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Abstract

The degree of substitution between private and public per capita
consumption for the G7 countries is estimated over the period 1960 to
1996. Special attention is given to isolating both long-run and short-run
substitution effects. Inferences are produced using a Bayesian method-
ology, with a Jeffreys prior being used to offset an identification problem
in the likelihood function. The marginal posterior densities of interest
are estimated via a hybrid of Markov chain Monte Carlo algorithms.
The empirical results indicate that for the US, Germany, France and
Italy, private and public consumption expenditure are substitutes in the
short-run, but complements in the long-run. The opposite result occurs
for the UK, whilst Japan and Canada exhibit no significant short-run
or long-run relationships.
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1 Introduction

This paper is concerned with estimating the degree of substitution between
private and public consumption expenditure. In contrast to existing empiri-
cal work conducted in the area, special attention is given to estimating both
long-run and short-run relationships. The long-run model is derived from the
theoretical framework of Aschauer (1985). Combined with the assumption
that private and public consumption expenditures are integrated processes of
order one, it is shown that this framework leads to a cointegrating relationship
between the two series. The short-run properties of the model are captured
by the dynamic representations specified for the generating processes.

An important feature of this framework is that it allows for the possibility
that the short-run impact of changes in government consumption can differ
from the long-run impact in both magnitude and sign. In fact, this result
occurs empirically for five of the G7 countries studied in the paper. Specifically,
the empirical results suggest that in the case of the US, Germany, France and
Italy, private and public consumption are substitutes in the short-run, but are
negative substitutes, that is complements, in the long-run. The reverse result
occurs for the UK. In the case of Japan and Canada, no significant short-run
or long-run relationship between private and public consumption expenditure
is found.

In the derivation of the model, the focus of attention is on the extent to
which government consumption expenditure substitutes for, and hence leads
to an ex ante crowding out of, private consumption expenditure. Issues of
Ricardian equivalence are not dealt with. For examples of studies which con-
sider both the degree of substitutability between private and public consump-
tion expenditure and Ricardian equivalence, see Feldstein (1982), Kormendi
(1983), Aschauer (1985), Leiderman and Razin (1988) and Graham and Hi-
marios (1991).1

An outcome of the approach adopted here is that the long-run substitution
properties of the model can be tested solely in terms of the variables, private
and public consumption expenditure. Provided that cointegration is estab-
lished, this rules out the need for the inclusion of other variables as suggested
by Graham (1993), in testing for crowding out, at least in the long-run. The
establishment of cointegration also rules out the need for decomposing govern-
ment expenditure into its sub-components as suggested by Graham and Darby

1Literature which focuses on crowding out with respect to investment rather than con-
sumption, includes Aschauer (1989a and b) and Cebula, Killingsworth and Belton (1994),
amongst others.
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and Malley (1996). Moreover, the cointegration approach highlights the fact
that the Campbell and Mankiw (1990) modelling framework, as adopted by
Graham, focuses only on the short-run relationship and, in failing to take into
account the error correction term, is raisspecified when a cointegrating rela-
tionship between private and public consumption expenditure is established.

In producing inferences about substitutability, or crowding out, a Bayesian
methodology is used, with the marginal posterior densities of interest being
estimated via a hybrid of Markov chain Monte Carlo (MCMC) sampling algo-
rithms; see Geweke (1994) and Chib and Greenburg (1996). A Jeffreys prior
is employed to circumvent an identification problem in the likelihood func-
tion whilst, at the same time, adhering to the principles of noninformative,
or objective, prior specification. This line of approach follows Kleibergen and
van Dijk (1994) and Martin (1997), and contrasts with the work of Bauwens
and Lubrano (1993) and Geweke (1996), in which identification problems in
models of cointegration are solved, in part, via subjective prior information.2
The paper also draws on the work of Phillips and Ploberger (1994 and 1995)
and Phillips (1996), in which objective Bayesian criteria for both model selec-
tion and hypothesis testing are developed. For comparison with the Bayesian
results, a range of classical inferences are also reported.

The advantages of the Bayesian method are as follows. First, it is a coher-
ent way of producing simultaneous estimates of the long-memory component
in the cointegrating error and the cointegrating parameters. The simultaneous
aspect of the procedure means that the accuracy with which the cointegrating
parameters are estimated is appropriately affected by the probability that the
relationship is indeed a cointegrating one. This contrasts with the classical ap-
proach, whereby all inference regarding the cointegrating parameters proceeds
conditionally on the assumption that cointegration exists. Second, given that
the joint posterior distribution for the assumed cointegration model induces
manageable conditional posteriors, a fully parametric Bayesian approach can
proceed via a Gibbs-based MCMC sampling scheme. This enables estimates of
all long-run and short-run parameters to be produced, which contrasts with a
nonparametric classical procedure such as the Phillips and Hansen (1990) fully
modified ordinary least squares (FMOLS) method, which yields estimates of
the long-run cointegrating vector and standard errors only. Alternatively, the
parametric classical procedure of Phillips and Loretan (1991), whilst yielding
both long-run and short-run parameter estimates, is adversely affected by the
above-mentioned identification problem, which the Bayesian method counter-
acts via the use of the Jeffreys prior; see Martin (1996). Finally, conditional
on the data, the results are exact with no recourse required to asymptotic

2The use of Jeffreys priors in overcoming identification problems in models other than
those for cointegration occurs in Schotman and van Dijk (1991a), Chao and Phillips (1996)
and Kleibergen and van Dijk (1996).
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approximations.3
The rest of the paper proceeds as follows. A model of crowding out is

derived in Section 2. The details of the Bayesian inferential method are given
in Section 3. This section includes the specification of the requisite Jeffreys
prior, plus an outline of the Gibbs and Metropolis-Hastings MCMC algorithms
which are applied in the estimation of the relevant marginal posteriors. A more
detailed derivation of the Jeffreys prior is given in an appendix to the paper.
Section 4 provides the empirical results of testing for and estimating the nature
of crowding out in both the long-run and the short-run, over the period 1960
to 1996 for the G7 countries. Section 5 contains some concluding remarks.

2 A Model of Crowding Out

2.1 Derivation of the Model

Following Aschauer (1985), consider a representative individual who chooses to
maximize the following intertemporal utility function with respect to current
and future "effective consumption" q+j, j > o,

°°
Et . E ( 1 1 + y6. Etu(q+j),(U) 

j=o
(1)

where .5 is the subjective rate of time preference, u(.) is a time-invariant, con-
cave, instantaneous utility function and Et denotes conditional expectations
formed at time t. To keep the analysis general, it is assumed that q is some
unspecified increasing function of real private consumption (Ct) and real gov-
ernment consumption (Gt)

C7 = f (Ct, GO,

in which case, (1) is re-expressed as

Et(U) =
00

j=0(
1  i1 + 6) Etv(Ct+i , Gt+i),

with v(.) now specified as a time-invariant, concave, instantaneous utility func-
tion. On the assumption that the individual takes the flow of government ex-
penditure as given, optimizing (1) with respect to q amounts to optimizing
(3) with respect to C.

3As a qualification to this last point Phillips and Ploberger (1994 and 1995) and Phillips
(1996) argue that the data conditioning involved in the Bayesian paradigm and the sim-
plifications which it produces over the classical approach, is not innocuous in a time series
context.
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The budget constraint for the individual is given by

where

Lt

Tt
wt

Et Ct+3 =

CO

1+rj=o
Et(Lt+; — Tt+J) Wt,

= period t labour income,
= period t tax payments,
= beginning of period holding of one-period bonds and
= the real interest rate.

(4)

Defining Bt as government debt of one-period maturity, the government's bud-
get constraint is

1 
oo 

1
00 

( 1 ± EtTt+3 = Bt E(1 r)jEtGt±j'j=o i=o

which can, in turn, be substituted into (4) to obtain

00 
1  

(1
y 

-Dtk-it+3 (1 

oo 

) Et(Lt+, - Gt+i) (wt - Bt).E + + ri=o i=o
(5)

Maximizing (3) with respect to Ct+i, j > 0, subject to (5), yields the following
first-order necessary conditions

1 ± 6)3
Ete (Ct+i(Gt+i)) =A(i+r i> 0, (6)

in addition to the intertemporal budget constraint, with A denoting the La-
grangian multiplier and v'(.) denoting the partial derivative of v with respect
to Ct+i, j > 0. The marginal utility of private consumption is explicitly ex-
pressed as a function of government expenditure in order to highlight the fact
that the latter is treated as given in the consumer's decision making process.

Consideration of the choice of consumption in the two adjacent periods, t
and t 1, leads to the Euler equation

Ete (Ct±i(Gt+i)) = be (C(C)), (7)

where b= (1 ± 8)/(1-1-- r). Since the functional form of neither the initial util-
ity function u(.) nor the effective consumption function f(.) is specified, some
approximation for the marginal utility function v'(.) is required. Motivated
partly by the empirical considerations discussed by Campbell and Mankiw
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(1990) and partly by the theoretical class of models used by Lucas and Rap-
ping (1969), amongst others, v'(.) is approximated by the following log-linear
function

v' (C( G)) = wo ± (.01 ln(Ct) in(Gt), (8)

where the concavity of v(.) requires col < O. Substituting (8) into (7) and
rearranging yields

EtCt+1 = —
w 4.02o 

(b — 1) ± bct —(bgt — Etgt+i),
Wi

where

(9)

c, = ln(CT) and
10gr = ln(GT) for T = t,t ± 1. 
( )

In evaluating the expectations in (9), it is necessary to make an assumption
about both the nature of the generating processes for ct and gt and the nature
of expectation formation. It is assumed that it is appropriate to represent
both ct and gt as /(1) processes,

ct = ct_i Wt and (11)

gt = gt-i+ vt, (12)

with tut and vt being stationary error processes. This assumption is tested em-
pirically in Section 4. In order to simplify the proposed numerical procedure,
vt is specified as an autoregressive (AR) process of finite order q,

‘11(L)vt = rib (13)

with 111(L) = 1 — - 021,2 - - oqLq and L denoting the lag operator.
The error process Wt is specified as a finite order AR process of order k,

A(L)wt = et, (14)

with A(L) = 1 — 7iL — 72L2 — • • • — 7kLk. In keeping with the assumption
of stationarity for vt and Wt, the roots of both 'I(L) and A(L) are specified
as lying outside the unit circle. Both nt and 6t are assumed to be white noise
processes, with respective error variances o-,72 and al and covariance o-7g.

Expectation formation is taken to be rational and, thus, consistent with
the specifications in (11) to (14). Moreover, given the assumption invoked
earlier regarding the status of gt in the individual's decision making process,
it is appropriate to construct expectations of ct±i and gt ±i respectively as

Etct+i = ct 71Act 72Act—i • • • ± 7kAct—fic-11

(OiAgt 1P2Agt-1± OkAgt—[q-11)

077

(15)

41n contrast, Aschauer (1985) adopts a linear specification for marginal utility; see Section
2.3 below.
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and

Etgt+1 = gt+ 11PiAgt+ 02Agt--1+ • • • +1PkAgt-N--ii, (16)

where Act_j = ct-i — ct-(j+i), j = 0, 1,... 7 k — 1 and Agt.....; = gt-; — gt-(j+i),
= 0, 1, q — 1. The representation of Etgt4.1 in (16) implies that gt is

strongly exogenous, as it is both weakly exogenous for 3 and is not Granger
caused by ct. The allowance for or,g 0 means that gt is not strictly exogenous.

Substitution of (15) and (16) into (9) produces

Ct

where

(.02= —wo(b —1) + bct —(b — 1)gt
col Wi

W2 Cjen

± —2—) OjAgt—U-11 —
W1 CYn j=1

= a + Ogt + h(Ag , Ac),

a = 4.4)0

W1

W2

W1

i=

Act_u -I]

(17)

and h(Ag, Ac) denotes a function of present and past changes in ct and g.
Given the assumption that ct and gt are /(1) processes, (17) constitutes a
cointegrating relationship with cointegrating vector (1, 0). This suggests the
following stochastic representation,

ct = a ± Ogt h(Ag , Ac) u

where uf is a general stationary error term. Alternatively, by grouping all
stationary components together, the long-run relationship between ct and gt
is expressed as

c,t = a + Ogt+ut,

where
ut =

is a stationary error term. Once again with a view to simplifying the numerical
analysis, ut is parameterized as the following finite AR process of order p

43(L)Ut = Et. (18)

The underlying error terms in (13) and (18) are assumed to have a bivariate
Normal distribution of the form
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et= (Et,nt)' N0, al2E Vt, (19)
0.21 (722jJ

with E a (2 x 2) symmetric positive definite matrix. The allowance for 0-12
0 accommodates the fact that gt is not assumed to be strictly exogenous.
Furthermore, it is sufficient, in combination with the specification of serial
correlation in ut, to accommodate the fact that ut is a function of both the
present and past values of Agt through h(, •,) •

2.2 Discussion of the Empirical Model

For convenience, all components of the derived empirical model are gathered
together as follows:

ct = a + Ogt+ut,
gt = gt-i+ vt,

43.(nut = -t,
kii(L)vt =Tlt and

et =

(20)

(21)

(22)

(23)

(24)

The parameter fi is the long-run elasticity linking private and public expendi-
ture and, therefore, represents a measure of substitutability between the two.
If < 0 government expenditure can be viewed as a substitute for and thereby
as crowding out private expenditure. If > 0 government expenditure is a
complement for and thereby crowds in private expenditure. If 3 = —1 (+1),
private expenditure is crowded out (in) by the same proportionate amount
as the increase in public expenditure. If 3 = 0, an increase in government
expenditure has no impact on private expenditure.

The short-run dynamics of the model are captured by the coefficients asso-
ciated with the lag polynomials .013(L) and 11f(L) in (22) and (23) respectively.
An important feature of this model is its flexibility, as it is possible for one
type of crowding out to occur in the short-run but be reversed in the long-run.
As noted previously, this is what is found to occur empirically for certain of
the G7 countries considered in Section 4.

The cointegration properties of the model are governed by the polynomial
43(L) in (22). In particular, applying the arguments outlined in Phillips (1991a
and b), the long-term memory of the model is captured by the sum of the
coefficients of this polynomial. If this sum is less than one, ct and gt are
cointegrated. In order to produce, as the basis for inference, the marginal
density of this parameter, it is convenient to reparameterize (I)(L)ut as

cD(L)ut = ut — (25)
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where u7t1.1 = (ut-i, ut-i — ut-2, • • • , ut-[p-i] — th-p)' and P = (Pi, P2) • • • PpY •
As highlighted by Phillips, the parameter pi, defined by

Pi = çb1 ± 02 ± •• •Op, (26)

characterizes the behavior of ut at the zero frequency. As such, it is the
appropriate parameter for capturing the nature of the long-run relationship
between ct and gt.5 The remaining elements in p are defined by Pk = —>Ik Oi•

2.3 Relationship with Aschauer's Model

The crowding out parameter j3 in (20), is directly related to the parameter
representing the marginal rate of substitution in utility between private and
public consumption in Aschauer's (1985) specification. Aschauer assumes a
quadratic utility function,

u(C7) = —0.5(C* — C7)2

and a linear effective consumption function,

= f (Ct,Gt) = Ct 0Gt,

(27)

(28)

where -0* is the bliss level of effective consumption and 0 is the consumer's
marginal rate of substitution between private and public consumption. The
parameter 0 is the focus of Aschauer's work, with estimates of it forming the
basis of his conclusions regarding crowding out. For this model, the marginal
utility function in (8) becomes

il(Ct(Gt)) = C* — Ct — Oct. (29)

Invoking the distributional assumptions outlined in Sections 2.1 and 2.2, as well
as taking expectations to be fully rational, substitution of (29) into (7) yields a
linear relationship between the levels of private and public consumption, with
long-run parameter

= —O. (30)

This relationship highlights the long-run interpretation of 0 and the fact that
inferences regarding it are best produced within the context of a cointegation
mode1.6

5Discussion on the relative merits of the use of this parameter vis-à-vis the largest eigen-
value of the characteristic polynomial associated with the 4.(L) is to be found in DeJong
and Whiteman (1991) and Phillips (1991b).

6In contrast with the Aschauer derivation, no attempt is made in this paper to link
explicitly the parameter 13 in (20) with the marginal rate of substitution in utility between
private and public expenditure. In principle this link could be made by combining a solution
for (8) with a specific form for the utility function in (1).
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An alternative way to understand Aschauer's model, which brings out more
clearly the effect of the rational expectations restrictions as well as the inter-
pretation to be placed on 0, is as follows. Consider the following restricted
version of the bivariate vector autoregressive (VAR) model in the levels of pri-
vate consumption (Ct) and public consumption (Gt) which Aschauer (1985,
equations 15a and 15b) estimates7

t

Gt

61 ± 62Ct-1 63Gt-1 64Gt-2 ± Kt
and

A1 -- 1 - A2-or -1 A3Gt-2 C.

(31)

(32)

Equation (31) can, in turn, be written as an error correction model (ECM) as
follows,

LC t = - (1 - 62) [CYt-i 
63 + 64 

Gt-11 - 64AGt-1 Kt. (33)
1-62

The adoption of the cross-equation restrictions arising from the assumption of
rational expectations; see Aschauer (1985, equation 16),8

63 = 9(62 - A2) and

64 = -0A3, (34)

where 0 is as defined in (29), then produces

O(62 A2 A3)  Gt_i] 9A3AGt-i ± Kt • (35)ACt = 61 - - 62) [Ct-i 1-62 

Inspection of the parameter estimates reported in Table 2 in Aschauer (1985)
shows that A2 ± A3 'A', 1.0, as based on either the constrained or unconstrained
mode1.9 Substitution of this estimated sum into (35) gives

ACt = 61 - (1 - 62) [Ct_1 9Gt_1] 0A3AGt_1

which shows -0 to be a cointegrating parameter and thus interpretable as a
measure of long-run crowding out.

7Aschauer (1985) also includes the variable Dt, the real per-capita net government deficit.
This variable is not important for the long-run specification of the model and is thus excluded
in order to simplify the derivations that follow. In order to avoid confusion arising from an
overlap between Aschauer's parameter notation and that used in this paper, reference to
Aschauers' equations are made using notation which differs from his.

8Aschauer (1985, equation 16) also defines an equation for 81. As this equation is not
needed to identify 0, it is excluded for simplicity.

9That is, Aschauer finds that Gt is I(1).
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3 A Bayesian Inferential Method

This section sets out the procedures for producing Bayesian inferences about
the model in (20) to (24). After describing an identification problem in the
likelihood function in Section 3.1, a Jeffreys prior which offsets these problems
is presented in Section 3.2. Section 3.3 then outlines the proposed MCMC
scheme used to estimate the marginal posterior densities.

3.1 An Identification Problem in the Likelihood

Given the model specified in (20) to (24), the likelihood function for the full
parameter set 0 = fa, 3, E, p,01 is

L(01 c, g) cx izr./2 exp 21tr(E-1S)}, (36)

where c and g denote the n-dimensional observation vectors for ct and gt, and
S = Ent=i ete't is the error sums of squares matrix. Further define

c.

giK
(111.2

(I)(L)ct = ct —
= (I)(L)gt = gt — gtr_i and

2 /
0-11 — 0.12/ °.22)

where 41_1 = (ct_i, Act-i, • • • Act--fp-0, 91:1 = (gt-i, Agt-i, • • • Agt-qp--11)/
and p is as defined at the end of Section 2.2. Decomposing the bivariate
Normal density for et = (St, nty into the product of the conditional density for
Et given nt and the marginal density for Tit, and using this decomposition in
the construction of the likelihood function, an alternative form for (36) is

L((Bic,g) cc 0.3-.-37‘2 " 
r _

1" 20-11.2
E [e; - a(1 — pi) —

X 22
-n/2 Irnf --1 7iT(L)Agti2}.

(0-12/(722)111(L)Agt]2}

(7 20'22

(37)
This form of the likelihood renders transparent two identification problems:

(i) When pi = 1, a is not identified;

(ii) When pi = 1; pi = j = 1, 2, ... , min(p, q) and any excess elements
in either p or 1/) equal zero, ,g;' = W(L)Agt for all t. As a consequence, in
this region of the parameter space, 13 enters (37) via (0 + a12/u22) and
is not individually identified.

The regression parameters are thus not identified when there is an ex-
act unit root in the error term. Lack of identification of a has been doc-
umented elsewhere, within the context of similar models; see, for example,
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Zellner (1971), Schotman and van Dijk (1991b) and Lubrano (1995). The lack
of identification of 3 specifically occurs in a part of the parameter space in
which the quantities ,g;' and W(L)Agt coincide for all t and is equivalent to a
problem of exact multicollinearity. The multicollinearity results, in turn, from
the fact that, given both the assumption of Normality and the allowance for
the endogeneity of gt via the specification of a full covariance matrix E, /3
enters the likelihood via the regression of c on g: augmented by kli(L)Agt.

The lack of identification of a and 3 when pi = 1 can be shown to manifest
itself in terms of a singularity at pi = 1 in the marginal posterior for pi, based
on a flat prior. • Most importantly, the flatness in the likelihood function in
the subspace surrounding pi = 1 produces asymptoting behavior in the mar-
ginal posterior for pi in the region of the singularity. This, in turn, distorts
inferences by strongly favoring a lack of cointegration in cases where the un-
derlying generating processes are cointegrated. A more detailed account of
this pathological posterior behavior is given in the Appendix. Similar results,
for an alternative form of cointegration model, are to be found in Kleibergen
and van Dijk (1994).

3.2 A Conditional Jeffreys Prior

Following the work of Schotman and van Dijk (1991a), Kleibergen and van
Dijk (1994 and 1996), Chao and Phillips (1996) and Martin (1997), the iden-
tification problem described above can be offset using a Jeffreys prior. Being
proportional to the determinant of the information matrix and, hence, in-
versely related to the curvature of the likelihood, this form of prior is a natural
candidate for counteracting the flatness in the likelihood associated with the
identification problem. The likelihood in (37) fails to identify a and in a
subspace defined by certain values of p and 0. As such, it is a Jeffreys prior for
13, conditional on p and V), which has the potential to eliminate both the exact
lack of identification in this subspace and the near identification problem in
the surrounding subspace.

Assuming a priori independence between E and the remaining parameters,
a joint prior for 8 has the form

P(e) oc P(E)P(a, fi, p, 0) • (38)

For the first component in (38), a Jeffreys prior is specified as

p(z) _ izi-3/2
(39)

where .TE denotes the submatrix of the information matrix which relates to
the elements of E, that is IE = E(-02 in L 0E5E1). The second component in
(38) is decomposed as

P(a, AO) o P(a, IMP(P, , (40)

12



•

with the conditional prior p(a, flip, IP) in (40) being assigned the form of a Jef-
freys prior. The derivation of a Jeffreys prior for p(a, /31p, IP) proceeds via the
decomposed likelihood in (37), as it is in that form that the likelihood makes
explicit the conditioning relationships underlying the lack of identification,
relationships which need to be incorporated in the Jeffreys prior.

As detailed in the Appendix, the conditional Jeffreys prior is specified as

p(a, flip,
=1.1.,(31p,01112 ociAii12

where

(41)

A = (g**' g**)([1* , g*]' Pe. [1*, g*]) (42)

and the notation 1*, g* and g** is used to denote respectively, the n-dimensional
vectors for 1 = (1 - pl), giK = gt - p'gLi and gr = xlf (L)Agt. The notation
139- denotes the idempotent matrix

(43)

As pl 1 and the remaining elements of p approach those of b in the manner
described in (ii) in Section 3.1, 1* 0 and g* -+ g**, either of which, in
turn, implies that I Al1/2 0. The prior in (41) thus places zero weight on
the region where the lack of identification problem occurs. More importantly,
as shown in the Appendix, it serves to counteract the distortion to posterior
inferences which occurs in the surrounding subspace. In an extension of the
type of arguments presented in Phillips (1991a and b), (41) can be viewed as
being characteristic of a noninformative, or objective, prior and is, thus, true
to the conventional motivation for using a Jeffi-eys prior. In particular, (41)
reflects the information content of the likelihood in the appropriate manner,
indicating that, conditional on p and IP approaching the values which define
the region in which the identification problem arises, the likelihood becomes
less and less informative about a and )3.

Using a uniform prior for p and in (40), the explicit form of the joint
prior in (38) is

p(a, cc iEr312 1A1112 • (44)

The implications of defining a uniform prior for the dynamic parameters p and
are discussed briefly in Section 4.3. Combining the joint prior in (44) with

the likelihood in (36) yields the joint posterior

p(a, 3, E, p, Pic, g) cc lEhn+3)/2exp{---L-1tr(E-151)}141/2, (45)
2

with (a, fi, E, p, 0) defined on the support D = R1 x R1 x SPDs X RP X Rq ,
where Ifti denotes the Euclidean space of dimension j and SP3s denotes the
space of (2 x 2) symmetric positive definite matrices. This is the expression
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which forms the basis of the Bayesian inferences concerning the presence of
cointegration, the value of the long-run crowding out parameter and the
short-run dynamics.

3.3 Estimation of Marginal Posteriors via MCMC Sam-
pling

The use of a deterministic numerical integration method in producing mar-
ginal density estimates for the pertinent parameters from the joint posterior
in (45) is impractical, due to the large number of parameters. The approach
adopted in this paper is to produce estimates of the marginal densities using a
combination of MCMC sampling strategies, namely the Gibbs and Metropolis-
Hastings (MH) algorithms. For recent papers discussing both the theory and
implementation of MCMC procedures, see Geweke (1994), Roberts and Smith
(1994), Tierney (1994) and Chib and Greenburg (1996).

The Gibbs sampler involves generating a sample from the joint posterior in
(45) indirectly, via an iterative generation of random drawings from all of the
associated conditional posterior distributions. Given the satisfaction of certain
convergence criteria, these drawings represent a realization of a Markov chain
with equilibrium distribution equal to the joint posterior. Continued applica-
tion of the algorithm after the so-called "burn-in" period produces a sample
of values from the joint distribution, from which various functions of inter-
est, including the relevant marginal densities, can be estimated. The explicit
inclusion of the intercept term a in the model causes convergence problems
for the Gibbs sampler; see Martin (1996). This problem is circumvented by
expressing the data in demeaned form and applying the MCMC scheme to the
reduced parameter set 03, E, p, . Using the notation Al to denote the density
function with associated distribution function pi ; i = 1, 2, 3, 4, the full set of
conditional posterior densities induced by (45), and as applied to demeaned
data c and g, are as follows:

p, b, c, g) o exp{ (0 (46)

with 73 = A 1A.1 and o-20 = criL2A -1,

112/(43,p, c, g) cc IEI-(n+3)/2 exp{ (47)
2

-1
pc3' (p10 , E, c, g) -)2} x (g*Tg-g*)1/2, (48)

2o-p

with = .13-2-1B1 and o-p2 = u11.2B 1, and

-1
p(41 OPP , E, p, c, g) cc expf-

2(72 
- )21 x (g../p9.g..)1/2 (49)
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with b = E2-1E1 and o-22 = 0'22.1E2-1. The additional notation used is defined
as follows:

A1

A2

B1

- gic* — (0.121 u22)91,
gsag*

- ugu - (0-12 1722)g**]
=

= n[v — (u12/0-11)ul,
= VITq and

2 
- 0-22 — 512/511,

where Up = (u1, u1 — u2, up-i _ uP) and Vg = (v1, v2, , vq), with uj =
(ui_i,u2_;, • • • ,u_)' 7 1, 2, ... ,p and vi = (vi_j,v2_i, ,v_)', j
1,2,., q. The notation u* and v respectively denotes the n-dimensional vec-
tors associated with 4 = ut - p'u7i_1 and Vt.

The steps of the Gibbs algorithm for the parameter set (13, E, p 0) are as
follows:

Step 1 Specify initial values for E, p and 0, E0), p(0) and 0(°).

Step 2 Cycle iteratively through the four conditional distributions, drawing re-
spectively:

1. 00 from Pi (/3w iE -') -1) , 0i-1) , c, g)

2. E(i) from P2 (E IOW , p(i —1), stp(i-1), c, g)
3. p(i) from p3 (p(i) IOW 7 E(i) ,o(i -1) 7 c7 g)

4. OW from 194 OP) i0(i) , E(i) p(i) c, g)

until i = M.
In practice, a finite value of M needs to be chosen, but one that is large

enough to ensure that convergence to the joint posterior distribution has
been achieved. Continued application of the algorithm for a further T it-
erations after the burn-in period M, produces a sample of size T values of
(OW, E(i), p(), 0) from the joint posterior distribution, from which the mar-
ginal densities are estimated.

The distributions for f3 and E associated with the densities in (46) and (47)
are respectively univaxiate Normal and inverted Wishart. These distributions
can be simulated from directly, using a Normal random number generator.
However, the presence of the Jeffreys prior for 0, conditional on p and V),
renders the distributions of the latter two parameter vectors nonstandard in
form. The approach adopted here is to simulate from these distributions via
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the insertion of MH subchains at the relevant points in the Gibbs sampler.
With reference to p, the MH algorithm involves simulating a value for p at the
ith iteration of the Gibbs chain via a so-called candidate distribution q3. The
Normal kernel factor, as forms part of the conditional density for pg in (48),
is used as the basis for a candidate distribution, producing a candidate value
for p, p* say. With p(i-1) being the value for p as produced in the (i — 1)th
iteration of the Gibbs/MH algorithm, p* is accepted as a simulated value from
p3 with probability 5, where

p*) = min{ (pg(p.)/4(p.(i-i))/4(p(i-i))), 1}

if (p(i-1))4(p*) 0

1
if pc3i(p(i-i))4(p*) = 0.

The MH algorithm is iterated prior to a simulated value being included in
the outer Gibbs chain as p(i) . As the parameterization of qg remains fixed
and the ratio pc3/0/4(.) can be shown to be bounded, by Tierney (1994) the
iterated values of p form a Markov chain which are uniformly ergodic for p3.
The algorithm also satisfies the practical criterion of producing a high average
proportion of acceptances across subchains. The same procedure is used in the
generation of b via a candidate distribution based on the Normal kernel which
forms part of the conditional density for V), given by Al in equation (49).
With reference to Roberts and Smith (1994) and Tierney (1994), the outer
Gibbs chain can be shown to satisfy the sufficient conditions for convergence
to the joinst posterior and is (simply) ergodic for the joint distribution as a
consequence.

With T being the number of simulated sets of parameter values produced
after the burn-in period by the hybrid algorithm, the marginal densities of
interest are estimated as finite mixtures. Demonstrated for the 13 marginal,
the estimate is given by

p(Olc, g) = (11T)EiT iPcit (MEW IP) 0(i) c, g) (50)

This expression represents the sample estimate of the expectation implicit in
the relationship between a conditional and marginal density. Computationally
this involves evaluating each of the T conditional densities, Al , over a grid of

values. For each value of in the grid there are T values of the conditional
densities which are simply averaged to form the ordinate value of the marginal
density of 13 at that point.

The estimate of the marginal density of a is constructed from the output
of the MCMC scheme as

p(alc, g) = (11T)
z=1

pd (al o(i) E(i), 0(0 g)
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where the conditioning values for the remaining parameters are those produced
by the reduced scheme applied to the demeaned data. The conditional density
to be averaged across in (51) is the univariate Normal conditional for a implied
by the bivariate conditional for the vector (a, O)', which is, in turn, induced
by the joint posterior in (45), with c and g entering the conditional density in
raw form.

In order to improve the accuracy of the density estimates via a reduction of
the Markovian dependence in the sample (see Lui, Wong and Kong, 1994), the
output of every 10th iteration from the outer Gibbs chain is used in the density
estimation. Thus, the number of iterations performed after the burnout period
M is actually (T x 10).

4 Empirical Results for the G7 Countries

4.1 Data and Computational Details

The data consist of real per capita biannual private and public consumption
expenditure for the G7 countries over the period 1960 to 1996. All data are
obtained from the dX EconData database file EOL-C7S. Per capita data are
used in order to render the empirical analysis of the crowding out model consis-
tent with the individual optimization problem from which it has been derived.
With the initial seven observations used for testing lag orders, the sample size
on which the estimation is based is 67.

As explained in Section 2.1, the raw data is transformed into logarithmic
form as dictated by the model specification. The data are then demeaned to
circumvent the problems alluded to earlier regarding the convergence of the
Gibbs sampler when applied to a model which includes an intercept term. Fi-
nally, the data are detrended to extract any deterministic trends by regressing
the demeaned logarithmic data on a linear time trend.

The marginal posterior densities are estimated via the MCMC strategy
outlined in the previous section, with T = 2000 simulated sets of parameter
values produced after a burnout period of M = 500. In all instances in which
an MET algorithm is inserted, namely when producing simulated values for p
and at each iteration of the Gibbs sampler, 20 iterations of the subchain
are performed before a value is taken as a realization from the relevant condi-
tional distribution. It has been found that any increase in these specifications
produces essentially unchanged density estimates.

4.2 Univariate Unit Root Testing

The results of preliminary univariate unit root testing for the seven countries
are presented in Table 1. The posterior information criterion (PIC) model
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selection procedure of Phillips and Ploberger (1994) is used to select the lag
length in univariate AR specifications for all of the individual ct and gt series.
The selected lag lengths are reported in column 2 of Table 1. Imposing the lag
length as chosen by the PIC model selection criterion, each of the individual
series is then tested for a unit root using the FTC odds ratio test. As explained
by Phillips and Ploberger, the PIC odds ratio represents an objective Bayesian
assessment of the unit root hypothesis, with no inherent tendency to conclude
either in favor of or against the presence of a unit root. If prior odds of unity
are specified, the criterion leads to rejection of the unit root hypothesis if PIC
> 1.10 For comparison, the results of augmented Dickey Fuller (ADF) and
Phillips and Perron (1988) (PP) unit root tests are also reported in Table 1.

The results in Table 1 show that in all but three instances, the Bayesian
and classical tests fail to reject the hypothesis that ct and gt are /(1). In the
case of the US, the rejection of a unit root in ct is fairly clear cut according to
both the PIC and ADF tests, but not according to the PP test. In the case of
the UK ct series, the PIC test only marginally rejects in favor of stationarity.

4.3 Inferences about Cointegration

With a qualification regarding the relevance of cointegration testing in the US
case in particular, the next step is to test for cointegration between ct and gt
for all seven countries. In Table 2, the results of the preliminary application
of the PIC model selection procedure, as used to select the lag length for the
AR error structures in (22) and (23), are presented. Given the imposition of
a unit root in gt, the lag length for the autoregression in vt is chosen from
alternative AR specifications for the series Agt. In choosing the lag length
for the autoregression in ut, the PIC procedure is applied to the residuals
resulting from OLS estimation of (20). Included in Table 2 are the PIC odds
ratios and the ADF and PP test statistics for the test of a unit root in the OLS
residuals of (20), with the lag length for both the PIC and ADF procedures
in the univariate specifications for the residuals set by the preliminary PIC
selection procedure. Values of PIC exceeding unity constitute rejection of the
null hypothesis of no cointegration.

The contrast between the Bayesian and classical results in Table 2 is very
marked. The Bayesian odds ratios favor cointegration in six of the seven
countries, with the seventh result, pertaining to Japan, going very close to
rejection of the null of no cointegration. The PP test, on the other hand,
fails to reject in favor of cointegration for all seven countries. The ADF test
supports cointegration in the case of the US and Italy alone, with these two

10Obviously, if an investigator has a strong a priori belief that a series is indeed /(1), then
the evidence from the data in favour of stationarity, as measured by the PIC statistic, must
be stronger for it to lead to the rejection of the unit root hypothesis.
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Table 1:

Univariate unit root testing

(Bayesian and classical)

Variable Lag(a) PIC(L)
odds ratio test

pp (c)

unit root test

ADF(C)

unit root test

US ct 2 42.848*
US gt 3 0.673

Japan ct 1 0.281
Japan gt 1 0.043

Germany ct 2 0.066
Germany gt 1 0.044

Rance ct 1 0.112
Rance gt 1 0.050

UK ct 2 1.137*
UK gt 2 0.198

Italy ct 3 0.050
Italy gt 2 0.018

Canada ct 2 0.101
Canada gt 1 0.037

-3.001
-2.063

-2.160
-0.848

-1.907
-1.330

-1.940
-1.527

-2.375
-1.726

-1.597
-1.208

-1.706
-1.444

-4.171*
-2.855

-2.263
-0.653

-1.788
-1.025

-1.831
-1.305

-2.548
-2.111

-1.794
-0.829

-1.618
-0.919

(a) Lag length as chosen by the preliminary PIG model selection procedure. Lag lengths
of 1 to 4 are assessed against a maximum lag length of 5. The precise criterion applied
is given in Phillips and Ploberger (1994, equation 25). These lag lengths are used in
both the PIG and ADF unit root tests.

(b) The PIG odds ratio, as based on prior odds of unity, leads to the rejection of the
hypothesis of a unit root if it exceeds one. * indicates values which lead to rejection.

(c) The ADF and PP test statistics are computed. by the COINT module in GAUSS.
The 5% critical value for the tests, as produced by the module, is -3.540. The PP
results quoted are based on a lag length of 10 used in computing the nonparametric
variance estimate. Results for lag lengths of 5 and 20 are not qualitatively different.
* indicates values which lead to rejection of a unit root at the 5% level.
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Table 2:

Residual-based cointegration testing

(Bayesian and classical)

Country Polynomial Lag(a) PIC(L) pp(c) ADF(c)
odds ratio test coint. test coint. test

US 43(L) 2 1619.142* -3.004 -4.665*
T(L) 2

Japan (1)(L) 2 0.986 -2.886 -2.711
iIt(L) 1

Germany 43. (L) 2 4.601* -2.651 -3.050
lif(L) 1

France 4)(4 1 1.788* -2.882 -2.863
(L) 1

UK (L) 2 1.276* -2.421 -2.607
W(L) 1

Italy (I)(L) 2 329.263* -2.638 -4.199*
11/(L) 3

Canada (I)(L) 2 1.809* -2.622 -2.641
W(L) 3

(a) Lag lengths as chosen by the preliminary PIC criterion. Lag lengths of 1 to 4 are
assessed against a maximum lag length of 5.

(b) The PIC odds ratio, as based on prior odds of unity, leads to the rejection of the
hypothesis of a unit root in the residuals when it exceeds one. * indicates values
which lead to rejection..

(c) The 5% critical value for the ADF and PP tests, as produced by the COINT module,
is —3.938. As with the univariate results, the PP statistics quoted are based on a lag
length of 10 used in the computation of the nonparametric variance estimate. The
results for lag lengths of 5 and 20 are not qualitatively different. * indicates values
which lead to rejection of no cointegration at the 5% level.
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countries corresponding to those for which the Bayesian support is strongest.

— Figure 1 about here —

The Bayesian support for cointegration in Table 2 is, in general, substan-
tiated by the results in Table 3, in which the posterior probability of cointe-
gration, calculated as the area to the left of pi = 1 in the marginal posterior
density of pi, is given. For all countries with the exception of Canada, the
posterior probabilities in Table 3 are greater than 97%, thereby providing very
strong evidence of cointegration. There is overwhelming support for cointe-
gration in the case of the US, the UK and Italy, where the total mass of the
Pi posterior density is to the left of the point pi = 1, and strong support in.
the case of Japan, Germany and France. For Canada, the posterior proba-
bility of cointegration is about 90%, indicating that there is approximately a
10% chance that private and public expenditure are not cointegrated. Also
included in Table 3 are the modal point estimates of pi, all of which fall in
the stationary region. Further features of the marginal posterior densities of

Pi are highlighted in 1. All of the pi posterior marginals are essentially sym-
metric around their modal values, with the large probabilities assigned to the
hypothesis of cointegration being made clear by the position of the densities
in the support of pi.

It should be noted that, following the arguments presented in Phillips
(1991a and b) and Zivot and Phillips (1991), the flat prior on pi, in par-
ticular, may slightly bias the results in Table 3 and Figure 1 in the direction
of cointegration. This is in contrast with the PIC results in Table 2, which
represent more objective evidence in favor of cointegration.

4.4 Long-run Substitutability

Table 4 gives both Bayesian and classical estimates of the long-run substitution
parameter 3 in (20). The Bayesian point and interval estimates are respectively
the mode and highest probability density (HPD) intervals constructed from
the marginal posterior density for 0.11 The classical point estimates are based
on the FMOLS procedure of Phillips and Hansen (1990), with the confidence
intervals based on the asymptotic Standard Normal approximation. Given
that the Bayesian evidence in favor of the existence of cointegration is strong
for five of the countries considered, namely the US, Germany, France, the UK

11An HPD interval is defined as an interval with the specified probability coverage, whose
inner density ordinates are not exceeded by any density ordinates outside the interval. For
the current problem, in which the marginal posterior densities are unimodal, specification
of an HPD interval involves choosing two values of j3 which yield ordinates of equal height
and encompass the required probability content.
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Table 3:

The posterior probability
of cointegration

Country Pr(pi <1) pi mode

US 1.000 0.841

Japan 0.983 0.951

Germany 0.984 0.911

France 0.979 0.921

UK 1.000 0.851

Italy 1.000 0.761

Canada 0.903 0.961

and Italy, with weaker support in the case of Japan and Canada, 0 is to be
interpreted as a cointegrating parameter, with its sign indicating the direction
of the impact of government on private expenditure in the long-run, and its
magnitude indicating the percentage long-run response of private expenditure
to a one per cent increase in public expenditure.12

The results in Table 4 can be summarized as follows. For the US, Germany,
France and Italy, most of the evidence, both Bayesian and classical, points
towards long-run crowding in. The support for crowding in is strongest for
Germany and Italy, with the Bayesian and classical point estimates for 0
being large and positive and all interval estimates excluding zero and negative
values. The evidence of long-run crowding in for France and the US is also
strong, with the classical confidence intervals excluding nonpositive values and
the 90% HPD intervals just extending into the negative region in each case.
Only in the case of the UK does the evidence tend to favor long-run crowding
out. Both the Bayesian and classical point estimates are negative and all
interval estimates feature the negative region.

For both Japan and Canada, the situation is not clear-cut, with a conflict
arising between the Bayesian and classical results. The Bayesian point esti-

12It should be recalled that the result for the US needs to be qualified, given the rejection
of a unit root in the ct series by both the FTC odds ratio and ADF tests.
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Table 4:

Estimates of the crowding out parameter

(Bayesian and classical)

Country
mode

90% HPD
interval

95% HPD
interval

FMOLS 95% conf.
estimate interval

US 0.180 (-0.010 0.340)

Japan 0.180 (-0.840 0.860)

Germany 0.820 (0.180 1.120)

France 1.040 (-0.020 1.640)

UK -0.380 (-0.980 0.040)

Italy 1.400 (1.200 1.580)

Canada -0.060 (-0.300 0.220)

(-0.050, 0.370)

(-1.160, 1.000)

(0.000, 1.200)

(-0.740, 1.800)

(-1.140, 0.140)

(1.140, 1.640)

(-0.360, 0.280)

0.276

0.764

1.016

1.500

-0.164

1.421

0.546

(0.087, 0.465)

(0.212, 1.316)

(0.813, 1.220)

(1.198, 1.801)

(-0.542, 0.214)

(1.120, 1.644)

(0.320, 0.773)
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mate for Japan is positive. However, the 90% and 95% HPD Bayesian intervals
extend well into both the positive and negative regions, leading to distinct un-
certainty as regards the sign of 0. This result is supported by the marginal
posterior density of /3 for Japan in Figure 2, where the bulk of the probability
mass is seen to lie in the positive region, but with negative skewness producing
a long left-hand tail. Figure 2 shows the marginal posterior density of for
Canada to be virtually symmetric around a modal estimate close to zero, with
this result being reflected in the point and interval estimates reported in Table
4. In contrast to the ambiguity in the Bayesian results, the classical results
for both countries strongly suggest crowding in. This conflict between the
Bayesian and classical results may well be a reflection of the slightly doubtful
status attached to the cointegrating relationship between private and public
consumption expenditure as identified in Table 2 in the case of Japan and in
Table 3 in the case of Canada.

— Figure 2 about here —

A comparison of the Bayesian 95% HPD intervals and the FMOLS 95%
confidence intervals in Table 4 reveal that the latter are more narrow. How-
ever, the classical intervals do have asymptotic justification only and may be
misleading given a sample size of 67. Also, the dispersion in the marginal
posteriors for [3 reflects, in part, the non-zero probability of certain of the re-
lationships not being cointegrated. This is an appropriate feature of a method
which produces simultaneous, rather than sequential inferences regarding coin-
tegration.

The evidence in favor of crowding in for the US in particular, is in contrast
with the findings of Aschauer (1985), whereby the hypothesis of crowding out
in the US, as tested in varying specifications of his model, is rarely rejected.
However, a closer examination of Aschauer's figures reveals that the imposi-
tion of the cross equation restrictions has in fact had a drastic influence on his
results, with the unrestricted estimates reported implying long-run crowding
in. From equation (31), the long-run multiplier linking Ct to Gt in the As-
chauer specification is 13 = (63 + 64)/(1 — (52). From Table 2 in Aschauer, the
unconstrained estimates produce = (-0.024 ± 0.035)/(1 — 0.990) = 1.10.
Comparison with the estimate obtained from the constrained model, namely
= —0 = —0.229, shows that the imposition of the cross equation restrictions

has caused a reversal in the conclusions to be drawn regarding substitutabil-
ity. Since the estimation procedure used in this paper accommodates rational
expectations but does not impose severe parameter restrictions in the process
of doing so, the validity or otherwise of the rational expectations hypothesis
is not able to bear so heavily on the empirical results.13

13Note that the magnitude of Aschauer's estimates of 13 cannot be compared directly with
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4.5 Short-run Substitutability

The discussion so far has concentrated on estimates of the long-run substitu-
tion between private and public expenditure. It is also of interest to investigate
the dynamic time path of the response of private to public expenditure, so as
to determine the speed of convergence to the long-run as well as the behavior
of the dynamic path over the short-run and intermediate-run.

The dynamic multipliers are computed by estimating the impulse response
functions associated with the model in (20) to (24), where the choice of the lag
structures for each country is as given in Table 2. The ordering of the variables
is gt to ct. This is appropriate given the exogeneity status of gt, as discussed
in Section 2.2. By computing the impulse response functions for act±h/aet
and agt+hlast, h > 0, that is the response of ct and gt to an unanticipated
shock to gt, the dynamic multiplier, act±h/agt, is given by the ratio of these
two expressions.

The dynamic multipliers and associated 90% probability intervals are given
in Figure 3 for the G7 countries. The point estimates of the dynamic multi-
pliers are based on the Bayesian modal estimates of (0, E, 0), produced via
the MCMC scheme outlined in Section 3.3, with M = 500 and T = 2000. The
point estimates of pi = Oj and j3 underlying the dynamic multipliers are
thus equivalent to those reported in Sections 4.3 and 4.4 respectively.14 The
90% probability intervals are computed using the following procedure. First,
the T = 2000 simulated sets of parameter values of (0, E, çb, V)) produced by
the hybrid MCMC algorithm are stored. For each set of parameter values the
impulse response functions are computed and the dynamic multipliers formed.
The upper and lower bounds of the probability interval for each multiplier are
found by ordering the T = 2000 impulse response values at each time point
and choosing the upper (lower) bound as that value which has 5% of values
greater (less) than it.15

— Figure 3 about here —

The point estimates of the dynamic multipliers reproduced in Figure 3
show the G7 countries as falling into three groups. The first group consists
of the US, Germany, France and Italy. For this group, private consumption
is crowded out in the short-run by public expenditure whilst in the long-run

the estimates given in Table 4, as his model is estimated in terms of levels, whilst the model
estimated in this paper is in terms of logarithms of the variables.

14For computational convenience, the point estimates of the elements of E are taken as
the modes of the histograms of simulated values produced by the MCMC algorithm for each
element and not as the modes of the mixture density estimates of the relevant marginals.

1' An alternative, more computationally burdensome, approach would be to estimate the
marginal density associated with each dynamic multiplier by a nonparametric kernel method
and then use the estimated densities to construct HPD intervals.
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there is crowding in. The size of (the point estimate of) long-run crowding in
given in Figure 3 is, by construction, equal to the corresponding estimate of
given in Table 4.16 Based on the point estimates, short-run crowding out lasts
for at least 1 year (Rance and Italy) and no more than 2 years (Germany).
The second group comprises the UK, where the reverse results are found: there
is short-run crowding in the first 2.5 years, but long-run crowding out. The
third group consists of Japan and Canada. For this group the point estimate
of the crowding out parameter is close to zero in both the short-run and the
long-run.

The probability intervals reproduced in Figure 3 corroborate qualitatively
the above interpretations of the short-run/long-run dichotomy in the case of
the US, the UK and Italy. In the case of Germany and Rance, the probability
intervals indicate some uncertainty as to the sign of the crowding out parameter
in the short-run. For Japan and Canada, as is consistent with all results
pertaining to these countries discussed previously in the paper, there is distinct
uncertainty as regards both the sign and magnitude of the crowding out effect
in both the short-run and the long-run.17

5 Conclusions

This paper has provided an empirical analysis of the substitution between pri-
vate and public real, per capita consumption expenditure for the G7 countries
over the period 1960 to 1996. Using Bayesian inferential techniques, the US,
Germany, France and Italy have been found, overall, to exhibit short-run sub-
stitutability, but long-run complementarity. The opposite result occurs for the
UK.

For Japan and Canada, no significant short-run or long-run relationship
is found. This result may be interpreted as either reflecting that private con-
sumption expenditure does not respond to public consumption expenditure,
or that the empirical model is misspecified. This latter interpretation may
be appropriate for the long-run model specification in particular, as there is
some doubt over the cointegration status of private and public consumption
expenditure in the case of these two countries.

16Whilst the long-run estimates of )3 in Figure 3 are, as noted, the same as the estimates
given in Table 4, the associated 90% confidence intervals are computed differently. The con-
fidence intervals in Table 4 are computed from a mixture estimate of the marginal posterior
of 13 as given by (50), whereas the estimates given in Figure 3 are obtained from simulating
the impulse response function, as described in the text. However, a comparison of the two
different 90% confidence intervals for all countries shows that similar estimates are obtained.

17The finding of short-run crowding out for the US specifically tallies with the results in
Graham (1993), based on regressing the change in Ct on the change in G. This result serves
to highlight that regression equations based on first differences at best provide information
on short-run substitution between private and public consumption expenditure.
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Appendix: Derivation of the Conditional Jef-
freys Prior

The derivation of the conditional Jeffreys prior for (a, 0) given p and V), as
given in (41) proceeds as follows. Given the assumption of independence be-
tween E and the remaining parameters, the element a12/a22 in the first expo-
nent term in (37) can be replaced by an artificial parameter, 7 say. Letting
Z = (1*, g* , g**), where 1*, g* and g** are as defined in Section 3.2, the Jeffreys
prior is given by

volp,011/2 oc IE(z,z)11/2
(52)

where E denotes expectations with respect to the assumed generating process.
With the artificial parameter 7 serving only to reflect the manner in which the
regression parameters a and 3 enter the likelihood, that is, via the augmented
regression, and serving no inferential purpose in itself, (52) can be viewed as
a conditional prior for a and O. Given the nature of the assumed model,
evaluation of the expectations in (52) produces a prior which is a function of
o-22, n, p, b and the fixed initial values of gt. As pi 1 and the remaining
elements of p approach those of b in the manner described in (ii) in Section 3.1,
1* 0 and g* g**, either of which, in turn, implies that Volpoi, 1

1/2 
---÷ 0. Use

of this prior would thus serve to counteract the singularity in the density of p
and b in this region. However, only if the expectations in (52) are approximated
by the realized values, does the conditional Jeffreys prior serve to offset exactly
the distortion to inferences which would occur with a flat prior analysis.18

This can be most easily demonstrated within the context of a simplified
version of the model, with a =0, (1)(L) =1— piL and 'I(L) = 1. Applying the
standard diffuse prior for a bivariate regression model, p(O, E, pi) cc 1E1-3/2,
the marginal density for pi can be derived analytically as

where

P(P1 IC) g)

A = (AglAg) (epAgg*

B = (Ag'Ag)(c*'PAgPp,gg.PAgc*)

and c*, g* and Ag denote respectively the n-dimensional vectors associated
with c = (1— piL)ct, g = (1— pingt and Agt. In (54), as well as in following
expressions, the notation Py = I — y(y'y)ly' is used. Using the result that

(53)

(54)

P,AgAg = 0 PAgg = PA9g-1 PAgg* = — Pi)-PAgg, (55)

18Kleibergen and van Dijk (1994) provide extensive discussion on the impact of alternative
forms of expectation evaluation in a Jeffreys prior for a cointegration model.
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with g_l = (go, g,,. •gn_i)', it follows that

A-1/2 oc pi 1-1/2 (56)

The factor A-1/2 is thus nonintegable as a consequence of both its tail behavior
and its behavior in the region of the singularity at pi = 1. This contrasts with
the factor .13-(n-1)/2, which is given by

B—(n-1)/2 oc (_h )1/2{1 _h

where

(57)

7), = 1c_1 7)!A97)p,99* PAgc) I (P:6,gPpb,gg* PAgc-i)
h/K = (c_iP gPp,gg* PAgc_i) I d,

d = (cPigPp,gg* Pagc) - (c_iP;IgPp,gg* Pb,gc)2 (c_iP gPpAgg* PA9c-1)

and c_i = (co, cl, cn_l)'. Once again applying (55), it can be shown that
both pl and h are constant with respect to pi, in which case (57) defines, for
> 2, a Student t density for pi with mean pi., variance ()() and degrees

of freedom IS = n - 2. Depending on the position of (53) in the support of
pi, one or other factor may dominate. In particular, if a large probability
mass occurs in the region near pi = 1, the asymptoting behavior of A-1/2 in
the region near pi = 1 dominates the regular Student t form of B—(n—W2,

producing inferences which strongly favor a lack of cointegration even when
the true value of pi falls well into the stationary region.

For this simple parameterization, approximation of the expectations in the
Jeffreys prior as realized values produces

P(01P1) cx A1/2, (58)

i.e. exactly the factor required to offset the distortion in the marginal pi
density invoked by the factor A-1/2.

In the case of the larger parameter set, 0, it is the joint posterior of the
vectors p and which factorizes as in (53). Extending the notation used above,
analytical integration yields

with

13(0,01c, g) cc 1A1-1/2 
B—(n-1)/2

A = (g**/g**) ( [1*, glpg** {1*,

B = (g**Fg**)(C*1Pg** Ppe* [1* ,g1Pg** *)

and 1*, c*, g* and g** denoting respectively, the n-dimensional vectors for
= (1 - P1), ciK = ct — 1014_1 ag;' = gt - p'g11.1 and gr = W(L)Lg. Despite
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the fact that the two components in (59) do not reduce to simple parameter
functions as in (56) and (57) above, the same qualitative result occurs. The
first component possesses a singularity in and asymptoting behavior around
the subspace described in (ii) in Section 3.1 in the text, whilst the second com-
ponent possessing no such irregularities, but is dominated by the first factor
when the bulk of the mass of the density is in the region of the singularity.
The approximate Jeffreys prior for this full parameterization is given by

ga, MAO oc IAI112 •
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Figure 1: Marginal pi posteriors for all G7 countries
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Figure 2: Marginal /3 posteriors for all G7 countries
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Figure 3: Impulse response functions (with 90% confidence bands given by
dashed lines) for all G7 countries
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