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Abstract

The global linear trend with autocorrelated disturbances is a surprising omission from

the M1 competition. This approach to forecasting is therefore evaluated using the 51

non-seasonal series from the competition. It is contrasted with a fully optimized

version of Hoits trend corrected exponential smoothing. It is found that an adaptation

of Holts method, in which the growth rate is restricted to be constant, performs

almost as well as its traditional counterpart and usually out-performs the global linear

trend with autoregressive disturbances. This therefore confirms the results from other

studies which indicate that a long-term trend may be missing from many business and

economic time series. An implication of this study is that business forecasters, when

applying trend corrected exponential smoothing, should explore the possibility of

eliminating the second smoothing constant.

Keywords: forecasting; trends; M1 competition; unit roots; exponential smoothing;

structural change
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1. INTRODUCTION

The linear trend with auto-correlated disturbances has a long history in the analysis of macro-

economic time series (see Nelson and Plosser, 1982). It was seen as a way of superimposing

a business cycle effect on a long term trend. It was recognized that a business cycle is not

systematic enough to be modeled deterministically, and that it is overly ambitious to expect

to be able to predict its effects in the medium to long term. The ability to allow for persistent

deviations from trend in the short term, while returning to global trend in the longer term,

seemed to be a particularly attractive feature of the model. It is surprising, therefore, that this

approach was completely omitted from the M1 competition (Makridakis et al, 1982).

In contrast, Holts method (Holt, 1957) of forecasting, which is also based on the concept of

linear trend line, was included in the M1 competition. In this method the trend line may be

viewed as the stochastic counterpart of a first-order Taylors approximation. To illustrate, the

line LT in Figure 1 approximates the path (dashed line) followed by the data at the point of

time A. In this context the trend is often referred to as a local linear trend. Because it

approximates the data path locally, it might be anticipated that a local trend yields reasonable

short-term forecasts. Long-run forecasts appear to be more problematic, however,

particularly when the data contains a strong business cycle.

series

LT

0 A time

Figure 1 Local trend approximation to business cycle
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Given the 'return to the mean' property of the global linear tend with autoregressive (AR)

disturbances, it might be anticipated that its longer term forecasting capacity is better than

that of Holts method. Lying beneath this supposition, however, is the implicit assumption

that the data contains a long term trend, a point which can no longer be taken for granted

following the work of Nelson and Plosser (1982) on macro-economic time series.

The primal), purpose of this paper is to compare both approaches to forecasting with linear

trends and to see whether our preconceptions hold up in practice. We use the M1

competition data set as our test bed. In the process we eliminate a gap in the M1

competition.

The following notational conventions are adopted in this paper:

a) We define a sequence of random variables { y, } for t=1,...,T. The observed / sample

value of y, at time period t will be designated by y , .

b) A trial value for an unknown parameter 0 is designated by 9. However the estimated

value of the parameter, using a given estimation procedure, is represented by 9.

c) The unobservable random variables appearing in some of the statistical models will at

times be assigned fixed values. For example, the assigned value of the random variable

called a local level t, will be designated £,.

2. METHODOLOGY

The MI data set contains 111 time series. Given the focus of this study on trends, all data

deemed by Makridakis to contain a seasonal cycle was culled. 51 time series consisting of

20 annual, 14 quarterly and 17 monthly time series were left for analysis.
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The model selection strategy considered in the Ml competition, based on the median

absolute percentage prediction errors criterion, is adopted. Each series is divided into two

parts: a 'fitting sample' and a 'prediction sample' 17n+1,17 n+2 • • • 57n+h • Following

the M1 convention we use h = 6 for annual series, h = 8 for quarterly series, and h = 18 for

monthly series. Denoting the predictions made from the end of period n as

.Pn+1, 9n+2 • • • -Pn+h the absolute percentage errors are calculated using the formulae

APE, = looly, —911/y-, for t = n +1,...,n + h • Let APEo denote the absolute percentage

error in period t for typical time series i. The median APE for period t is then defined as

MeAPE, = mediania {APEll where I is the set of series indexes over which the median is

found.

3. AUTOCORRELATED DISTURBANCES

We first thought it would be sensible to test whether there was any advantage in adding AR

disturbances to a conventional linear trend line. A global linear trend (GT) had already been

considered in the M1 competition, the results being reproduced in the second row of Table 1.

We repeated the study for the global trend line and corroborated these results.

We then fitted the global linear trend with autocorrelated disturbances (GTAR). The model

has the form y, = pi +,62t+u, with disturbances u, = 0u,_1 + c, where e, NID(0, o2).

The Beach and MacKinnon (1978) method was used to estimate the intercept fly, the growth

162, the autoregressive parameter 0 and the standard deviation cr. Forecasts were generated

with the formula ,n+j = 161 +,62 (n+ j) + u",,. The MeAPE's obtained for this method are

summarized in row 3 of Table 1. Taken as a whole, the results indicate that the addition of

an AR(1) component to the trend line can significantly improve forecasts in the shorter term.



ft

As expected, the damping effect of the autocorrelation coefficient term in the forecasting

equation eliminates this advantage at longer lead times.

Lead Time
Model 1 2 3 4 5 6 8 12 15 18
GT 8.5 9.1 10.7 13.5 17.9 17.5 19 14.2 13.8 19.8
GTAR 3.3 4.7 7.4 9.1 13 11 12.7 7.7 12.7 21.2

Table 1 MeAPE's: 51 series

4. LOCAL LINEAR TREND

The local linear trend (LT), a special case of the linear state space framework in Snyder

(1985), is

y, = ti_i +16,1

= +A-1 +ale,

+a26,

where e NID(0,o-2). The local level and the local growth rate fl, are treated as

stochastic quantities so that the model can embody the effects of structural change. The

parameters a1, a2, commonly called the smoothing constants, determine the amount by

which the level and growth rates are impacted by structural change.

The reduced form of this model can be obtained by eliminating the local level and local

growth rate. It is V2y, = 92s,_2 +191e + 6, where 91 = al + a2 —2 and 02 = 1 - a1.

This ARIMA(0,2,2) process underpins Holts trend corrected exponential smoothing (Box and

Jenkins, 1976). Thus the local trend is a state space representation of the model for Holts

method.
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The unknown seed values of the state variables to , fl o and the smoothing parameters a1,

a2 are chosen to minimize the sum of squared one-step ahead prediction errors. An

adaptation of the algorithm in Ord, Koehler and Snyder (1997) is used. For each set of trial

of values, denoted by 70,p- 0,-a,,a2, the one-step ahead prediction errors are obtained

recursively by applying Holts trend corrected exponential smoothing equations:

7 —

-et = Yt — 'Ct-1 — A-1

7,=7,_,+731_1+-0-11-g,
_ _.
) 6 , =--. ) 6 , _1 + a2si

n

together with the associated sum of squared errors S = E -67,2 . To emphasize the nature of
/=1

the relationships involved here, the sum of squared errors function may be written as

S = S(e0,fl0,a1,a2).

The errors are linear functions of the seed state vectors .e0, /30. Thus, for trial values Ft, ,

Ft2 of the smoothing parameters, conventional linear least squares methods can be applied to
,.

obtain the corresponding conditional estimates of the state vectors Teoceit-,,a-2), poce-ti,--a-2).

The state variable estimates may be substituted out of the sum of squared errors function to

give the concentrated sum of squared errors function S = ga1,a2). The problem reduces

to minimizing this concentrated sum of squared errors function with respect to the smoothing

constants.

,
During the optimization, the values of the smoothing parameters are restricted to the unit

square 0 ... al 5_ 1 and 0 a2 ._ 1. By permitting both smoothing constants to equal 0, the

possibility of 'no structural change' is taken into account. This special case, which



corresponds to a global linear trend, is often ruled out in conventional implementations of

trend corrected exponential smoothing. Common strategies used to estimate the seed level

and growth, such as back-casting (Gardner, 1985), break down in this circumstance. In

contrast, the sum of squared errors minimization strategy always works.

A larger region al ?_ 0, a2 0 and 2a1 + a2 4 could have been used instead of the unit

square restrictions. These inequalities defining this region correspond to the invertibility

conditions for the ARIMA(0,2,2) process (Box & Jenkins, 1976). We believe that the

invertibility conditions are not widely implemented in conjunction with Holts method in

practice. Furthermore it is difficult to make sense of values of the smoothing parameters

outside the unit square. We therefore persisted with the unit square.

The first stage of the method of optimization involved a grid search: the SSE function

S=S(al,a2) is not necessarily convex. The grid was defined over the closed unit interval

[0,1] using increments of 0.1. The second stage involved the use of nonlinear optimization

procedure (the Gauss constrained optimizer CO) seeded with the result from the grid search.

The resulting MeAPE's are shown in Table 2 together with those reported for Holts method

in the M1 competition. We had originally expected only slight differences in both sets of

results. The contrast, however, is quite marked at longer time horizons. The paper on the

M1 competition is silent on implementation details such as

a) the method used for estimating the seed values

b) the constraints imposed on the smoothing parameters.

We therefore have been unable to explain this outcome. There seems to be no obvious

pattern to the differences, and hence no clue as to where the discrepancy in implementation

might be.
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Lead Time
Method 1 2 3 4 5 6 8 12 15 18
M1 3.4 4.5 6.0 9.3 12.7 9.4 14.9 14.2 14.3 17.0
LT 3.6 4.1 6.1 7.9 11.7 8.0 15.7 12.8 20.4 24.4

Table 2 Holts method: all 51 series

5. LOCAL TREND AND GLOBAL TREND WITH AR DISTURBANCES

The global trend with AR disturbances and the local trend are two distinct adaptations of the

concept of linear trend to take account of the phenomena of structural change. Our

expectation was that both models would have a similar short term forecasting performance

but that, in the longer term, the tendency of forecasts to return to the trend would work in

favor of the global trend with AR disturbances. The results for all 51 series are shown in

Table 3. The same results broken down into annual, quarterly and monthly series

respectively, are shown in Table 4.

Lead Time
Method 1 2 3 4 5 6 8 12 15 18
GTAR 3.3 4.7 7.4 9.1 13 11 12.7 7.7 12.7 21.2
LT 3.6 4.1 6.1 7.9 11.7 8.0 15.7 12.8 20.4 24.4 _

Table 3 MeAPE's: all 51 series

Series

,

Model
Lead Time

1 2 3 4 5 6 8 12 15 18
Annual GTAR 2.7 4 8.3 11.8 17.6 15.5

,LT 2.4 1.8 3.4 6.9 11.6 7.5,
Quarterly GTAR 3.6 4.5 5.8 8.3 12.8 8.3 10.5

_LT 5.0 4.3 9.4 9.3 11.9 13.2 22.7
Monthly GTAR 1.7 7.3 4.1 5.7 8.8 9.6 12.8 7.7 12.7 21.2 *

LT 2.1 6.7 6.6 8.2 9.9 6.9 8.4 12.8 20.4 24.4

Table 4 MeAPE's: analysis by data type

The results are mixed. There is some support for our hypothesis on quarterly and monthly

data. Holts exponential trend corrected exponential smoothing, however, is superior on

annual data.
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6. LOCAL TREND WITH CONSTANT GROWTH

While fitting the local trend model it was noted that the estimate of a2 was often equal to 0.

It was therefore decided to consider, as a model in its own right, a local trend with a growth

rate constrained to be constant (LTCG). The conventional local level model reduces to the

form

_Y, = .ef--i +fl+ el

t,=.e,_1+16+ ale/

where 16 is the constant growth rate. The reduced form of this model is

Vy, = 16+ (96,_1 + 6, where 0= -(1- a1). The local trend with constant growth is a

convenient state space representation of an ARIMA(0,1,1) model with drift.

Lead Time
Model 1 2 3 4 5 6 8 12 15 18,
LTCG 27.5 23.5 25.5 21.6 23.5 23.5 25.8 23.5 23.5 23.5'
LT 27.5 31.4 31.4 33.3 33.3 31.4 29.0 23.5 23.5 23.5
Ties 45.1 45.1 43.1 45.1 43.1 45.1 45.2 52.9 52.9 52.9_

Table 5 Percentage 'wins': all 51 series

Lead Time
Model 1 2 3 4 5 6 8 12 15 18
LTCG 2.9 4.8 6.8 8.2 13.0 8.6 11.6 13.7 21.1 25.1
LT 3.6 4.1 6.1 7.9 11.7 8.0 15.7 12.8 20.4 24.4
Table 6 MeAPE's: all 51 series

Both forms of local trend are compared in Table 5. The second and third rows of this table

show the proportion of 'wins' for the methods 1.c.----1,2 with a lead time j from the end of period

n. This proportion is defined as:

p(nvi = E (5(
le„.i

-,(k)
Ei,n+j

< ^(3-01)
inn+ei,n+j j
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^(k)where g(*) denotes a Kronecker delta, S  denotes the j-step ahead error for the

prediction made for series i at the end of period n with method k, In+i is the index set of

series predicted in period n+j, and m is the number of series predicted in period n+j. The

proportion of tied results, which largely reflect those results where the conventional local

trend reduces to its constant growth counterpart, are shown in the fourth row. The results,

shown in Table 6, indicate that there is little to be gained from a variable growth rate in a

local trend model. Given that grid search optimization with respect to one parameter, rather

than two parameters, involves much lower computational loads, this result indicates that

business forecasters, particularly in mass forecasting situations such as inventory control,

should give serious thought to testing and implementing this scheme where appropriate.

7. TREND STATIONARY AND DIFFERENCE STATIONARY PROCESSES

A comparison of the global trend with AR(1) disturbances and the local linear trend with

constant growth rate is shown in Table 7. The local trend with constant growth rate has a

tendency to do better in the shorter term. Its advantage, however, disappears at longer time

horizons. The breakdown into annual, quarterly and monthly data in Table 8 reveals that the

local trend with constant growth (LTCG) wins far more often at virtually all time horizons

with annual and quarterly data. The comparison is much closer with monthly, but still the

advantage is with the local trend with constant growth model for medium term forecast

horizons, and the global trend with AR disturbances (GTAR) becomes more competitive with

long term forecasts.

Lead Time
Model 1 2 3 4 5 6 8 12 15 18
GTAR 45.1 39.2 27.5 25.5 27.5 29.4 38.7 52.9 52.9 52.9
LTCG 49.0 51.0 66.7 70.6 64.7 64.7 61.3 47.1 47.1 47.1
Ties 5.9 9.8 5.9 3.9 7.8 5.9 0.0 0.0 0.0 0.0

Table 7 Percentage 'wins': all 51 series

1-•
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Lead Time
Series Model 1 2 3 4 5 6 8 12 15 18
Annual GTAR 50.0 35.0 25.0 25.0 25.0 20.0

LTCG 45.0 45.0 70.0 70.0 55.0 65.0
Ties 5.0 20.0 5.0 5.0 20.0 15.0

Quarterly GTAR 42.9 21.4 7.1 14.3 14.3 28.6 28.6
LTCG 57.1 71.4 92.9 85.7 85.7 71.4 71.4
Ties 0.0 7.1 0.0 0.0 0.0 0.0 0.0

Monthly GTAR 41.2 58.8 47.1 35.3 41.2 41.2 47.1 52.9 52.9 52.9
LTCG 47.1 41.2 41.2 58.8 58.8 58.8 52.9 47.1 47.1 47.1
Ties 11.8 0.0 11.8 5.9 0.0 0.0 0.0 0.0 0.0 0.0

Table 8 Percentage 'wins': analysis by data type

Lead Time

Method 1 2 3 4 5 6 8 12 15 18

GTAR 3.3 4.7 7.4 9.1 13.0 11.0 12.7 7.7 12.7 21.2

LTCG 2.9 4.8 6.8 8.2 13.0 8.6 11.6 13.7 21.1 25.1

Table 9 MeAPE's: all 51 series

An interesting contrast is revealed, though, in Table 9. Despite the higher percentage wins of

the LTCG model at most lead times, the MeAPE's are quite similar for forecast horizons up

to 8 periods, and the GTAR model tends to have smaller MeAPE's thereafter. What seems to

be happening here is that the global trend approach is rarely much inferior to the local trend

model, but sometimes the LTCG model can give forecasts which are quite a long way from

actual values. Perhaps this reflects the situation depicted in Figure 2 where the LTCG at time

A fails to adapt properly in the longer term to business cycle effects in the data path

represented by the dashed line.

series

111•11

•

- GT

LTCG
MON

LT

0 A time
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Figure 2 Local trend with constant growth

Having said that, the local trend constant growth model is still clearly superior to the global

trend with autoregressive error model in most cases, especially for the quarterly and annual

data.

8. CONCLUSIONS

It has been shown in this study that there can be significant gains from including an AR(1)

disturbance with a global linear trend. Nevertheless, it was established that the local trend,

another variation of the classical trend concept to allow for structural change, also performed

remarkably well. In fact the special case of the local trend, with its growth rate restricted to

be constant, can often out-perform a global trend with AR(1) disturbances.

The results imply that structural change is often of a form that makes questionable the

concept of a long term secular trend in many business and economic time series. Structural

change can have a significant impact on underlying levels, but not necessarily on growth

rates. The case for the use of local trends with constant growth rates appears to be quite

strong.

It remains true, however, that each series potentially has its own idiosyncrasies. As such it

is still a good practice to trial many methods before choosing one with which to generate

forecasts. The message from this study is that business forecasters should include Holts

trend corrected exponential smoothing with the restriction a2 = 0 in their kit bag of

techniques. Not only may this prove to give better forecasts than its traditional unrestricted

..

,

1
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counterpart, but it also simplifies and reduces computational loads for finding minimum sum

of squared error estimates.
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