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ABSTRACT

A parsimonious method of exponential smoothing is introduced for time series generated

from a combination of local trends and local seasonal effects. It is compared with the

additive version of the Holt-Winters method of forecasting on a standard collection of

real time series.

Keywords : Time series - Forecasting - Exponential smoothing - Holt-Winters method -
Structural models - M-competition.

*Department of Econometrics & Business Statistics
Faculty of Business and Economics - Monash University
Clayton campus - Clayton - Vic 3168



1. Introduction

The appropriate choice of values for the smoothing parameters in exponential smoothing

methods can be a vexed question (Gardner, 1985). A traditional approach for forecasting

seasonal time series, the additive Holt-Winters method (HW), relies on three smoothing

parameters. Determining optimal values for such parameters can be hampered in part by

a) the fact that fitting criteria, such as the likelihood function, are highly nonlinear

functions of the parameters and, as such, numerical optimisation methods are

required;

b) the likelihood functions need not be concave so that numerical optimisation routines

cannot guarantee global optima without a full, three dimensional grid search.

It is particularly attractive, to simplify the associated optimisation process, to explore the

possibility of seasonal approaches that make use of fewer smoothing parameters. In this

paper we propose a version of seasonal exponential smoothing, called the parsimonious

method, that requires only two parameters. Both methods are compared in a study based

on the collection of series from Makridakis et al (1982) forecasting competition.

2. State Space Models

Linear exponential smoothing methods may be based on the innovations form of the state

space model (Snyder, 1985)

tyt = x', bt.1 + e

bt = T bt_i + aet
(1)

where yt is the series value, xt is a fixed k-vector, bt is a random k-vector of time

dependent state variables, the er's are independent normally distributed disturbances with

mean 0 and variance o2, T is a kxk transition matrix, and a is a fixed k-vector sometimes
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called the smoothing parameters vector. The initial state vector bo has a diffuse prior

distribution (Ansley and Kohn, 1985) and is of the form bo — N ( 0, vi) where r is

arbitrarily large. The special case, underlying the additive Holt-Winters smoothing

method, known as the basic structural model (BSM), involves a level /t, a growth rate gt

and a seasonal component st. It has the form

y i
= it-1 ± g1-1 + st-p ± e t 

l t = 1 t-i ± g t-i ± aiet
gt = gm ± a2et
St = St-n ± a3et

(2)

where al, a2 and a3 are three smoothing parameters and p is the number of seasons in

one year. Equations (2) conform to the linear state space model (1). The state vector bt

consists of It, gt, st, ..., st_p±i and a is a (p+2)-vector equal to (a1 a2 a3 0 ... O)'.

Using the backshift operator B, all of the elements in the state vector can be eliminated

from (2) to yield the equivalent seasonal ARIMA process

FFpyt= 60)e (3)

where Vs-4-B, V=1-B" and 6(B) is a polynomial of degree p+1 in the lag operator B

(Roberts, 1982). The relationships between the O's and a's are given by

0, =1—a, —a2{

Op =. 1..a2 — a;

Op+, = —1+ a, +a3

(4)

A variant of the BSM, called the parsimonious model, avoids the explicit use of a

seasonal equation. The seasonal effect is instead directly incorporated into the level

equation. The new level mt, which depends on the level in the corresponding period a
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year earlier, is augmented by the total growth in all seasons during the intervening year.

The parsimonious model (PARS) is therefore defined as

yt= mt-p

Mt = Mt-p

gt = gt-1 + fl2et

et

(5)

where the state vector bt consists of mt, ..., mt-p+i, gt, ..., gt_p+i, a is a 2p-vector

comprising the two smoothing parameters A and 132 and equal to (fly 0 ... 0 A 0 ... O)'.

The state vector is much larger than its counterpart in BSM. But the number of

smoothing parameters is reduced from three to two. Because PARS is linear in the state

vectors, it is still more tractable than BSM. It can be proved that the parsimonious model

also has an equivalent ARIMA process of the form (3) where

{
6)1 =1— 182

02 ': 0 p-1 = —182

0 p =1— 131 — )62

61 p+1 = fli - 1

(6)

A comparison of (4) and (6) indicates that the second ARIMA representation is less
flexible than the first.

3. Estimation and Prediction

The estimation objective, for both BSM and PARS, was to select a and bo to minimise

n

the SSE= EF 2 where "e" denotes the one-step ahead prediction error in period t. Thet t
t=1

computational strategy was to employ a general form of exponential smoothing, Ord,
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Koehler and Snyder (1997), for trial values of bo and a, to obtain the one-step ahead

prediction errors. The best values of bo and a were found using the constrained optimiser

in Gauss. The variance was then estimated with C5-2 = SSE I n. It can be established that

the estimate of a obtained in this way also maximises the marginal likelihood function,

Ansley and Kohn (1985), for the state space model (1).

On finding the estimates of a and bo, the point predictions are generated with the

equation

51,(h) = x +hbn+h_lin (7)

where sin (h) is the forecasted value of the series for h-steps ahead and b,hin is the state

vector estimate of bn+h based on sample size n. The state vector estimates are obtained

with bn+hin = Tbn+h-lln• For the two state space models in this study, (7) reduces to

BSM

PARS

n (12) = inin hg nin + s n_ p+ kin

p-k

5Y (h) mn-p+kin hg nin ± I gn-iln
i=1

where h k mod(p) and 1 k 5_ p.

4. Comparison using M-competition Data

The two methods were compared on real seasonal time series from the M-competition

(Makridalcis et g, 1982). There were 23 quarterly and 68 monthly series with forecasting

horizons of 8 quarters and 18 months respectively. Accordingly, a corresponding number

of observations were withheld from the fitting process at the end of each series and

reserved to calculate forecast errors. The two methods, HW and PARS, were compared
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using the median absolute percentage errors (medAPE) where the absolute percentage

errors are given by APE (h) = 10007,7(h) vn+h IIYn+h 1r •

Table 1 shows the number of times each smoothing method is best for the one-step

ahead forecasts. Overall, HW performs better than PARS. It is better 55% of the time.

H-W
,
PARS Total

Monthly 38 56% 30 44% 68
Quarterly 12 52% 11 23
Total 61 55% 50

_48%
45% 111

Table 1 - Number of times each smoothing method yields better APE

Comparison between our results and M-competition results

An aim of the study was to compare the forecast performance of the two procedures HW

and PARS with some of those in the M-competition study (D-Holt and Winters). The D-

Holt method consists of deseasonalising the seasonal series and applying Holt's trend

corrected exponential smoothing method. The Winters method is the multiplicative form

of the Holt-Winters method. In Figures 1 and 2, their medAPE's are compared for

quarterly and monthly series respectively.
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In interpreting the results, it should be noted that the time axis of Figures 1 and 2

contains gaps beyond horizon 6 (Makridalcis did not report the errors at horizons 7, 9-

11, 13-14, and 16-17). For quarterly series in Fig 1 and monthly series in Fig 2, the HW

method performs better than PARS at most time horizons. Note that HW is the best

method for the quarterly data. However, for the monthly data, HW is best for only the

first two steps ahead. Beyond that Winters method performs better.

5. Conclusion

As expected the additive Holt-Winters method performed better than the parsimonious

approach. Nevertheless, we were surprised by the magnitude of the differences in the M-

competition series. Our original hope had been that the gap between the methods would

be small enough to justify opting for the computational advantages of the parsimonious

method at the expense of marginally less accurate forecasts. It appears that the additional

seasonal equation and the associated parameter are critical for the generation of better

forecasts of seasonal time series.
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