) toiletries and health

T7 (GO household goods

T10 (G4) mens apparel/accessories

113(G2) books and magazines

T16 (G1) hair

T19 (G3) government

T22 (G1) pets

T2 (G2) food

T5 (G3) household appliances

T8 (G4 ) building and decorating

T11(G4) children's wear

T14 (G2) drink

T17 (G4 ) jewellery

T20 (G2) craft

T23 (G3) finance

T3(G3) pharmaceutical

T6 (G4) household furnishings

T9 (G4 ) travel and holidays

T12 (G4) motor vehicles

T15 (G2) cosmetics/beauty

T18(G2) records

T21(G1) baby

Ad message dummy variables

1. Predominant Feature.

Each ad can have only one predominant feature, but this may have several of the following charac-

teristics: XP1 person(s) 18+; 41 baby(ies); 41 child(ren); 41 animal(s); 41 women's fashions;

41 furnishings; X.E711 a premium offer; 411 the product(s).

2. Headline Appeal.

Again, each ad can have only one headline, but may have any of the following appeals: XI21 a promise;

421 new feature of the product; 421 a question; 421 an exclamation; 421 news item; 421 prize(s)

in a contest; 421 price; 421 new product.

3. Predominant appeal.

This can have any of the following characteristics: X131 social status; 431 increased pleasure; 41

personal security; X131 health or hygiene; 431 knowledge or quality; 431 increased income/capital

gain/savings.

4.Predominant color of advertisement.

The registered colors are: XI41 red; 441 blue; 441 green; X141 grey, black or monotone; 441 pastel

[4]shades, no predominant color; X6 yellow, orange or brown.
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Figure 1: The scatter plot is of the noted scores y(1) against position in issue P. The bold

line is the Bayesian regression fit to the data, the dotted is from a local regression with a low

smoothing parameter value and the dashed is from a local regression with a higher value for

the smoothing parameter. No smoothing parameter value would enable a local regression to

simultaneously capture the curvature of the relationship, while remain smooth.
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(a) Quantile Plot for Noted Score (b) Quantile Plot for Associated Score

-2 0 2

Quantiles of Standard Normal

(c) Quantile Plot for Read Most Score

Quantiles of Standard Normal

-2 0 2

Quantiles of Standard Normal

Figure 2: (a)-(c) Normal probability plots based on the residuals obtained from each of the

three regressions. If the quantiles of a normal and the observed residuals are linearly related

with a slope of 45 degrees, then this indicates that the residuals follow a normal distribution.
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Figure 3: Estimates of the functions f,g,h and 1 for each of the three regressions. The

rows correspond to the four functions, while the three columns correspond to the three

regressions arising from the dependent variables y(1), y(2) and y(3), respectively. The figures

in each column are plotted with the same range on the vertical axis, so that an idea of

the comparative strength of the effects within each each regression can be obtained. This

range is set equal to the distance between the 85/100 quantile and 15/100 quantile of the

transformed dependent variable of each regression (that is, 259 (y(1)), T6(y(2)) and T9(y(3))).

The main effects are in bold, while interactions are also plotted for the effects of B and S.



For Noted Score For Associated Score For Read-Most Score

A t), (y) aA bA a), b),

1 4-'(y°')

2 ,T.--'(y°25)

3 41,--1(yo.5)

4 4'(y°75)

5 4-l(y)

6 4)-'(y'5)

7 4-.1(y2)

8 log(1 ± Y)

9 sin-1(y0-5)

-0.516 0.678

-0.063 0.564

0.240 0.478

0.398 0.428

0.500 0.394

0.631 0.347

0.713 0.315

0.819 0.625

-0.278 0.991

-0.124 0.459

0.165 0.396

0.368 0.346

0.478 0.316

0.552 0.295

0.649 0.266

0.712 0.246

0.892 0.873

-0.117 0.820

a), bA

-0.537 0.692

-0.072 0.573

0.237 0.483

0.397 0.431

0.500 0.395

0.630 0.347

0.712 0.315

0.798 0.584

-0.281 0.994

Table 1: The first column gives the transformation index, while the second the base trans-

formations. The remaining columns gives the constants required to make the normalized

transformation scale and location invariant. These constants are provided for each of the

three dependent variables considered in our dataset.
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Uninformative Prior Informative Prior

Base Transformation For y(1) For y(2) For y(3) For y(1) For y(2) For y(3)
,1,-1 (y0.1)

(13. 1 (y0.25)

1 (y0.5)

(y..1 (y0.75)

(y)

-1(y1.5)

(y2)

log(y + 1)

sin-1(y")

0.004 0.009 0.000

0.027 0.043 0.000

0.084 0.116 0.000

0.129 0.176 0.002

0.153 0.213 0.006

0.158 0.231 0.034

0.139 0.211 0.102

0.000 0.000 0.000

0.305 0.001 0.856

0.004

0.030

0.095

0.148

0.178

0.186

0.168

0.000

0.190

0.009 0.000

0.043 0.000

0.115 0.000

0.176 0.003

0.213 0.011

0.232 0.059

0.212 0.176

0.000 0.000

0.000 0.751

Table 2: Posterior posterior estimates for each of the nine candidate transformations. The

first column gives the respective base transformation (though we consider the normalized

version of this, as discussed in section 2.7). The first three columns correspond to the

posterior probabilities using the default uninformative prior given at item (iv) in section 3.2,

while the last three columns are for the informative prior discussed in section 4.2 that places

more prior weight on the seven probit transformations. The posterior probabilities of the

most likely transformations for each score and prior are highlighted in bold and do not change

with respect to either prior.



Term Probability Coefficient

For Noted

0.992

0.992

0.402

0.442

For Associated

1.000

1.000

0.743

0.739

For Read-Most

1.000

0.522

1.000

0.555

0.094

0.548

Table 3: The posterior mean estimates the regression coefficients, E(/3i1A = Am, data),

are in the 'Coefficient column. The 'Probability' column contains the posterior prob-

abilities of these coefficients being non-zero, Pr(7i = 11A = Am, data). The results are

for the terms involving the insert dummy variable, including the non-insert intercept

(1 — I). Only those coefficients that have a posterior probability greater than 0.35 of

being non-zero are reported.



For Noted Score Regression

Description Term Prob. Coeft. Description Term Prob. Coeft.

RH position

hdln color

(cntnt is act)G2

(hdln below ill)G3

(copy area) G3

pred feat person(s)

pred feat product

pred apl security

furnishings

travel

cosmetics

X3 0.777 0.033

X20 0.838 -0.015

X11G2 0.398 0.012

X19 G3 0.512 -0.036

X20 G3 0.422 0.029
[11

0.433 -0.01
[1]X8 0.521 0.014

y[3]4.3 0.785 -0.063

T6 0.431 -0.021

T9 0.909 -0.096

T15 0.813 0.045

cntnt is fin Xio

copy area X23

(recipe) G2 RG2

(hdln color) G3 X20 G3

(num words) G3 X24 G3

pred feat animal(s) X4[11

hdln apl prize(s) X
[2]
6

pred apl knowledge X8[3]

building T8

motor vehicles T12

jewellery T17

For Associated Score Regression

Description Term Prob. Coeft. Description Term

hdln color

coupon

(hdln case)G2

(opp pg same muli)G2

(opp pg unrel ed)G3

(opp pg unrel ed)G4

pred col blue

pred apl income

motor vehicles

pets

X1

X31

X22 G2

X29 G2

X28 G3

X28 G4
y [4]

.4 162

X6[31

T12

T22

0.992 -0.018

0.506 -0.012

0.922 -0.015

0.816 0.04

0.818 0.049

0.456 -0.017

0.522 -0.01

0.57 0.014

0.53 -0.026

0.777 0.047

advertorial

(cntnt is fin)Gi

(recipe) G2

(small hdln) G3

(advertorial) G3

pred feat product

pred col yeliorgibrwn

building

cosmetics

X30

XioGi

RG2

X16G3

X30G3
[11

,[4]

T8

T15

For Read-Most Score Regression

Description Term Prob. Coeft. Description Term

hdln color

(num words)Gi

(hdln beside ill)G2

(num words) G2

(coupon) G2

(cntnt is end)G3

pred feat person(s)

pred apl exclamation

motor vehicles

government

X20

X24 G1

X18 G2

X24 G2

X31 G2

X9 G3
[

.et
1]

[2]4

T12

T19

0.724 0.02

0.428 -0.011

1.000 0.107

0.369 -0.02

0.507 -0.042

0.881 0.05

0.465 -0.023

0.571 -0.013

0.998 -0.211

1.000 -0.157

0.656 0.071

Prob. Coeft.

0.472 -0.023

0.584 0.021

1.000 0.075

0.692 -0.039

0.815 0.104

0.927 0.024

0.582 0.009

0.459 -0.041

0.565 0.019

Prob. Coeft.

0.65 0.011 hdln type X21 0.467 -0.006

0.972 -0.072 (square ill) G2 X5 G2 0.65 0.028

0.508 -0.019 (recipe) G2 RG2 1.000 0.104

0.996 -0.095 (advertorial) G2 X30 G2 0.531 0.053

0.521 0.025 (photo) G3 X7 G3 0.467 0.038

0.517 0.032 (hdln lnth) G4 X14G4 0.956 -0.066

0.993 -0.035 pred col blue 44]
0.381 -0.009

0.769 -0.022 pred apl news X 21 0.684 -0.016

1.000 -0.198 jewellery T17 0.633 0.071

0.923 0.184

Table 4: This table provides the posterior means for the slope coefficients, E(/3(A =

Am, data), in the ̀ Coeft.' column. Their respective posterior probability of being non-

zero, Prey = 1(A = Am, data), is provided in the 'Prob.' column. These are provided

for all three regressions, but only for coefficients that had a posterior probability greater

than 0.35 of being non-zero. Terms that involve the variables P, I, S, B and M are not

included because they are dealt with elsewhere.
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Regression

Procedure

Bayesian OLS Step Sz AIC 30-Factor 50-Factor 100-Factor

Noted

Associated

Read-Most

0.791 0.706 0.743 0.727 0.695 0.620

0.511 0.506 0.488 0.464 0.331 0.347

0.504 0.368 0.357 0.273 0.220 0.245

Table 5: This table contains the sample correlations between the actual readership

scores in the hold-out sample (March 1993 issue) and predicted scores from the re-

gression model as estimated using a variety of approaches. The methods are arrayed

across the top of the table and are described in section 4.6, while the the results are

given for all three readership scores.
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