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INTRODUCTION

As indicated by Chatfield (1993) in his comprehensive state-of-the-art review, the

construction of valid prediction intervals (PIs) for time series continues to present

considerable difficulties. In particular, Chatfield notes a number of reasons why PIs may be

too narrow; these include:

"Model parameters may have to be estimated.

Innovations may not be normally distributed.

There may be outliers in the data.

The wrong model may be identified.

The underlying model may change, either during the period of fit or in the future."

In this paper, we focus upon the first of these issues. If the uncertainty relating to parameter

estimation is not allowed for explicitly, the resulting prediction intervals will be too narrow.

Further, the non-linear nature of the parameter estimates in time series makes the problem

intractable as regards an exact analytic solution, so we develop various approximate solutions

which are then explored in a simulation study. Only when we are confident of our ability to

produce reliable PIs in the basic case can we address the remaining issues. Thus, in the

present paper, we examine the construction of PIs when the parameters are unknown and the

errors are assumed to be normal, leaving the other issues to be addressed in further research.

We identify four approaches to the construction of prediction intervals and report on an

extensive simulation study of these alternatives. The particular model used in our simulations
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is the additive Holt-Winters scheme; see Example 2.2 below. Yar and Chatfield (1990)

provide PIs for this scheme based upon its ARIMA representation and setting the parameter

values equal to their estimates (the ̀ plug-in' approach). These authors find the method to be

superior to previous, albeit heuristic, approaches and the plug-in PI is one of the options

considered in our study. However, rather than use an ARIMA framework, we have opted for

a state space scheme; details are given in section 2.

The principal method considered in the paper is a Bayesian simulation scheme. Ansley and

Kohn (1986) showed how to obtain the conditional mean squared error (MSE) for a time

series in the state space framework and pointed out that the correction to the MSE has a

Bayesian interpretation. Under appropriate conditions we can use the asymptotic sampling

distribution developed by Ansley and Kohn(1986) to generate the predictive distribution,

using simulation. De Jong and Whiteman (1994) followed this approach in developing PIs

for AR(p) schemes; the resulting simulated distribution is shown to converge to the

predictive distribution using a result of Geweke (1989) and the same justification may be

employed here.

An alternative approach would be to use a complete Monte Carlo Markov Chain (MCMC)

approach; see Barnett, Kohn and Sheather (1996, 1997) for the development of MCMC

estimation procedures for ARMA models. Our method uses an analytic approximation to the

posterior distribution of the parameters, which we then feed into the computation of the

predictive distribution. Thus, our scheme may be viewed as a 'partial' MCMC technique,

which should be less demanding computationally, an important consideration when a large

number of series is to be analyzed.
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Another approach would be to consider the non-parametric bootstrap; see, for example,

Thombs and Schucany (1990), Kabaila (1993) and McCullough (1994). However, since our

current focus is on getting the correct coverage with a known underlying error process, we

have not pursued that line of inquiry at this time.

In the paper, we address three main issues:

1. the extension of the Bayesian simulation approach to state space schemes;

2. the use of approximations to simplify the computational task;

3. an extensive simulation study to determine whether the suggested approach provides PIs

with the appropriate coverage.

The structure of the remainder of this paper is as follows. In section 2, we compare single

source and multiple source state space schemes and justify our use of a single source model.

In section 3, we describe the various approaches to be considered for the construction of

prediction intervals. Section 4 describes the simulation study and summarises the

conclusions from that study. The summary and outline of future directions appears in section

5.

2. STATE SPACE REPRESENTATIONS

We consider the usual autoregressive integrated moving average or ARIMA (p,d,q)

representation for a time series given by 0(B)w, = 9(B)e, where w, = Vd y„ V=(1-B), B is

the lag operator and ti) and 0 represent polynomials in B of orders p and q respectively. The

errors {Et} are taken to be independent and identically distributed with zero means and
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constant variances; that is, et—IID(0,(72). The polynomials 0(B) and 00) may be partitioned

into regular and seasonal components, and we may add seasonal differences in the usual way.

Akaike (1974) showed that any ARMA(p, q) scheme has a Markovian state space

representation consisting of the observation equation y, = h' x, and the state equation

x, = Fx,_, +be, where xt is the state vector of order k [k--max(p,q+1)] , h'= (1,0,...,0) ,

0 I
b'= (1, ytk-1) and F = ,41 , the wi being the psi-weights given by the

gip • • • •

coefficients of powers of B in 61(B)/0(B). It is a single-source model since only a single

source of stochastic variation (c) is included in the model specification.

Multiple source representations are also available (c/f Harvey, 1990, chapter 2) with a

measurement equation y, = h'x, + e, and state equation x, = Fx,_, + C8, where C is usually

the identity matrix, gt is a vector of independent errors that are also independent over time

and are independent of et+i for all j. ARIMA schemes may be represented by such a process,

but sometimes restrictions must be placed on the ranges of the parameters. If C is sufficiently

general, these restrictions disappear, but the diagonal form of C is the only one used to any

extent.

An alternate single source representation (Snyder, 1985) is

State Space Model: Single Disturbance Source (SSMS) 

y, = + e, where x, = Fx,_i + ae, and c, IID(0,a2) ,

5
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a being a (k x 1) parameter vector. A variation uses xt instead of xt_i in the measurement

equation, but the present version is more convenient and the two schemes are formally

equivalent. Aoki (1994) derives this structure as his 'forward-innovation representation' and

develops estimators for the multivariate case. Any ARIMA(p, d, q) scheme may be

01 T 01+ 01
represented by an SSMS with F = Ak-1 and a =

_Ok 0 
Ok ±ek_

where k= max(p + d,q) .

In the reverse direction, any SSMS can be expressed as an ARIMA model. We can write the

state equation of (2.1) as

x, = (I — as,. (2.2)

Substituting (2.2) into the measurement equation of (2.1),

y, = (I — + 1)s, =Li t(B)e,. (2.3)

Equation (2.3) is the moving average form of the state space model. If we write

Fj = IJAN where A is the diagonal matrix of eigenvalues and (U, V) are the matrices of

eigenvectors, (2.3) becomes

y, = (h'U(I — AB)' VaB +1)e, .

If all eigenvalues of F lie inside the unit circle

y, = (1 + h' I.J(E AJB-1+1)Va)e1 .
1.0

The convergence of the coefficients in the infinite polynomial v(B) corresponds to the roots

of (v(B))-1 =0 lying outside the unit circle. Thus y, will be stationary if and only if the

eigenvalues of F are inside the unit circle.
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In the case where F has unit eigenvalues, we can write the state equation of (2.1) as

(I —FB)x, = as,. (2.4)

We can multiply both sides of (2.4) by the adjoint of I —FB , W(B), to obtain

det(I — FB)x, = W(B)as, . (2.5)

If the eigenvalues do not exceed one, then

det(I— FB) = G(B)H(B)

where G(B) is a polynomial whose roots are all the unit eigenvalues of F, and H(B) is a

polynomial that has an inverse. Then (2.4) can be written as

G(B)x, = W(B) 
asH(B) '

The new substitution into the measurement equation of (2.1) will produce the following

ARIMA model in place of (2.3):

I, w(B) ow ± G(B))61 CYO)*
G(B)Y, 

H(B)

(2.6)

-1 If an eigenvalue of F exceeds 1, then the roots of [v(B)] he within the unit circle and the

process is not stationary and cannot be made stationary by applying unit root operators.

In a similar manner we can derive the requirements for invertibility. We may write the

transition equation of (2.1) as x, = Fx,_, + a(y, — = ay, + DBx, where D = F — och'.

Thus

x, = (I — DB)-1 ay, (2.7)

Substituting (2.7) into the measurement equation of (2.1)
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y, = h' (I —DB)-1 ay,_, +61.

Hence

(1+ h'(I—DB) locB)y, g(B)y, = e, (2.8)

Equation (2.8) is the autoregressive form of the state space model. This model will be

invertible (ie roots of (740-1 = 0 lie outside the unit circle) if and only if the eigenvalues of

D lie inside the unit circle. An important observation for later use is that D' 0 as t --> co

if and only if the model is invertible.

Example 2.1: AR(1) Scheme

The state space scheme y, = p,_, +e, where p, = + ae, corresponds to the

ARIMA(1,0,1) scheme y, = Øy,_1 + e, —(0— a)e,_, with invertibility condition

14)-al<1 and stationarity condition 14)1<1. Referencing the SSMS equivalent, D=(4)-a)

and F=4), yielding the same invertibility and stationarity requirements.

The primary focus in section 4 is on the following special case of the SSMS which underlies

the Holt-Winters method of forecasting (Winters, 1960).

Example 2.2: Additive Holt Winters Model

The observation equation y, = t,_, +b, + c,_„,+ e, is accompanied by state equations

for the level = +b,_, + als„ the growth rate b,=b,_1+a2e, and the seasonal

factors c, = c,_„,+ a3e, . By eliminating the state variables, it can be shown that this

example reduces to the seasonal ARIMA scheme found by McKenzie (1984) for the

Holt-Winters method. It may then be established that the conditions 0<a1<2,



0<2a1-Fa2<4 and 0<a3<1 are necessary for invertibility. The full conditions are given

by Archibald (1990).

An empirical study by Garcia-Ferrer and Del Hoyo (1992) contrasted the multiple source

scheme (Harvey's basic structural model or BSM; Harvey, 1990) with ARIMA modelling for

a number of series. Garcia-Ferrer and del Hoyo conclude that the ARIMA formulation

generally produces better predictions than BSM, a result they attribute to the lack of

orthogonality among the components of the state vector. Given the equivalence of the

AREVIA and SSMS representations, their conclusions imply that the SSMS form of the BSM

is superior to its traditional multiple source counterpart. Note that the issue of orthogonality

does not arise with SSMS.

3. MODEL ESTIMATION AND PREDICTION INTERVALS

3.1 Kalman Filter Approach

Maximum likelihood estimates of the parameters a and so- may be obtained using a

procedure that incorporates the Kalman filter to expedite the evaluation of the likelihood

function (Schweppe, 1965). The Kalman filter for the SSMS (Snyder, 1985) includes the

equations

el= .Y1 — hi xi-iii-i (3.1)

and

x0 = Fx,--11/-1 + ai (Yi — 11' x/-11/-1 ) (3.2)

where x,1s denotes the estimator for xt based upon the sample Ys=(yi,...,ys ) and where at is

the Kalman gain. From SSMS and (3.2), the estimation error satisfies the recurrence
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relationship x,1, — x, = (F — ,_1111 — x,_1) + (a, — a)e, from which the variance of xtit,

a2Vt say, may be obtained. Minimization of the variance with respect to a, yields the

expression for the Kalman gain a, = (FV,_111. + a) / (1+ h'V,_111) . Provided the process is

invertible (see section 2 and 3.2) Vt will converge to zero as the sample size increases, so that

at tends to a. In the steady state the updating equations correspond to those of exponential

smoothing.

It should be emphasised that it only makes sense to use the Kalman filter for normally

distributed disturbances. In other cases, the Kalman filter still yields the best linear filter, but

this may not be compatible with maximization of the likelihood function.

3.2 Exponential Smoothing

An inherently simpler strategy is to bypass the Kalman filter and use exponential smoothing

from the outset. Conditioning on a trial value for xo and assuming the sample Yn = y„)

is known, SSMS implies that fixed successive values of the state vector x, can be computed

recursively with the error correction form of the exponential smoothing equation

x, = Fx,_i + a(y, — h'x,_,). (3.3)

Strictly speaking the xt should be read as x, I Y,_1,0,xo in (3.3) where 0 denotes the vector

of unknown parameters contained in (h, F, a ,a). The SSMS then implies that

y, I Y,_1,0,xo IID(ht x,_1, a2) from which it follows that the likelihood function has the

form L,(0,x011) = up(y, Y 1,0,x0) where p() is the pdf for e,. Since xo is treated as a
/.1

fixed vector of unknown parameters we have here a conditional, rather than a marginal,

likelihood function.
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In the case where the likelihood is based on a normal distribution, the maximum likelihood

estimate of x0, denoted by x01„ , for given 0, is a linear least squares estimate. Estimates of

successive state vectors, given a sample of size n, are then Obtained with the recurrence

relationship based on (3.3)

= Fx,_11„ + a(y, — x,_11„). (3.4)

This is similar to the updating equation (3.2) of the Kalman filter, there being two

differences:

a) the Kalman gain is replaced by the vector of smoothing parameters;

b) filtered values of the state vectors are replaced by corresponding smoothed values.

The links, for given 0, are further highlighted by the relationship

Xnin CIO n Xn_11,7_1)-Fpn (X00 — X0in_1 (3.5)

This equation is obtained by rewriting equation (3.4) as xo, = Dx,_11„ + ay,. Lagging this

recurrence relationship with respect to the sample size n rather than t, and then subtracting the

result we obtain (x — = D(x,_11„ x,_11„_1) with a solution (x,k, _1) = D1(x01n — x01„_1).

Solving for x,i,„ using (3.4) to substitute for x/0_1 and letting t = n, we get (3.5).

This is a decomposition of the updating relationship (3.2) of the Kalman filter into three

components: an origin shift effect, a structural change effect, and a learning effect. Although

never explicitly considered beyond period 1, the learning effect indicates that the Kalman

filter implicitly revises the least squares estimates of the seed vector xo in the light of new

information provided by the latest observation y,. If the process is invertible (see section 2)

the learning effect disappears in large samples and we are left with exponential smoothing.
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As indicated earlier, the Kalman filter can only be used as part of the maximum likelihood

procedure when the disturbances in the SSMS are normally distributed. The exponential

smoothing method outlined in this section, however, can be applied for any disturbance

distribution. The seed vector estimates no longer correspond to linear least squares estimates

and the links with the Kalman filter disappear. This is of little consequence, however,

because the method continues to yield maximum likelihood estimates.

For the rest of the paper the maximum likelihood estimates of 0 and xo will be denoted by

and I° (replaces x0,). Likewise I, will replace ;in as the estimate for x„ obtained by

applying (3.3). At some points of the paper a will not be part of 0 and its maximum

likelihood estimate will be denoted by &.

3.3 Point Predictions and Prediction Intervals

Once the maximum likelihood (ML) estimators have been found, we construct both point

predictions and prediction intervals (PI) for up to j periods ahead; j=/,2,...,r. The point

predictions for t = n+1,...,n+ r are the conditional expectations of the model (2.1):

= h'1,_1 and 1, = F1,_1 . Three principal approaches for the PI's will be considered: the

`plug-in' method, a linear approximation and a Bayesian simulation scheme. For

completeness, we include the heuristic PI construction outlined in Bowerman and O'Connell

(1993, Chapter 8) and call it the heuristic method (HEM). To simplify the notation we will

use yp = (y1 ,..., yn) for the sample of past values and v (vf = n+1 • • • 5 Y n+r) for future

values.
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'Plug-in' Method (PI)

For the construction of the PI by the ̀ plug-in' method, the density function p(yf I 0, xo, a, yp)

of the future time series is approximated by the Gaussian density 0(yflo,i0, &, yp). The

predictions are determined in the usual way from this distribution. This method is equivalent

to the usual procedure where we assume the psi-weights, yt 1 , which may be determined from

the parameters, are known. We anticipate that this method will yield intervals which

understate the true width.

Linear Approximation Method (LA)

The Linear Approximation Method accounts for the sampling error that is associated with 61,

where a is not included in 9. We expect that this method will produce intervals with better

coverage than the PI's from HEM and PIM. Let et denote the t th residual estimated from a

sample of size n obtained during the calculations with (3.3) and write e'= [e'p ,01, where

ep' = [e1,...,en] and e' = [E1p,e'f ] is the corresponding (n+r)xl vector of error terms; the

vector of zeros corresponds to the predicted values for ef . For an invertible process, as noted

in section 3.1, the dependence of yf on xo will be slight; thus, we assume that y is

approximately a linear function of 0 and a only and write y* = ZO + Le where y* denotes y

minus the constant term from the Taylor series expansion where the matrices Z and L

contain the derivatives of y with respect to 0 and e, evaluated at [6, e] . Note that L is a unit

lower triangular matrix because the typical yt cannot depend on future values of the

disturbances.
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This linear approximation can be expressed as the following equations for the past (p) and

future (/) values

*
yp =Zpo+LppEp (3.6)

* y

yf .---.. 
7 
..,f,

al, 
+ ,..,,pfep +LffEf (3.7)

Assuming a diffuse prior, we approximate the posterior by a Gaussian distribution with mean

6 and variance

Var(Oicr,x0,yp)= o-2(ZpZpil (3.8)

where L Z =Z
PP P P *

To construct PI's we need the variance of the forecast error for future time periods. In the

development of this variance first solve for ep in (3.6) to get

Ep = la(4—Z pe).

Then substitute (3.9) into (3.7) to find

y*f =(2-f — LpfZp)0 +Lffef + L pf I :pip Y *p •

This equation can be rewritten in the following form

* 7_, .-, _
Yf 

_ 

— L fbl + LffEf + const

14
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where 2-f = Zf Lpf Zp • As a result, the distribution p(yfIxo,c,y p) is approximated by

p(37f110,ii-,yp) which, in turn, is approximated by a multivariate Gaussian distribution with

mean (h'1„+1,...,h'x„„) and variance matrix 0-2(2-f (Zp'Zp)-12-f +LffL'ff ). The prediction

intervals, for a specified coverage probability, are determined from a standard Gaussian

distribution.

In our context, some of the elements of 0 must be nonnegative. Thus whenever 'e), < 0 , we

replace it by 0 for the estimation of Var(y f10,x0, cr, ye) . Since we still have yet to include

the sampling error for & in the variance matrix, it may be possible to improve the coverage

of the PT's further. We investigate the addition of this sampling error in the next method.

Bayesian Simulation Method (BS) 

We may specify the sampling distributions for 6,10 and a in terms of the joint pdf:

p(o, xo, 0,x0, a); where p() denotes a generic pdf. We may then develop the predictive

distribution, in the Bayesian framework of Aitchison and Dunsmore (1975), as

P(YfiYp) = PCYf y p,0,x0,a)p(O, x0, ci yp )(d0dxodc) (3.11)

where the differential element covers all the items in 0 and inxo , so that the triple integral

represents k+a+1 dimensions in all, a being the dimensionality of t9 and k being the number

of states. The posterior density for (0, xo, c) is determined from the sampling distribution

and a suitable prior in the usual way as

p(0,x0,cri = P(Oic,x0,Yp)P(aixo,Yp)P(xolYp)

15
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In our numerical work, we found that I, tended to x, quite quickly whenever the estimates of

the smoothing parameters were non-zero; this observation has two main consequences: first

of all, the results were largely unaffected by the variations in the seed state vector ;

secondly, this relative insensitivity led to some numerical instabilities, particularly when

m=12. For both reasons, we decided to focus attention upon the variations in 0 and & only.

Thus, we now reformulate (3.11) for the current problem as:

P(YfiYp) = f5p(y4yp,o,i0,0-)p(0,GrlYp,10)(d0dcr) (3.13)

that is, we perform a simulation to arrive at the predictive distribution, which has the form:

p(yf Yp p(yffyp,0,.20,0")P(01Yp,20,a)P(alYp,i0)(Cleda) (3.14)

A Monte Carlo integration method is employed to evaluate p(yffyp) as follows; the steps

are entirely the same as those described in Ord, Koehler and Snyder (1997):

a) +154 ,y p) is approximated by an inverted gamma distribution. A value of cr2 is

randomly generated from the approximating distribution.

b) p(Olcr,10,yp) is approximated by a Gaussian distribution with mean 0 and variance

matrix (3.8). A value of 0 is randomly generated from the approximating distribution.

Those elements of 0 which violate the invertibility conditions are adjusted. For example,

for the additive structural model in Example 2.2, we saw that the smoothing parameters a

must be nonnegative. Negative values are truncated to zero. (We ignore the other

restrictions on the smoothing parameters for the Holt-Winters method because we rarely

found them to be binding in practice.)
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c) The distribution p(yf 10,X0, o-,y p) is approximated by a synthetic sample of M values of

the vector yf generated from the model in Example 2.2. The future values of e, required

for the calculation of each instance of yf are themselves generated from an AT(0,o-2)

distribution. Thus, for each yf we estimate the probability density function by

P(YfiYp)= N-1EP(Y1iYp,01,i0,a1) (3.15)

where the N sets of values of Oi and a, are generated in accordance with steps a-b above.

d) Prediction intervals are constructed directly from the sample of the yf , for a specified

confidence interval P, by deleting those M(1— P) sample values that are furthest from

the associated point prediction for each period t. The smallest and largest values that

remain in the culled sample are used as the lower and upper boundaries of the prediction

intervals.

This method is similar to one proposed by Thompson and Miller (1986) for stationary AR(p)

processes. They do not impose constraints on the parameters for stationarity. Nor do they

employ maximum likelihood estimates.

4. THE SIMULATION STUDY

A simulation study was undertaken to compare the above prediction interval methods. We

constrained the scope of the study to the additive Holt-Winters method of forecasting. Our

choice was motivated by the fact that the additive Holt-Winters method is widely used in

practice, that traditionally users of this method have relied on heuristics rather than sound

statistical methods to compute associated prediction intervals, and that the structural model

17



underpinning it is a non-trivial example from the ARIMA class ( as shown in Example 2.2).

Any simulation study is necessarily limited by the range of model options selected, but we

believe that the results of our study are reasonably representative of more complex models,

and likely to provide greater insights than special cases such as AR(1) or MA(1). The case of

the multiplicative HW scheme has been considered in Ord, Koehler and Snyder (1997).

4.1 Design

Each original series was generated using the additive Holt-Winters scheme described in

Example 2.2. The initial conditions were: to =100 , b0=2, cpm = A sin(27y/m), j=1,2...,m

where A denotes the seasonal amplitude. Clearly any distribution may be used in the

simulations, although our emphasis in this paper has been on the normal distribution. We

considered a mixture of normals (1-q)*N(0,1) q*N(0,4) for st/a, q representing the

proportion of outliers. Prediction intervals were generated for probability levels 0.90, 0.95

and 0.99. The specified factors in the design are shown in Table 4.1. Note that one set of

values for a is (0,0,0) so that we may examine the impact of boundary values upon the

Bayesian simulation method.

-- Insert Table 4.1 ----

The design generated a total of 36 scenarios or factor combinations for quarterly data and 24

for monthly data. Each scenario corresponds to a single choice for (n, A, a, a) from Table

4.1. Each scenario was replicated 10 times. For each replication, we executed the following

sequence of steps:
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a) generate estimates of x0, denoted by i. , using Winters' approach (see Bowerman and

O'Connell, 1993, Chapter 8), based upon the first three years of data.

b) determine the ML estimators for a conditional upon X. ;

c) generate the forecasts for 8 lead times with quarterly data and 24 lead times with monthly

data.

d) generate the PI for each of the four approaches described earlier: heuristic, plug-in,

Bayesian simulation, and linear approximation.

e) for each of the four methods generate intervals for 0.90, 0.95 and 0.99 probability levels.

This entire process was done twice: once when the error terms are normally distributed (8,640

intervals for quarterly data and 17,280 for monthly data) and once when they have a mixed

distribution. We used N=M=1000 and based the analysis upon expression (3.15). The

simulations were carried out using GAUSS on a Pentium PC.

4.2 Analysis

A so-called coverage index, defined by

CI = (proportion of original series that fall within constructed PIs)/(nominal coverage),

was used to measure the performance of the prediction intervals. Thus, when the nominal

coverage is (1-a), CI has an upper limit of 1/(1-a) or 1.11, 1.05, 1.01 for the values 0.90, 0.95

and 0.99 respectively. Since we want CI to be concentrated around 1.0, it comes as no

surprise that the measure exhibits marked negative skewness. In general, we found the

median to be a more reliable guide to performance than the mean, although both sets of

values are recorded in Tables 4.2-4.3. The left interquartile range(LQ=median - lower

quartile) was used to describe variation in the lower tail, and PUL, the percentage of CI
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values hitting the upper limit was used to describe the behaviour of the upper tail. The

standard deviation was found to be unreliable as a summary of variability because of the

asymmetric nature of the distribution and the severe impact of a few extreme values.

-- Insert tables 4.2 and 4.3 —

The results presented in these tables as percentages, are averaged across replications and

scenarios; that is, we report 'main effects'. Thus, for example, the CI values in Table 4.2 on

the impact of sample size for quarterly series with q=0 are each based upon 2880 values

[={36 scenarios} X {10 replicates} X {8 lead times} X{3 levels of PI} / {3 levels of n}]. As

observed earlier, each value is based upon M = N = 1000 iterates. With the exception of the

row labeled 'Mixed', all results are based on normally distributed disturbances. The single

row for a non-normal distribution shows results for a mixture of normal distributions with q =

0.2.

4.3 Interpretation of the results

An examination of Tables 4.2-4.3 leads to the following conclusions, grouped by method.

Heuristic (HE) 

1. Coverage is below nominal in all major categories, but generally close to that of the plug-

in method.

2. Underestimation appears to be most serious for small sample sizes, longer lead times, a

confidence level of 90 percent and the intermediate level of smoothing constants.

3. Changes in the standard deviation, the seasonal amplitude, and the presence/absence of

outliers seem to have a negligible impact on performance.
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4. Coverage tends to be lower for monthly than for quarterly series.

5. The values of LQ and PUL tend to be about the same as for the plug-in method. In each

case the LQ is somewhat higher than for the other two methods, and the PUL is very

small, consistent with the persistent tendency for the intervals to have coverage below

their nominal levels.

'Plug-In' (PI)

1. Coverage again is below nominal, but slightly better than the heuristic method for longer

lead times.

2. Underestimation occurs when the sample size is small (especially for monthly data), for

longer lead times, when confidence level is 90 percent, for the highest level of the

smoothing constants (especially for monthly data).

3. Changes in the standard deviation, the seasonal amplitude, and the presence/absence of

outliers seem to have a negligible impact on performance.

4. Coverage tends to be lower for monthly than for quarterly series.

5. Comments for LQ and PUL as for the heuristic method.

Ba esian simulation (BS)

1. Coverage is a little below nominal across all major categories for quarterly data primarily

because of the effects of the smaller sample size, which has spill-over effects into the other

summary classifications.

2. For monthly data, the average coverage is quite close to the nominal level.

3. In the case of quarterly data, some underestimation occurs for the highest level of

smoothing constants, but this is much less marked than for the heuristic and plug-in

approaches.
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4. The LQ values are somewhat lower than for the heuristic and plug-in methods, but are

accompanied by higher values for PUL; the linear approximation has slightly higher LQ

values, but much lower PUL levels. There are modest improvements in these measures

with increases in sample size.

5. Including the sampling error for 0 and a- in the variance of yf improves coverage.

Linear Approximation (LA)

1. The intervals tend to be too narrow although the results are quite reasonable in larger

samples.

2. LQ is higher than the Bayesian approach, but PUL is lower.

3. Coverage is much better than heuristic and ̀ plug-in' methods. Taking the sampling error

for 6 into account makes a difference.

Overall, we regard the performance of the Bayesian simulation as superior to the other three

methods, unless the sample size is large. For large samples, the linear approximation method

is reasonable but not quite as good as the Bayesian simulation method. Although the

Bayesian simulation method is computationally quite intensive, it takes less than a minute on

a Pentium computer for application to a single series and provides an estimate of the

complete predictive distribution, not just the PI; Tsay(1993) and others have argued that such

an approach is more desirable. In particular, the entire predictive distribution is required

when we consider cost-based loss functions, rather than measures such as squared-error loss.

Also, Bayesian simulation is readily extendable to non-normal errors, although its

performance remains to be explored.
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Finally, we note that the results for the Bayesian simulation hold up even when a = 0. As a

practical matter, we recommend that the model be re-estimated whenever one or more (close

to) zero estimates arise; the PI should then be constructed from the revised model.

5. SUMMARY

We have identified four approaches to the construction of prediction intervals for linear time

series processes. Using the additive Holt-Winters method as an example, we conducted an

extensive simulation study to examine the coverage provided by these methods and found the

Bayesian simulation approach to be superior to the others, at least in the case of normally

distributed errors. We found considerable gains in the accuracy of coverage by taking the

estimation of 0 and a into account in the Bayesian simulation method.

Chatfield (1993) noted that several problems remain in the construction of valid prediction

intervals, as discussed in the Introduction. We believe that the present framework will

provide a sound basis for examining a number of these issues.
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Table 4.1 Design of Simulation Experiment

factor symbol levels

number of seasons in year m 4 12

sample size n 16* 36 72

seasonal amplitude A 0 30

proportion of outliers q 0.0 0.2

standard deviation a 5 20

forecasting horizon h [=.2m]

smoothing constants a (0,0,0), (0.2,0.1,0.1), (0.8,0.1,0.1)

* only used for m=4
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Table 4.2 Coverage index: quarterly data: normal disturbances

Average Median LQ PUL

Method HE PI BS LA HE PI BS LA HE PI BS LA HE PI BS LA Count

Effect of prediction lead time

1 89 88 97 95 94 93 99 99 16 16 13 13 1 1 13 7 1080

2 86 85 94 92 92 91 98 97 16 16 14 15 2 1 11 5 1080

3 84 84 93 91 90 89 97 96 16 16 15 15 2 1 9 5 1080

4 81 82 91 90 88 88 97 95 18 16 15 16 3 2 10 6 1080

5 76 79 91 88 83 86 96 94 17 17 15 16 2 3 12 6 1080

6 73 78 89 87 80 85 96 93 17 17 15 16 3 3 12 7 1080

7 71 78 89 86 77 86 97 94 17 17 15 16 2 3 14 8 1080

8 69 78 88 86 74 86 97 94 17 17 15 16 3 4 15 9 1080

Effect of nominal interval probability

90 74 77 88 86 81 83 94 92 17 17 16 16 0 1 3 1 2880

95 78 80 91 89 86 88 97 95 17 16 15 16 1 1 6 3 2880

99 84 87 96 93 93 94 99 98 16 16 13 14 6 6 27 17 2880

Effect of sample size

16 65 68 89 84 68 72 96 90 16 16 15 16 2 2 20 8 2880

36 81 83 91 89 89 89 96 95 16 16 15 16 3 2 9 6 2880

72 90 92 95 95 96 96 99 99 15 15 13 13 3 3 8 6 2880

Effect of distribution

Normal 79 81 91 89 87 89 97 96 17 16 15 15 2 2 12 7 8640

Mixed 79 83 92 90 88 91 98 96 16 16 13 15 1 2 9 4 8640

Effect of amplitude of seasonal cycle

0 77 81 91 89 86 88 97 96 17 16 15 15 2 2 11 6 4320

30 80 82 92 90 88 90 98 96 16 16 14 15 3 2 13 7 4320

Effect of standard deviation of disturbances

5 78 81 91 89 88 88 97 95 16 16 15 16 2 2 11 6 4320

20 79 82 92 90 86 89 98 96 17 16 14 15 2 3 13 8 4320

Effect of smoothing constants

0 85 86 97 95 95 94 100 99 16 16 13 13 2 2 18 10 2880

20 77 82 92 90 80 86 96 94 17 17 15 16 0 1 8 4 2880

80 74 76 86 84 86 84 93 90 17 17 16 16 5 4 11 6 2880
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Table 4.3: Coverage index: monthly data: normal distribution

Average Median LQ PUL

Method HE PI BS LA HE PI BS LA HE PI BS LA HE PI BS LA Count

Effect of prediction interval

1 83 82 97 91 89 88 100 96 26 26 17 21 0 0 21 3 720

2 80 79 96 88 87 86 99 95 27 27 18 22 0 0 21 2 720

3 77 77 95 86 84 85 99 93 28 28 18 24 1 1 23 3 720

4 74 77 95 84 84 85 100 92 29 28 17 23 1 1 26 3 720

5 71 77 95 84 79 84 100 92 29 28 17 23 2 1 30 3 720

6 68 77 95 84 76 85 100 92 30 28 17 23 2 2 30 5 720

12 56 84 95 88 50 92 101 95 23 23 16 22 2 11 38 13 720

18 48 87 95 90 35 95 101 97 15 22 16 21 2 16 42 20 720

24 45 88 95 91 26 97 101 99 11 21 16 18 3 22 44 24 720

Effect of nominal interval probability

90 54 79 95 84 54 85 101 91 25 28 16 24 0 6 20 6 5760

95 57 82 95 87 60 90 101 95 27 25 16 22 1 9 33 10 5760

99 64 88 96 92 73 96 101 98 30 21 16 20 5 17 54 23 5760

Effect of sample size

36 41 76 96 83 32 83 101 91 14 28 16 24 0 11 50 13 8640

72 76 90 95 93 89 95 100 98 26 22 17 20 4 10 22 13 8640

Effect of distribution

Normal 58 83 95 88 62 91 101 95 28 24 16 22 2 10 36 13 17280

Mixed 60 84 95 88 66 92 100 96 29 23 14 20 1 7 30 9 17280

Effect of seasonal amplitude

0 57 81 94 86 58 88 101 94 26 26 16 23 2 10 34 12 8640

30 59 85 96 89 65 93 101 97 28 23 16 21 1 11 38 14 8640

Effect of standard deviation of disturbances

5 57 83 96 88 60 91 101 95 27 24 16 22 2 10 36 13 8640

20 59 83 94 88 65 91 101 96 28 24 16 21 2 10 35 13 8640

Effect of smoothing constants

0 65 87 99 95 84 95 101 100 28 22 16 17 2 22 45 28 5760

20 49 87 97 91 45 92 101 96 20 23 16 21 0 5 37 6 5760

80 60 75 90 78 74 82 99 85 30 28 18 28 4 4 26 5 5760
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