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ABSTRACT

In this paper we propose a test statistic to compare two or more stationary time series

that are not necessarily independent. The test is based on the difference between

estimated parameters of the autoregressive models that are fitted to the series.

1. INTRODUCTION

The comparison of time series has applications in various fields including

economics, geology, engineering and climatology. Hypothesis tests designed to

compare two stationary independent time series involving the use of fitted parameter

estimates were considered by De Souza and Thomson (1982) and Maharaj (1996).

Other tests in the literature for the comparison of two independent stationary series

involve the use of the estimated spectra of the series. Some relevant papers are by

Jenkins (1961), Swanepoel and Van Wyk (1986), Coates and Diggle (1986) and

Diggle and Fisher (1991). In practice the application of these tests to real time series

is limited since comparisons are often made between logically connected series and

in some instances, one may wish to make comparisons between more than two series.
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We will consider the comparison of two or more stationary time series that are

not necessarily independent. We will assume that if the series are not stationary, then

the same order of differencing will be needed to make each one stationary. Truncated

AR(00) models of order k, are fitted to each series, and the test statistic is based on the

difference between the AR(k) estimates. These estimates are generalised least squares

estimates. It will be assumed that the disturbances of the models are correlated for

series that are not independent and uncorrelated for series that are independent. In

Section 2 we present the test statistic and in Section 3 a simulation study is carried out

to investigate the distributional properties, size and power of this test statistic, which

has an asymptotic chi-square distribution. In Section 4 we make power comparisons

with some of the existing tests for independent series in the literature and in Section 5

we apply the test based on this test statistic to a set of economic time series and to a

set of time series in climatology.

2. HYPOTHESIS TESTING PROCEDURE

Let Z, be a zero mean univariate stochastic process such that Z, E L where L, is the

class of stationary and invertible ARMA models. Using the standard notation of Box

and Jenkins (1976), such a model is defined as

4(B)Z, = 0(B)at

where a, is a univariate white noise process with mean 0 and variance, 6a2 and where

(I)(B) = 1 - (1)1B - 4)2B2 -. . . - (PP

O(B) = 1 - 01B - 02B2 - . . . - OqBq

with the usual stationarity and invertibility restrictions on the roots of 1:1)(B) and O(B).
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Zt = En.Z, .+ at

where
II(B) =4)(B) 0-1(B) = 1 - 703 - 7r2B2 - . . • •

Let {xti }, t = 1,2,. . . ,T, i = 1, 2,. . . , q, be q stationary correlated series. Then using

a definite criterion such as Schwartz's BIC for modelling AR structures, truncated

AR(00) models of order ki, can be fitted to each corresponding {x,i}, i=1, 2,. . . , q.

Define the vector of the AR(k) parameters of the i th generating processes )c as

Ilii 1.--- [7c11 n2i • • • nkiil, i =1, 2, . . . , q.

and the corresponding AR(k) parameter estimates of the series {x,i} as

Clji , j = 1, 2,...,Ici, i=1,2,...,q.

Let k = max(k1,k2, . . . , kg). In constructing the test statistic the maximum order k is

assumed to be fitted to all series. Then define

flIcii = [fin, fr2i1 • • • , fiki], i = 1, 2, ...

The hypotheses to be tested are:

, q.

Ho: There is no significant difference between the generating processes of q

stationary series (i.e. nki = 11k2 = • • • = rikq = nk)-

HI: There is a significant difference between the generating processes of at least

two stationary series.

The model to be fitted is of the form of 'the seemingly unrelated regressions

model' as proposed by Zellner (1962). The T-k observations of the models fitted to

the q series {xt}, i = 1, 2,. . . , q, can be expressed collectively as

xi = Wi Ilki +ai (2.1)
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where

=

Xki

• • XT-1 i XTiI

Xk-li

XT-21 XT-31 XT-k-li

XT-l1 XT-2i • XT-ki

= 11 7r2i nki

= [ak+i

and

aT_lI aT i

E[ail =0 Efaian =(3.1 -T-k

and where IT.k is a (T-k) x (T-k) identity matrix. We will assume that the disturbances

of the q models are correlated at the same points in time but uncorrelated across

observations. That is

E(aiar;) = i,j=1,2,.. • ,(1

Then assuming that a total of (T-k)q observations are used in estimating the

parameters of the q equations in (2.1), the combined model may be expressed as

Z = WII + a (2.2)

where
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...... ..II,

Xi

X2

z=

11=

and

where

xq _

_
nu
nk2

•

_

,_nkq j

I

-
Wi 0 . 0

0 W2 . 0

w=

-

a2

a=

0 0 Wq

ao
L.. - . ...b

E(a) = 0

E(aa') = V = E 0 IT4

a1 a c(612 /
2

'512 cY2 (-72q

2a lq 52q

_

_

The generalised least squares estimator is

fl = [W'V-1W1-1W'V-1Z . (2.3)

Assuming that disturbances are normally distributed, then by results in Anderson

(1971) amongst other authors, fl has been shown to be asymptotically normally

distributed with mean II and covariance matrix
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lim Var(JT11) = plim
T-40,

(\,\Pv-iw)
T

Now 110 : 1-11„,1 = 1110,2 = ... = Ilk„q

may be expressed as

H0: RII = 0

where R is a k(q-1) x kq matrix where each row consists of a one, (kg -2) zeros and a

minus one, namely

R=

1 0 —1 0 . 0

0 1 0 — 1 0 . 0

0 0 . . 1 0 0 —1

Hence Idi is asymptotically normally distributed with mean RU and covariance

matrix

lim Var(Vf Rfl) = plim
T-+co

Let

--
R(W'V-1W)

1
 R'

T

F = (R(W'V-1W) 
R') 

(Rn—Rn). (2.4)

Then by substituting (2.3) into (2.4), F becomes

F = [R(W'VY-1WRIV210APV-1W) 1W'V' WII + a) — n).

Under Ho
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F= {R(W'V-V) RI] R(W'V-1W) 1W'V-la .

Under the assumption that

a — N(0, V)

E(F) = 0 and E(FF') =

Therefore

A

F — N(O, Ik) .

r 
\ 

F'F = (lel) [R(W1V-1W)-1R] RII — X2 (k(CI — 1)) .

Since E is unknown, a feasible generalised least squares estimator of II will have to be

used. By Zellner (1962), least squares residuals may be used to estimate consistently

a'a. a"-a^ -
the elements of I with szy" 2i =  1.i 

' 
and 6.4 

i 
=  1

T—k 
' .

T — k

Hence the feasible generalised least squares estimator is

with

where

ft = [Wrc1-1W1-1WrC7-1Z (2.5)

W 'V-1W

—

lim Var(jf1) — phm  
T.-÷co • [ T )-1

- 7'‘ =20IT_k and 2=

_

' 1 12

A2
-612 0'2

6 lq & 2q_

6 lq

a 2q

_
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Since V is nonsingular and plim.c7 = V, it is easily seen that

then under Ho

, --i„
D = F'F = (lel)

, 
[R(W 'Cr' Wr R'] (Rfl) "--#A X2 0(0 — 1)). (2.6)

3 SIMULATION STUDY

3.1 Assessment of the Test for q=2

To investigate the finite sample behaviour of the test statistic D , series of

lengths 50 and 200 are simulated from a number of ARMA processes. For q=2

distributional properties of the test based on D are checked by obtaining estimates of

the mean, variance, skewness of the test statistic and size of the test procedure This is

done by applying the test to pairs of series simulated from AR(1) processes for 4) = 0,

0.1, 0.5, 0.9, MA(1) processes for 0 = 0.1, 0.5, 0.9, AR(2) processes for 4), = 0.6, (1)2 =

0.2, MA(2) processes for 01 = 0.8, 02 = -0.6 and ARMA(1,1) processes for 4) = 0.8, 0

= 0.2. It is assumed that the correlation between disturbances of each pair of processes

from which the series were generated are in turn 0, 0.5 and 0.9. Estimates of size are

obtained for the 5% and 1% significance levels. Estimates of power for the 5% and

1% significance levels are obtained by applying the test to series generated from the

following processes: AR(1) 4) = 0 versus AR(1), 4) > 0, AR(1) (1) = 0 versus AR(2) 4),

= 0 , 4)2> 0 and AR(1) 4) = 0.5 versus AR(1) 4) # 0.5. This is again done by assuming

that the correlation between disturbances of each pair of processes from which the

series were generated are in turn 0, 0.5 and 0.9.

The order (up to 10) of the truncated AR model to be fitted to each series is

determined by Schwartz's BIC. However in estimating the model in (2.1), the
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maximum order k is fitted to both the series in each pair. The test statistic D is then

obtained. This is repeated 2000 times. As well as obtaining size and power estimates

for the various degrees of freedom, overall estimates of power and size are also

obtained.

For series of length 50, size is considerably overestimated and estimates of the

mean, variance and skewness of the test statistic do not correspond closely to the

respective theoretical values. The overall size estimates are shown in Table A3.1.

Since the implication here is that the test does not perform well for series of this

length, no further analysis is carried out on series of length 50.

For T=200, the results for which there are at least 100 test statistics

corresponding to a particular degree of freedom are shown in Tables A3.2 to A3.4.

We observe that the size estimates for the series simulated from the AR models are

fairly close to the predetermined significance levels when the correct order k is fitted

but size is often overestimated for other values of k. For the MA and ARMA. models,

for some values of k, the size estimates are fairly close to the predetermined

significance levels but in other cases size is overestimated. Hence this often causes the

overall estimates of size to be slightly overestimated. These overall size estimates are

shown in Table A3.5. It is clear from the size estimates that size improves (i.e. gets

closer to the nominal 5% and 1% levels) as the correlation between disturbances of

processes from which the series are generated gets larger. It can be seen from Tables

A3.2 to A3.4 that for those values of k for which reasonably good size estimates are

obtained, the estimates of the means, variances and skewness of the test statistic are

very often fairly close to the theoretical means, variances and skewness respectively.
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Power estimates based on at least 100 test statistics corresponding to particular

degrees of freedom and overall power estimates based on all 2000 test statistics are

given in Tables A3.6.1 to A3.8.2. From these results it appears that the test has

reasonably good power for the series length T = 200. It can also been seen that the

power of the test improves as the correlation between disturbances of processes from

which the series are generated gets larger.

3.2 Assessment of the Test for q=3

The same simulation scenario which is considered in Section 3.1 for obtaining

estimates of the mean, variance, skewness of the test statistic and size of the test

procedure is again considered but this time for q=3 (i.e. testing for significant

differences between the generating processes of 3 series) and only for T=200.

Estimates of mean, variance and skewness of the test statistic and the size of the test

are shown in Tables A3.9.1 to A3.9.3 and estimates of overall size are shown in Table

A3.10. Just as for the case q=2 in Section 3.1, size estimates for the series simulated

from the AR models are fairly close to the predetermined significance levels when

the correct order is fitted but size is often overestimated for other values of k. For the

MA and ARMA models, for some values of k, the size estimates are fairly close to the

predetermined significance levels but in other cases size is overestimated. Hence

again, this often causes the overall estimates of size to be slightly overestimated.

Observation of the overall size estimates in Table A3.10 reveal that size generally

improves (i.e. gets closer to the nominal 5% and 1% levels) as the correlation between

disturbances of processes from which the series are generated gets larger. However it

can be seen that the overall size estimates are slightly larger than for the case q =2. In

those cases for which reasonably good size estimates are obtained, the estimates of the
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means, variances and skewness of the test statistic are very often fairly close to the

theoretical means, variances and measures of skewness respectively.

4 POWER COMPARISONS

In this section we compare the power of our test for the case of two

independent series with tests proposed by Jenkins (1961), Diggle and Fisher (1991)

and Swanpoel and Van Wyk (1986). There is no evidence in the literature that Jenkins

test was previously simulated whereas Diggle and Fisher and Swanepoel and Van

Wyk simulated their tests and obtained estimates of size and power. All of these tests

compare two independent stationary time series by comparing their estimated spectra.

Jenkins test requires one to obtain windowed periodogram ordinates and then

use the equivalent number of independent windowed periodogram ordinates to

construct a test statistic which has an approximate standard normal distribution. In

obtaining estimates of size and power for T = 200 we use a rectangular window with

every tenth ordinate assumed to be independent. The choice of the number of

equivalent number of independent ordinates follows from guides in Jenkins (1961)

and Chatfield (1975). The results are shown in Table A4.1. Diggle and Fisher's test

which we replicate for T = 200 uses normalised cumulative periodograms ordinates

and a randomozation test based on the Kolgomorov-Smimov type test statistic. The

results are shown in Table A4.2. Swanpoel and Van Wyk use bootstrap methods and

three test statistics, namely a Chi-square type (CS), Kolmogorov -Smimov type (KS)

and a Kullback-Leiber type (KL) test statistic. We replicate these tests for T = 200 and

the results are shown in Table A4.3 from where it is clear that there is very little

power difference between the three tests
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The power curves for the various cases mentioned in Section 3, for our test

(AR), Jenkins test (J) , Diggle and Fisher's test (DF) and the Kullback-Leiber type test

of Swanapoel and Van Wyk (SW), at the 5% of significance are shown in Figures 4.1

-4.3.

Figure 4.1 Power Curves for White noise versus AR(1) sts > 0
(5% level of Significance)

Figure 4.2 Power Curves for White noise versus AR(2) (1), =0, 4)2>0
(5% level of Significance)
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Figure 4.3 Power Curves for White noise versus AR(1) 4)=0.5, .1)#0.5
(5% level of Significance)

In all the above cases, the overall size estimates of our are slightly

overestimated. As explained in Section 3, this is due to the overestimation of size

when orders of the autoregressive model other than the correct orders were fitted. It

can be seen from Tables A3.6.1, A3.6.2, A3.7.1, A3.7.2, A3.8.1 and A3.8.2 that even

though the specific (i.e. when the correct AR order is fitted) and overall size estimates

differ slightly, there is very little difference in the specific and overall power

estimates. So even though size estimates of the other tests under consideration are

closer to the nominal significance levels than the overall size estimates of the our test,

it can still be concluded from an examination of the power curves above that our test

has slightly better power than Swanepoel and Van Wyk's test in all cases. With

exception of the case in Figure 4.1, it has much better power than of Diggle and

Fisher's test and in all cases it has considerably better power than Jenkin's test . In

fact the power of Diggle and Fisher's test with exception of the case in Figure 4.1

tends to decrease instead of increasing at the one end and Jenkin's test has almost no
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power. Simulations of Jenkins test using other windows, namely the Parzen and

Bartlett windows, reveal similar estimates for power to those shown in Table 4.1.

Since is all of the above cases the series were simulated from autoregressive

models and since our test involves fitting autoregressive models, it would be expected

that the this test would generally perform better than the other tests. To remove this

apparent unfair advantage our test has over the others, it was decided at this point to

make the power comparisons for series simulated from moving average processes.

Comparisons are made for the following situations: MA(1) 0 = 0 versus MA(1) 0> 0

and MA(1) 0 = 0.5 versus MA(1) 0 # 0.5. The results of these simulations for T = 200

for the tests six tests are shown in Tables A4.4 to A4.6. The power curves at the 5% of

significance are shown in Figures 4.4 to 4.5.

Figure 4.4 Power Curve for White Noise versus MA(1) 0=0 versus 0>0
(5% level of significance)
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Figure 4.5 Power Curve for MA(1) 0=0.5 versus 0#0.5
(5% level of significance)
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It can be seen from these power curves, that even though overall size is

slightly overestimated, our test still performs better that the other tests. The test of

Swanepoel and Van Wyk which performed nearly as well as our test in some cases

earlier on, now performs quite poorly.

5 APPLICATIONS

5.1 Loans Data

Total fixed loan commitments in thousands of dollars of all banks, finance

companies and credit co-operative in Australia for the period January 1985 to

November 1995 are examined. Of interest is whether there are significant differences

in the lending patterns between the institutions. The natural log transformation of

these series are shown in Figure 5.1. It can be seen that while lending is on different

levels for the three institutions, the lending patterns over the given time period are

similar for the banks and finance companies, but differ for the banks and credit co-

operatives and for the finance companies and credit co-operatives. Because the series
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are nonstationary, the series were transformed and differenced in an attempt to make

them stationary. If was assumed that the first difference of the natural log

transformation of each series was stationary. All further analysis was carried out on

these series. Each of these series has 130 observations.

The test derived in Section 2 was first applied to all three series. The results

are shown in Table 5.1 from where it can be seen that there is some residual

correlation between the two series in each pair. Tests for correlation reveal that there

is a significant correlation between the disturbances of the underlying the generating

processes of the two series in each pair. This is to be expected since the same

economic factors are expected to affect lending commitments from each type of

institutions. From Table 5.1 it can be seen that there is a significant difference

between the generating processes of the series since the p-value of the test is 0.0005.

Multiple comparisons are then considered by performing the test for q = 2 for

every pair of series. The results of these multiple comparisons are shown in Table 5.2.

from which, we make the following observations: The residual correlation between

each pair of series is very similar to those obtained when the test was applied

simultaneously to all three series. There is not enough evidence to conclude that the

level of lending patterns between the banks and finance companies are significantly

different but there is strong evidence to conclude that the level of lending patterns

between the banks and credit cooperatives and between finance companies and credit

cooperatives are significantly different. Since the levels of the undifferenced bank and

finance companies series are clearly different, it is clear from the result of no

significant difference between the underlying generating processes of the

corresponding differenced series, that the test can distinguish between the underlying
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stochastic nature of the two series but not the underlying deterministic nature of the

two series.

The results of the multiple comparisons tests correspond with casual

observations one could make from the examination of the series in Figure 5.1.

Table 5.1 Results of Loans Series Application for q=3
Banks Financial

Companies
Credit
Co-operatives

AR(k) fit AR(9) AR(5)
,

AR(2)

Residual
Correlation

Banks

Financial
Companies

0.4480 0.5568

0.5728

p-value 0.0005

Table 5.2 Results of Loans Series Application for q=2
Pair AR(k) fit Residual

Correlation
p-value

Banks vs
Financial Co.

Bank vs
Credit Corp.

Credit Corp. vs
Financial Co.

AR(9), AR(5) 0.4256

AR(9), AR(2) 0.5503

AR(2), AR(5) 0.5931

0.4107

0.0034

0.0002

Figure 5.1 Total Loan Commitments of the Banks, Finance Companies and
Credit Co-operatives from January 1985 to November 1995
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5.2 Tree Ring Data

In order to reconstruct historical climates based on information from trees, one type of

measurement that climatologists use is distances between the consecutive rings of

trees. Figures 5.2 to 5.4 show tree ring data series for three separate sites about 10 km.

apart at about the same altitude on Mount Egmont on the North Island of New

Zealand. Each series consists of 352 observations which are standardised distances

between rings, averaged over a number of trees in a particular site. Standardisation

allows samples with large differences in growth rates to be combined. It is also used

to remove any undesired growth trends present. The residual correlations between the

series of sites 1 and 2 and between the series of sites 1 and 3 are very low and tests

for correlation reveal that there is no significant correlation between the disturbances

of the generating processes of the two series in each pair. The residual correlation

between the series of sites 2 and 3 is higher than the other two residual correlations

and a test for correlation reveals that there is significant correlation between the

disturbances of the underlying generating processes of these two series. Of interest is

whether there are any significant differences between the growth pattern at the three

sites given that climatic conditions would be assumed to be the same at the three sites.

The test is first applied to all three series. The results are shown in Table 5.3.

The test gives a p-value of 0.4517 thus leading to the conclusion that there are no

significant differences between the underlying processes of the three series. Even

though there is no need to perform multiple comparisons tests, we nevertheless

perform the test for two series at a time. These results are shown in Table 5.4. It can

be seen that the residual correlations are similar to those obtained when the test is

applied simultaneously to the three series. Furthermore the results of the test for two
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series at a time reveal no significant differences between the generating processes of

the series although the results for the comparison of sites 2 and 3 are fairly close to

being significant at the 5% level of significance.

Figure 5.2 Standardised Distance between Tree Rings at Site 1 over 352 years

Figure 5.3 Standardised Distance between Tree Rings at Site 2 over 352 years
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Figure 5.4 Standardised Distance between Tree Rings at Site 3 over 352 years

Table 5.3 Results of Tree Ring Series Application for q=3
Site 1 Site 2 Site 3

AR(k) fit AR(3) AR(8) AR(3)

Residual
Correlation

Site 1

Site 2

0.0500 -0.0323

-0.1742

p-value 0.4517

Table 5.4 Results of Loans Series Application for q=2
Pair AR(k) fit Residual

Correlation
p-value

Site 1 vs Site 2. AR(3), AR(8) 0.0484 0.8814

Site 1 vs Site 3 AR(3), AR(3) -0.0259 0.8783

Site 2 vs Site 3 AR(8), AR(3) -0.1743 0.0698

6 CONCLUDING REMARKS

From the simulation study is clear that for series of reasonable length,

distributional approximations of our proposed test statistic to the chi-square

distribution are reasonably adequate for both q=2 and 3. The size of the test
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reasonably approximates the nominal size. The test has reasonably good power and

can be seen from the power comparisons in Section 4 it has better power for the case

of two independent stationary series than the other tests under consideration. From the

results in Section 5, it appears that the test can be quite successfully applied.

Furthermore the advantage that our test has over the existing tests in the literature is

that it can be applied to independent as well as related time series and it can also be

applied to testing for significant differences between more than two stationary time

series.
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APPENDIX

Table A3.1 Overall Estimates of Size for T =50 for a=2
Correlation

Generating Level of 0 0.5 0.9
Process , Significance
AR(1)

,

5% 0.1470* 0.1305* 0.0820*
1% 0.0595* 0.0515* 0.0270*

4)=0.1 5% 0.1455* 0.1225* 0.0710*
1% 0.0515* 0.0440* 0.0235*

(1)=0.5 5% 0.1475* 0.1245* 0.0975*
1% 0.0545* 0.0470* 0.0350*

(1)=0.9 5% 0.1560* 0.1290* 0.1045*
1% 0.0615* 0.0445* 0.0360*

MA(1)
0=0.1 5% 0.1545* 0.1365* 0.0930*

1% 0.0545* 0.0565* 0.0300*

0=0.5 5% 0.1550* 0.1420* 0.0940*
1% 0.0560* 0.0520 0.0325*

0=0.9 5% 0.1800* 0.1795* 0.1365*
1% 0.0755* 0.0755* 0.0505*

AR(2) 5% 0.1615* 0.1560* 0.1030*
4)1=0.6 (1)2=0.2 1% 0.0715* 0.0550* 0.0345*

MA(2) 5% 0.1800* 0.1660* 0.1255*
01= 0.8 02=-0.6 1% 0.0710* 0.0675* 0.0425*

AIIMA(1,1)
=0.80=0.2 5% 0.1570* 0.1390* 0.0706*

1% 0.0350* 0.0480* 0.0165*
size dittrs tiom nominalsize by a significant amount (5% level)
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Table A3.2-A3.4 Estimates of Mean, Variances, Skewness and Size for T = 200
for q=2

Table A3.2 Correlation =0
Generating
Process

Degrees
of
freedom

Number of
Test
Statistics

Mean Variance Skewness Size
5%

Size
1%

AR(1) (1)=0 1 1619 1.1064 2.1911 0.3900 0.0531 0.0124
2 255 3.1882 5.5245 0.2137 0.1255* 0.0196*

AR(1) (1)=0.1 1 1662 1.0214 2.0306 0.3770 0.0511 0.0123
2 240 3.4933 8.0018 0.2271 0.1750* 0.0417*

AR(1) (1)=0.5 1 1623 1.0161 2.0533 0.3903 0.0462 0.0148
2 252 3.5020 7.5468 0.1813 0.1706* 0.0357*

AR(1) (1)=0.9 1 1648 1.0579 2.3850 0.3787 0.0564 0.0146
2 249 3.3558 8.6883 0.2515 0.1888* 0.0522*

MA(1) 0=0.1 1 1618 1.0381 2.2504 0.3704 0.0544 0.0148
2 269 3.7089 8.8782 0.3160 0.1970* 0.0595*

MA(1) 0=0.5 2 1037 2.2041 5.3012 0.3019 0.0665 0.0154
3 627 3.4591 6.1579 0.2100 0.0686 0.0080
4 184 5.6847 12.0599 0.1351 0.1630* 0.0272

MA(1) 0=0.9 4 111 4.7068 11.7943 0.0952 0.0541 0.0360
5 327 5.4548 11.8254 0.2387 0.0581 0.0092
6 462 6.5769 13.0084 0.1732 0.0800* 0.0108
7 408 7.6273 18.0725 0.2292 0.0882* 0.0196
8 344 8.9412 20.5206 0.1997 0.0930* 0.0262*
9 192 10.7266 22.4665 0.1780 0.1094* 0.0643*
10 140 12.7247 35.3618 0.2707 0.1714* 0.0643*

AR(2) 1 113 1.2847 2.6521 0.3474 0.0531 0.0265
4)1=0.6 2 1572 2.0913 4.0517 0.2873 0.0541 0.0115
4)2=0.2 3 208 3.9970 9.4500 0.2679 0.1106* 0.0337*

MA(2) 4 814 4.1453 8.1814 0.1929 0.0541 0.0074
0=0.8 5 469 5.7609 12.8913 0.1910 0.0918* 0.0171
02=-0.6 6 258 7.5594 14.5066 0.0654 0.0930* 0.0310*

7 297 8.3352 21.8085 0.2475 0.1111* 0.0337*

ARMA(1,1) 1 602 1.2775 3.2159 0.3935 0.0797* 0.0249*
2 1145 2.2906 4.7083 0.3037 0.0655 0.0131

0=0.2 3 176 4.5763 10.8567 0.2505 0.1705* 0.0450*
* size differs from nominal size by a significant amount (5% level)
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Table A3.3 Correlation=0.5
Generating
Process

Degrees
of
freedom

Number of
Test
Statistics

Mean Variance Skewness Size
5%

Size
1%

AR(1) (1)=0 1 1669 1.0320 2.3441 0.4014 0.0593 0.0144
2 229 2.9672 8.0086 0.3347 0.1528* 0.0306*

AR(1)4)=0.1 1 1641 1.0466 2.1346 0.3887 0.0609 0.0197
2 259 3.7052 9.0065 0.2853 0.1313* 0.0579*

AR(1) (1)=0.5 1 1650 1.0713 2.3751 0.3832 0.0582 0.0133
2 227 2.8520 6.7121 0.3348 0.1322* 0.0308*

AR(1)(1)=0.9 1 1640 1.0204 2.0791 0.3877 0.0573 0.0098
2 280 2.6904 6.1286 0.2872 0.1120* 0.0200

MA(1) 0=0.1 1 1621 0.9616 1.8854 0.3900 0.0432* 0.0093*
2 262 2.9045 7.4221 0.3175 0.1260* 0.0496*

MA(1) 0=0.5 1 112 1.0469 2.0740 0.4471 0.0538 0.0089
2 1037 2.1237 4.8950 0.2780 0.0601 0.0155
3 567 3.4209 7.4025 0.2173 0.0723 0.0176
4 203 4.6443 12.0947 0.2297 0.0837* 0.0246

MA(1) 0=0.9 4 165 4.5195 10.1064 0.3129 0.0909* 0.0242
5 373 5.7407 14.9021 0.2414 0.0965* 0.0348*
6 411 6.6279 13.6251 0.1027 0.0803* 0.0097
7 381 7.9259 18.8673 0.2068 0.0866* 0.0262*
8 307 9.4861 26.0783 0.2158 0.1433* 0.0325*
9 196 10.6881 21.8468 0.1511 0.0765 0.0352*
10 149 12.2770 25.1335 0.0682 0.1392* 0.0070

AR(2) 1 172 1.5739 5.0712 0.6384 0.0930* 0.0465*
4)1=0.6 2 1508 2.1354 4.5089 0.2910 0.0517 0.0146
(1)2=0.2 3 212 3.8088 7.4842 0.3192 0.1038* 0.0235

MA(2) 4 815 4.0574 8.7903 0.2182 0.0541 0.0147
0=0.8 5 457 5.6743 11.9856 0.1991 0.0656 0.0175
02=-0.6 6 242 7.1842 16.9086 0.1743 0.0785 0.0289*

7 297 8.3022 18.3549 0.1975 0.1111* 0.0237*

ARMA(1,1) 1 680 1.3028 2.8338 0.3820 0.0838 0.0191
2 1051 2.1556 4.2158 0.2668 0.0533 0.0124

0=0.2 3 187 3.9038 8.2476 0.2849 0.0963* 0.0214
* size differs from nominal size by a significant amount (5% level)
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Table A3.4 Correlation = 0.9
Generating
Process

Degrees
of
freedom

Number of
Test
Statistics

Mean Variance Skewness Size
5%

Size
1%

AR(1) (1)=0 1 1708 1.0027 2.0285 0.3971 0.0480 0.0111
2 178 2.4257 4.6159 0.3345 0.0730 0.0112

AR(1) 4)=0.1 1 1721 1.0542 2.3089 0.3730 0.0546 0.0110
2 181 2.0860 3.0161 0.2786 0.0387 0.0000

AR(1) (1)=0.5 1 1721 0.9875 2.0501 0.3950 0.0465 0.0178
2 181 2.1479 4.6068 0.3063 0.0387 0.0110

AR(1) 4)=0.9 1 1728 1.1496 2.8594 0.3845 0.0700* 0.0197*
2 185 2.4680 5.2420 0.2682 0.0649 0.0108

MA(1) 0=0.1 1 1702 1.0273 2.1623 0.3874 0.0546 0.0106
2 197 2.5126 5.8476 0.3197 0.0863* 0.0254*

MA(1) 0=0.5 1 249 0.9327 1.6290 0.4371 0.0361 0.0040
2 1043 2.1257 4.5600 0.3163 0.0575 0.0144
3 500 3.3144 6.8186 0.2255 0.0660 0.0100
4 140 4.4116 10.2635 0.3009 0.0857 0.0200*

MA(1) 0=0.9 4 273 4.4535 10.7046 0.2420 0.0659 0.0256*
5 401 5.5335 12.6025 0.1849 0.0898* 0.0174
6 428 6.6741 17.8894 0.1915 0.0818* 0.0327*
7 334 7.5475 15.0322 0.1534 0.0629 0.0210*
8 236 8.8853 24.2061 0.2244 0.1059* 0.0254*
9 149 10.1462 27.1070 0.2906 0.1074* 0.0336*
10 106 11.9456 29.0685 0.1614 0.1226* 0.0377*

AR(2) 1 299 1.1693 2.1391 0.4055 0.0836* 0.0000
2 1430 2.1245 4.3668 0.3060 0.0587 0.0104

4)2=0.2 3 183 3.3645 6.1012 0.2337 0.0656 0.0111

MA(2) 4 985 4.3069 9.5422 0.2617 0.0680* 0.0193*
0=0.8 5 368 5.4096 11.3894 0.2615 0.0897* 0.0054
02=-0.6 6 199 6.0084 14.2029 0.1813 0.0754 0.0100

7 230 7.6441 14.6101 0.1326 0.0696 0.0040

ARMA(1,1) 1 911 1.1735 3.1296 0.3858 0.0790* 0.0209*
2 886 2.1728 4.6367 0.3504 0.0632 0.0147

0=0.2 3 142 2.9639 5.2179 0.2972 0.0634 0.0000 .
* size differs from nomina size by a significant amount (5% level)
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Table A3.5 Overall Estimates of Size for T = 200 for q=2

Generating
Process

Level of
Significance

0
Correlation

0.5 0.9

AR(1) 5% 0.0730* 0.0730* 0.0505
4)=0 1% 0.0175* 0.0190* 0.0110

5% 0.0740* 0.0770* 0.0525
1% 0.0175 0.0195* 0.1000

5% 0.0740* 0.0735* 0.0455
1% 0.0215* 0.0200* 0.0125

5% 0.0830* 0.0680* 0.0695*
1% 0.0225* 0.0130 0.0195*

MA(1)
0=0.1 5% 0.0835* 0.0600 0.0610*

1% 0.0270* 0.0165 0.0125*

0=0.5 5% 0.0795* 0.0690* 0.0575
1% 0.0145 0.0185* 0.0125

0=0.9 5% 0.0880* 0.0985* 0.0860*
1% 0.0220* 0.0245* 0.0260*

AR(2)

4)1=0-6 (1)2=0.2 5% 0.0700* 0.0680* 0.0630*
1% 0.0185 0.0210* 0.0095*

MA(2)
Of= 0.8 02=-0.6 5% 0.0880* 0.0770* 0.0750*

1% 0.0215* 0.0220* 0.0145*

ARMA(1,1)
4)=0.8 0=0.2 5% 0.0850* 0.0715* 0.0715*

1% 0.0240* 0.0160 0.0180*
* size differs from nominal size by a significant amount (5% level)
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Table A3.6.1 Power Estimates for T=200 (AR(1) 4)=0 vs AR(1) (1)>0) for q=2
Correlation 0 0.5 0.9

Generating
Process

Degrees
of
Freedom

Level
of
Sign.

Number of
Test
Statistics

Power Number
of Test
Statistics

Power Number
of Test
Statistic
s

Power
,

AR(1) 1 5% 1619 0.0531 1669 0.0593 1708 0.0480
0 1% 0.0124 0.0144 0.0111

2 5% 255 0.1244 229 0.1528 178 0.0730
1% 0.0196 0.0306 0.0112

0.1 1 5% 1649 0.1825 1650 0.2655 1736 0.8669 '
1% 0.0612 0.1188 0.6959

2 5% 215 0.3070 249 0.2681 177 0.8301
1% 0.1302 0.1084 0.6271

0.2 1 5% 1658 0.5434 1624 0.7241 1716 1.0000
1% 0.3070 0.5006 1.0000

2 5% 242 0.5579 273 0.6960 196 1.0000
1% 0.3471 0.4652 1.0000

0.3 1 5% 1619 0.8678 1655 0.9758
1% 0.6835 0.9124

2 5% 262 0.8282 240 0.9583
1% 0.6183 0.8833

0.4 1 5% 1686 0.9864 1655 0.9758
1% 0.9407 0.9124

2 5°./0 218 0.9725 262 0.9583
1% 0.9083 0.8833

0.5 1 5% 1635 0.9982 1686 1.0000
1% 0.9933 0.9940

2 5% 256 0.9961 235 1.0000
1% 0.8867 0.9960
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Table A3.6.2 Overall Power Estimates for T=200 (AR(1) (1)=0 vs AR(1) (I)>0)
for q=2

Generating
Process

Level of
Significance

0
Correlation

0.5 0.9

AR(1) 4)
_. .

0 5% 0.0730 0.0730 0.0505
1% 0.0175 0.0144 0.0111

0.1 5% 0.2030 0.2635 0.8535
1% 0.0740 0.1180 0.6805

0.2 5% 0.5485 0.7210 1.0000
1% 0.3120 0.4950 1.0000

0.3 5% 0.8575 0.9715
1% 0.6720 0.9030

0.4 5% 0.9845 1.0000
1% 0.9365 0.9930

0.5 5% 0.9980
1% 0.9935
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Table A3.7.1 Power Estimates for T=200 for q=2
(AR(1) (1)=0 vs AR(2) (1)1=0 (1)2> 0)

Correlation 0 0.5 0.9
Generating
Process

Degrees
of
Freedom

Level
of
Sign.

Number of
Test
Statistics

Power Number
of Test
Statistics

Power Number
of Test
Statistic
S

Power

AR(1) 1 5% 1619 0.0531 1669 0.0593 1708 0.0480
0 1% 0.0124 0.0144 0.0111

2 5% 255 0.1244 229 0.1528 178 0.0730
1% 0.0196 0.0306 0.0112

0.1 1 5% 1295 0.0618 1286 0.0610 1376 0.0477
1% 0.0154 0.0163 0.0116

2 5% 557 0.3070 579 0.3316 503 0.8529
1% 0.0898 0.1451 0.6779

0.2 1 5% 465 0.0839 433 0.0790 442 0.0633
1% 0.0237 0.0113 0.0181

2 5% 1303 0.5112 1339 0.7326 1359 1.0000
1% 0.2640 0.4937 0.9990

3 5% 160 0.5186 139 0.6906 133 1.0000
1% 0.3063 0.4173 1.0000

0.3 2 5% 1761 0.7956 1709 0.9549 1765 1.0000
1% 0.5837 0.8455 1.0000

3 5% 136 0.8161 167 0.9641 145 1.0000
1% 0.6175 0.8922 1.0000

0.4 2 5% 1764 0.9688 1747 0.9966
1% 0.8872 0.9880

3 5% 156 0.9615 164 0.9939
1% 0.8634 0.9878

0.5 2 5% 1764 0.9977
1% 0.9870

3 5% 151 0.9870
1% 0.9805

w
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Table A3.7.2 Overall Power Estimates for T=200 for q=2
(AR(1) (1)=0 vs AR(2) 41=0 42>0)

Generating
Process

Level of
Significance

0
,

Correlation
0.5 0.9

,

AR(2) (1)2

0 5% 0.0730 0.0730 0.0505
1% 0.0175 0.0190 0.0100

0.1 5% 0.1520 0.1585 0.2970
1% 0.0460 0.0610 0.2120

0.2 5% 0.4125 0.5830 0.7930
1% 0.2105 0.3780 0.7820

0.3 5% 0.7860 0.8245 1.0000
1% 0.5795 0.8245 0.9925

0.4 5% 0.9680 0.9965 1.0000
1% 0.8860 0.9870 1.0000

0.5 5% 0.9970 1.0000 1.0000
1% 0.9855 1.0000 1.0000

Table A3.8.1 Power Estimates for T=200 for q=2 (AR(1) (1)=0.5 vs AR(1) 4#0.5)
Correlation 0 0.5 0.9

Generating Degrees Level Number of Power Number Power Number of
.

Power
Process of of Test of Test Test

Freedom Sign. Statistics Statistics Statistics
AR(1) 1 5% 1608 0.9857 1653 0.9994
0.1 1% 0.9464 0.9976

2 5% 269 0.9740 237 0.9958
1% 0.9182 0.9873

0.2 1 5% 1662 0.8881 1683 0.9792
1% 0.7383 0.8627

2 5% 241 0.8838 0.9764
1% 0.7261 0.8915

0.3 1 5% 1636 0.5807 1673 0.8111 1717 1.0000
1% 0.3545 0.4204 1.0000

2 5% 242 0.5331 222 0.7793 187 1.0000
1% 0.3388 0.5450 1.0000

31



Table A3.8.1 (contd.)
Correlation 0 0.5 0.9

Generating Degrees
Process of

Freedom

Level
of
Sign.

Number of
Test
Statistics

Power Number
of Test
Statistics

Power Number of
Test
Statistics

Power

AR(1) 4)
,

0.4 1 5% 1639 0.2038 1628 0.3157 1709 0.9233
1% 0.0769 0.1364 0.7975

2 5% 259 0.2239 266 0.3195 205 0.8634
1% 0.1081 0.1278 0.7220

0.5 • 1 5% 1632 0.0462 1650 0.0582 1721 0.0465
1% 0.0148 0.0133 0.0178

2 5% 252 0.1706 227 0.1322 181 0.0387
1% 0.0357 0.0308 0.1100

0.6 1 5% 1635 0.2300 1673 0.3282 1713 0.9515
1% 0.0850 0.1434 0.8569

2 5% 250 0.3080 204 0.3480 197 0.9137
1% 0.1120 0.1268 0.7665

0.7 1 5% 1663 0.7216 1664 0.8894 1739 1.0000
1% 0.4848 0.7428 1.0000

2 5% 233 0.7082 240 0.8958 176 1.0000
1% 0.4549 0.7250 1.0000

0.8 1 5% 1646 0.9775 1646 0.9775
1% 0.9228 0.9228

238 0.9706
2 5% 238 0.9706 0.8992

1% 0.8990

0.9 1 5% 1652 1.0000 1652 1.0000
1% 0.9958 1.0000

2 5% 232 1.0000 232 1.0000
1% 0.9985 0.9957
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Table A3.8.2 Overall Power Estimates for T=200 for q=2
(AR(1) 4=O.5 vs AR(1) 4)#0.5)

Generating
Process

Level of
Significance

0
Correlation

0.5 0.9
,

AR(1) 4)
0.1 5% 0.9835 0.9990 1.0000

1% 0.9445 0.9955 1.0000

0.2 5% 0.8835 0.9800 1.0000
1% 0.7295 0.9255 1.0000

0.3 5% 0.5740 0.7975 1.0000
1% 0.3530 0.5860 1.0000

0.4 5% 0.2130 0.3140 0.9130
1% 0.0885 0.1325 0.7775

0.5 5% 0.0740 0.0735 0.0455

-
1% 0.0215 0.0200 0.0125

0.6 5% 0.2470 0.3305 0.9435
1% 0.0915 0.1425 0.8410

0.7 5% 0.7200 0.8875 1.0000
1% 0.4615 0.7315 1.0000

0.8 5% 0.9745 0.9747 1.0000
1% 0.9165 0.9165 1.0000

0.9 5% 1.0000 1.0000 1.0000
1% 0.9985 0.9985 1.0000 _
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Table A3.9.1-A3.9.3 Estimates of Mean,Variance, Skewness, Size for T=200 q=3
Table A3.9.1 Correlation = 0
Generating
Process

Order
k

df. No. Test
Statistics

Mean Variance Skewness Size
5%

Size
1%

AR(1) (1)=0
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2 1464 2.1536 4.3601 0.2839 0.0622 0.0110
4 353 5.7093 15.6382 0.2176 0.1558* 0.0360*
6 119 9.9939 31.0292 0.1659 0.3109* 0.0924*

AR(1) atO =0.1 2 1488 2.0582 4.5671 0.3256 0.0598 0.0128
4 343 5.9373 13.0724 0.2310 0.1720* 0.0350*
6 103 9.4728 29.4055 0.2079 0.2427* 0.0971*

AR(1) 4=0.5 2 1480 2.0437 3.8786 0.3213 0.0527 0.0090
4 338 5.8358 14.1082 0.1574 0.1509* 0.0414
6 108 9.9380 25.1544 0.0798 0.2778* 0.1759*

AR(1) (1)=0.9 2 1499 2.0909 4.5760 0.3252 0.0607 0.0120
4 316 5.9423 14.2252 0.1994 0.1835* 0.0506*
6 119 9.5988 28.0726 0.0689 0.2101* 0.0750*

MA(1)0=0.1 2 1437 1.9361 3.9563 0.2935 0.0431 0.0070
4 386 5.6014 13.4475 0.1990 0.1451* 0.0440*
6 110 9.5756 19.8818 0.1828 0.2727* 0.0636*

MA(1)0=0.5 4 778 4.1441 8.8187 0.2341 0.0655 0.0128
6 807 6.5793 12.2808 0.1407 0.0718* 0.0099
8 283 9.9908 23.5453 0.1341 0.1378* 0.0318

MA(1)0=0.9 10 211 10.4608 18.2307 0.1076 0.0664 0.0047
12 414 12.8240 24.3385 0.2182 0.0797* 0.0217*
14 445 15.0691 32.5675 0.1084 0.0674 0.0247*
16 416 18.0408 37.9889 0.1313 0.1010* 0.0240*
18 256 20.3595 41.0488 0.0549 0.1133* 0.0156
20 223 24.1985 51.2715 0.0207 0.1570* 0.0403*

AR(2)(1)1=0.6 4 1521 4.2328 8.5597 0.2377 0.0585 0.0120
(1)2=0.2 6 305 7.9925 17.9659 0.1333 0.1213* 0.0328*

MA(2) 8 497 8.3236 17.5144 0.1269 0.0604 0.0121
01=0.8 10 500 10.8697 23.1179 0.1901 0.0720* 0.0260*
02=-0.6 12 292 14.0335 32.8761 0.1768 0.1027* 0.0445*

14 468 16.0355 34.2007 0.1015 0.1154* 0.0340*
16 143 20.1388 38.2732 0.1021 0.1608* 0.0280*

ARMA(1,1) 2 315 3.1133 9.6033 0.2638 0.1397* 0.0254*
(1)=0.8 4 1278 4.5164 9.4308 0.2154 0.0704* 0.0219*
0=0.2 6 273 7.3369 16.7235 0.1746 0.0952* 0.0403*
* size differs from nominal size by a significant amount (5% level)
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Table A3.9.2 Correlation=0.5
Generating
Process

Order
k

df No. Test
Statistics

Mean
.

Variance Skewness Size
5%

Size
1%

AR(1) (1)=0 1 2 1517 2.0356 4.1444 0.3251
,
0.0547 0.0119

2 4 346 5.1092 10.8383 0.2059 0.1213* 0.0202*

AR(1) 4)=0.1 1 2 1532 2.0793 4.3351 0.3364 0.0555 0.0117
2 4 313 5.2158 12.5528 0.2254 0.1022* 0.0319*

AR(1) (1)=0.5 1 2 1524 2.1650 4.0763 0.2865 0.0525 0.0080
2 4 326 5.4626 11.1717 0.2000 0.1380* 0.0245*

AR(1) (1)=0.9 1 2 1524 2.0052 4.0272 0.2716 0.0486 0.0070
2 4 329 5.1695 11.9728 0.1919 0.1094* 0.0304*

MA(1) 0=0.1 1 2 1507 2.0551 4.1736 0.2887 0.0504 0.0162
2 4 324 5.1869 12.0633 0.3236 0.1173* 0.0401*
3 6 100 8.2593 24.1085 0.1236 0.0150* 0.0600*

MA(1) 0=0.5 2 4 905 4.2845 8.6050 0.1982 0.0653 0.0144
3 6 684 6.6008 14.5181 0.2013 0.0833* 0.0190*
4 8 249 9.6445 22.9420 0.2607 0.1365* 0.0241*

MA(1) 0=0.9 5 10 251 11.2863 28.3483 0.1550 0.0916* 0.0239*
6 12 427 13.3160 30.1757 0.1734 0.0867* 0.0234*
7 14 438 15.4526 40.5049 001587 0.0913* 0.0365*
8 16 390 18.1986 46.9576 0.1171 0.1103* 0.0385*
9 18 228 19.7813 45.1942 0.0994 0.0921* 0.0307*
10 20 189 23.0506 52.0827 0.1607 0.1375* 0.0423*

AR(2) (1)1=0.6 2 4 1504 4.1066 8.8446 0.2159 0.0552 0.0146
(1)2=0.2 3 6 273 7.1949 13.7443 0.1489 0.0879* 0.0182

MA(2) 4 8 580 8.3596 17.9577 0.1826 0.0741* 0.0121
0=0.8 5 10 501 11.1510 27.8689 0.1939 0.1058* 0.0299*
02=-0.6 6 12 270 13.4514 36.0416 0.0822 0.1037* 0.0444*

7 14 400 15.0550 28.3617 0.1394 0.0675 0.0150
8 16 155 18.3429 52.4222 0.1554 0.1290* 0.0581*

ARMA(1,1) 1 2 412 2.6247 8.0032 0.3191 0.0995* 0.0485*
(1)=0.8 0=0.2 2 4 1210 4.2287 9.0253 0.2180 0.0545 0.0174*
* size differs from nominal size by a significant amount (5% level)
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Table A3.9.3 Correlation = 0.9
Generating
Process

Order
k

df No. Test
Statistics

Mean Variance Skewness Size
5%

,
Size
1%

AR(1) (1)=0 1 2 1647 2.0693 4.1043 0.3099 0.0577 0.0134
2 4 240 4.6532 13.7232 0.2633 0.0958* 0.0458*

AR(1) 4)=0.1 1 2 1651 2.0581 4.4665 0.3116 0.0533 0.0115
2 4 225 4.0859 8.6811 0.3220 0.0622 0.0222

AR(1)(1)=0.5 1 2 1656 2.1139 4.5390 0.3008 0.0519 0.0133
2 4 227 4.4024 9.2642 0..1754 0.0661 0.0132

AR(1) 4)=0.9 1 2 1652 2.0337 4.3430 0.2948 0.0508 0.0109
2 4 237 4.3802 8.8555 0.2292 0.0591 0.0211

MA(1) 0=0.1 1 2 1646 2.0076 3.8747 0.3308 0.0468 0.0070
2 4 233 4.2134 8.5742 0.2372 0.0601 0.0172

MA(1) 0=0.5 1 2 171 1.9832 3.5110 0.3367 0.0526 0.0000
2 4 1017 4.3143 9.0959 0.2456 0.0708* 0.0128
3 6 539 6.3550 14.2028 0.1913 0.0779* 0.0113
4 8 172 9.0087 23.6376 0.1267 0.0930* 0.0233*

MA(1) 0=0.9 4 8 202 8.8701 21.3018 0.1639 0.0743 0.0248
5 10 247 11.1131 22.0282 0.1328 0.0720 0.0231*
6 12 440 13.3687 31.1968 0.1233 0.1000* 0.0273*
7 14 358 15.9041 37.5100 0.1423 0.1061* 0.0251*
8 16 278 16.9891 37.1933 0.1938 0.0791* 0.0216*
9 18 177 20.9981 48.6536 0.0619 0.1469* 0.0338*
10 20 143 21.8172 53.5329 0.1908 0.1189* 0.0209*

AR(2) 1 2 250 2.2647 4.4684 0.2673 0.0640 0.0240*
4)1=0.6 2 4 1451 4.0476 15.1995 0.2572 0.0551 0.0214
4)2=0.2 3 6 200 6.5257 15.1995 0.2570 0.0650 0.0300*

MA(2) 4 8 905 8.4618 20.1365 0.1955 0.0718* 0.0232*
O=0.8 5 10 409 11.2202 24.8740 0.1969 0.0961* 0.0318*
02=-0.6 6 12 218 13.1552 23.4891 0.0688 0.0688 0.0138*

7 14 273 15.4774 32.0733 0.0763 0.0989* 0.0183*

ARMA(1,1) 1 2 836 2.2479 4.7138 0.3290 0.6460 0.0144
2 4 924 4.4393 9.1784 0.2309 0.0790* 0.0141

0=0.2 3 6 171 6.7993 15.0262 0.1703 0.0760 0.0175
* size differs from nominal size by a significant amount (5% level)

•
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Table A3.10 Overall Estimates of Size for T = 200 a=3

Generating
Process

Level of
Significance

Correlation
0 0.5 0.9

AR(1) 5% 0.1030* 0.0770* 0.0645* '
(1)=0 1% 0.0250 0.0170* 0.0165*

5% 0.0965* 0.0775* 0.0550
1% 0.0240 0.0215* 0.0125

4)=0.5 5% 0.0880* 0.0765* 0.0535
1% 0.0210 0.0155 0.0125

5% 0.0980* 0.0625* 0.0560
1% 0.0285* 0.0125 0.0125

MA(1)
0=0.1 5% 0.0825* 0.0740* 0.0495

1% 0.0020* 0.0195* 0.0095

0=0.5 5% 0.0870* 0.0805* 0.0725*
1% 0.0205* 0.0170* 0.0120

0=0.9 5% 0.0940* 0.0960* 0.0960*
1% 0.0220* 0.0310* 0.0255*

AR(2)

C=0.6 (1)2=0.2 5% 0.0830* 0.0690* 0.0585
1% 0.0190* 0.0185* 0.0165*

MA(2)
01= 0.8 02=-0.6 5% 0.0960* 0.0950* 0.0840*

1% 0.0305* 0.0027* 0.0230*

ARMA(1,1)
4)=0.8 0=0.2 5% 0.0945* 0.0770* 0.0730*

1% 0.0320* 0.0315* 0.0140
* size differs from nominal size by a significant amount (5% level)
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Table A4.1 Estimates of Power for Jenkins Test for T=200

White Noise vs. AR(1) (1) > 0

0.0
0.2
0.4
0.6
0.8
White Noise vs. AR(2) (1)1=0 (1)2>0

4)2
0.0
0.2
0.4
0.6
0.8
AR(1) 4)=0.5 vs.

(i)
0.1
0.3
0.5
0.7
0.9

Significance Level
5% 1%

0.0550
0.0690
0.0670
0.0740
0.0730

0.0550
0.0720
0.0750
0.1000
0.1260

0.0700
0.0480
0.0530
0.0600
0.0800

0.0080
0.0190
0.0160
0.0180
0.0160

0.0080
0.0210
0.0160
0.0250
0.0450

0.0210
0.0140
0.0090
0.0140
0.0210

Table A4.2 Estimates of Power for Diggle and Fisher's T=200

White Noise vs. AR(1) (I) > 0

(I)
0.0
0.2
0.4
0.6
0.8
White Noise vs. AR(2) (1)1=0 (I)2>0

4)2
0.0
0.2
0.4
0.6
0.8
AR(1) (1)=0.5 vs. (I)>0.5

0.1
0.3
0.5
0.7
0.9

Significance Level
5% 1%

0.0530
0.4200
0.9080
0.9930
0.9970

0.0530
0.1370
0.3530
0.4430
0.1360

0.8880
0.3420
0.0540
0.2780
0.1350

0.0090
0.1810
0.7070
0.9120
0.7970

0.0090
0.0390
0.1010
0.1280
0.0220

0.6340
0.1200
0.0090
0.0950
0.0290
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Table A4.3 Estimates of Power for Swanepoel and Van Wyk's Test for
T=200

Test Statistic
Significance level

, KS

'
CS KL

5% 1% 5% 1% 5% 1%
White Noise vs.
AR(1) ol) > 0

4)

,

0.0 0.0450 0.0110 0.0500 0.0140 0.0510 0.0160
0.2 0.3920 0.2010 0.4170 0.2400 0.4240 0.2370
0.4 0.9400 0.8290 0.0950 0.8870 0.9590 0.8890
0.6 0.9990 0.9830 1.0000 1.0000 1.0000 1.0000
White Noise vs.
AR(2)(1)1=0 (1)2>0
(1)2
0.0 0.0450 0.0110 0.0500 0.0140 0.0510 0.0160
0.2 0.3660 0.2820 0.3430 0.1750 0.3640 0.2160
0.4 0.8230 0.6050 0.8960 0.6870 0.9150 0.7240
0.6 0.9990 0.9750 1.0000 0.9990 1.0000 0.9980
AR(1)4)=0.5 vs.
4)>0.5

4)
0.1 0.9630 0.8780 0.9770 0.9230 0.9740 0.9240
0.3 0.4860 0.2580 0.4790 0.3040 0.4970 0.3060
0.5 0.0390 0.0100 0.0500 0.0120 0.0530 0.0140
0.7 0.5450 0.2940 0.5880 0.3730 0.5920 0.3730
0.9 0.9830 0.8750 _ 0.9980 0.9960 0.9980 0.9910

Table A4.4 Jenkins's Test

coz.
-' fu

Significance Level
1%

White Noise vs. MA(1)
.

0=0 OA
0.0 0.0550 0.0080
0.2 0.0470 0.0120
0.4 0.0580 0.0180
0.6 0.0870 0.0250
0.8 0.1060 0.0280
MA(1) 0=0.5 vs. 0>0.5
0.1 0.0650 0.0160
0.3 0.0660 0.0200
0.5 0.0490 0.0100
0.7 0.0590 0.0170
0.9 0.0800 0.0250
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Table A4.5 Diggle and Fisher's Test

5%
Significance Level

1%
White Noise vs.
MA(1) 0=0 OA
0.0 0.0530 0.0090
0.2 0.3150 0.1100
0.4 0.8250 0.5130
0.6 0.9680 0.8150
0.8 0.9900 0.8800

MA(1) 0=0.5 vs.
0>0.5
0.1 0.7950 0.4810
0.3 0.3170 0.1180
0.5 0.0510 0.0110
0.7 0.1530 0.0580
0.9 0.2330 0.0860

Table A4.6 Swanepoel and Van Wyk's Test
Test Statistic KS CS KL
Significance level 5% 1% 5% 1% 5% 1%
White Noise vs.

,

MA) 0 > 0
0.0 0.0450 0.0110 0.0500 0.0140 0.0510 0.0160
0.2 0.0130 0.0040 0.0010 0.0000 0.0060 0.0020
0.4 0.1760 0.0340 0.0920 0.0150 0.1600 0.0390
0.6 0.3230 0.0800 0.6280 0.3100 0.6280 0.2610
0.8 0.4020 0.1380 0.9560 0.7250 0.8420 0.5390
MA) 0=0.5 vs.
0#0.5
0.1 0.0680 0.0600 0.1010 0.0210 0.1050 0.0210
0.3 0.1000 0.0900 0.1000 0.0900 0.1000 0.0900
0.5 0.0700 0.0200 0.0210 0.0200 0.0700 0.0200
0.7 0.2400 0.1370 0.2390 0.1380 0.2400 0.1380
0.9 0.1950 0.4910 0.5200 0.4990 0.4970 0.4910

,

,
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