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ABSTRACT

A parsimonious method of exponential smoothing is introduced for time series generated
from a combination of local trends and local seasonal effects. It is compared with the
additive version of the Holt-Winters method of forecasting on a standard collection of

real time series.
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1. Introduction

The appropriate choice of values for the smoothing parameters in exponential smoothing
methods can be a vexed question (Gardner, 1985). A traditional approach for forecasting
seasonal time series, the additive Holt-Winters method (HW), relies on three smoothing
parameters. Determining optimal values for such parameters can be hampered in part by
a) the fact that fitting criteria, such as the likelihood function, are highly nonlinear
functions of the parameters and, as such, numerical optimisation methods are
required,
b) the likelihood functions need not be concave so that numerical optimisation routines
cannot guarantee global optima without a full, three dimensional grid search.
It is particularly attractive, to simplify the associated optimisation process, to explore the
possibility of seasonal approaches that make use of fewer smoothing parameters. In this
paper we propose a version of seasonal exponential smoothing, called the parsimonious
method, that requires only two parameters. Both methods are compared in a study based

on the collection of series from Makridakis et al (1982) forecasting competition.

2. State Space Models

Linear exponential smoothing methods may be based on the innovations form of the state

space model (Snyder, 1985)

(1)

Ve = X': bt-l + €,
b, =Tb,, + ae,

where y; is the series value, x, is a fixed k-vector, b, is a random k-vector of time
dependent state variables, the e,’s are independent normally distributed disturbances with
mean 0 and variance o’, T is a kxk transition matrix, and « is a fixed k-vector sometimes
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called the smoothing parameters vector. The initial state vector b, has a diffuse prior
distribution (Ansley and Kohn, 1985) and is of the form b ~ N (0 , ) where 7 is
arbitrarily large. The special case, underlying the additive Holt-Winters smoothing
method, known as the basic structural model (BSM), involves a level /,, a growth rate g,
and a seasonal component s;. It has the form

ye=1, +g., +s._,+e,
L =1

8 = 8 T a,e,
S, = st—p + e,

1 T 8. T aue,

where a1, @, and @3 are three smoothing parameters and p is the number of seasons in
one year. Equations (2) conform to the linear state space model (1). The state vector &,
consists of I, g, s, ..., St.p+1 and @ is a (p+2)-vector equal to (a; & @3 0 ... 0).
Using the backshift operator B, all of the elements in the state vector can be eliminated
from (2) to yield the equivalent seasonal ARIMA process

V.= &Be: (3)
where V=1-B, V,=1-B° and &B) is a polynomial of degree p+1 in the lag operator B
(Roberts, 1982). The relationships between the &'s and «’s are given by

0,=1-a,-a,
0, =-a,,i=2,-,p-1
0,=1-a,-a; '

0,.,=-1+a, +a,

p+l

A variant of the BSM, called the parsimonious model, avoids the explicit use of a

seasonal equation. The seasonal effect is instead directly incorporated into the level

equation. The new level m, which depends on the level in the corresponding period a




year earlier, is augmented by the total growth in all seasons during the intervening year.

The parsimonious model (PARS) is therefore defined as

Cor

P
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where the state vector b, consists of my, ..., Meprr, &, ..., Gepr1, @ IS a 2p-vector
comprising the two smoothing parameters £, and 3 and equal to (4 0...0 3 0 ... 0).
The state vector is much larger than its counterpart in BSM. But the number of
smoothing parameters is reduced from three to two. Because PARS is linear in the state
vectors, it is still more tractable than BSM. It can be proved that the parsimonious model

also has an equivalent ARIMA process of the form (3) where

1 ﬂz

181_:32

6
0, ==0,,=-p,
6,

6,.=p -1

A comparison of (4) and (6) indicates that the second ARIMA repfesentation is less

flexible than the first.

3. Estimation and Prediction

The estimation objective, for both BSM and PARS, was to select « and &, to minimise

the SSE = Z €.’ where e, denotes the one-step ahead prediction error in period ¢ The
t=1 .

computational strategy was to employ a general form of exponential smoothing, Ord,




Koehler and Snyder (1997), for trial values of & and a, to obtain the one-step ahead
prediction errors. The best values of &y and & were found using the constrained optimiser

in Gauss. The variance was then estimated with &2 = SSE / n. It can be established that

the estimate of & obtained in this way also maximises the marginal likelihood function,

Ansley and Kohn (1985), for the state space model (1).

On finding the estimates of « and by, the point predictions are generated with the
equation

520 = %,B, G
where ¥, (h)is the forecasted value of the series for A-steps ahead and &,.y, is the state
vector estimate of b,., based on sample size n. The state vector estimates are obtained

With byshjn = Thp+hajn. For the two state space models in this study, (7) reduces to

BSM yn (h) = lnln +hgn[n + Sn—p+kln (8)

p-k
PARS 5;;2 (h) = mn-p+k]n + hgnln + Zgn—i]n (9)

i=1

where =k mod(p) and 1<k<p.

4. Comparison using M-competition Data

The two methods were compared on real seasonal time series from the M-competition
(Makridakis et al, 1982). There were 23 quarterly and 68 monthly series with forecasting
horizons of 8 quarters and 18 months respectively. Accordingly, a corresponding number
of observations were withheld from the fitting process at the end of each series and

reserved to calculate forecast errors. The two methods, HW and PARS, were compared




using the median absolute percentage errors (medAPE) where the absolute percentage

errors are given by APE (h) = 100(| ¥, () ~Vash [Vnen ).

Table 1 shows the number of times each smoothing method is best for the one-step

ahead forecasts. Overall, HW performs better than PARS. It is better 55% of the time.

H-W PARS Total
Monthly |38 56% {30 |44% |68
Quarterly|12  152% |11 48% |23
Total 61 55% (50 145% (111
Table 1 - Number of times each smoothing method yields better APE

Comparison between our results and M-competition results

An aim of the study was to compare the forecast performance of the two procedures HW
and PARS with some of those in the M-competition study (D-Holt and Winters). The D-
Holt method consists of deseasonalising the seasonal series and applying Holt’s trend
corrected exponential smoothing method. The Winters method is the multiplicative form
of the Holt-Winters method. In Figures 1 and 2, their medAPE’s are compared for

quarterly and monthly series respectively.

27 Fig 1 - Quarterly




Fig 2 - Monthly
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In interpreting the results, it should be noted that the time axis of Figures 1 and 2
contains gaps beyond horizon 6 (Makridakis did not report the errors at horizons 7, 9-
11, 13-14, and 16-17). For quarterly series in Fig 1 and monthly series in Fig 2, the HW
method performs better than PARS at most time horizons. Note that HW is the best
method for the quarterly data. However, for the monthly data, HW is best for only the

first two steps ahead. Beyond that Winters method performs better.

5. Conclusion

As expected the additive Holt-Winters method performed better than the parsimonious

approach. Nevertheless, we were surprised by the magnitude of the differences in the M-
competition series. Our original hope had been that the gap between the methods would
be small enough to justify opting for the computational advantages of the parsimonious
method at the expense of marginally less accurate forecasts. It appears that the additional
seasonal equation and the associated parameter are critical for the generation of better

forecasts of seasonal time series.
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