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Abstract

A Bayesian estimation procedure is developed for estimating multiple regime (multiple threshold)
vector autoregressive models appropriate for deviations from financial arbitrage relationships. This
approach has clear advantages over classical stepwise threshold autoregressive analysis. Whereas
classical procedures first have to identify thresholds and then perform piecewise autoregressions, we
simultaneously estimate threshold and autoregression parameters. To illustrate the Bayesian
procedure, we estimate a no-arbitrage band within which index futures arbitrage is not profitable
despite (persistent) deviations from parity.
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1. Introduction

The arbitrage argument provides a powerful tool for financial economists in deriving

equilibrium conditions. It is therefore no surprise that there is an extensive literature

trying to explain and/or accommodate consistent deviations from well known financial

arbitrage or parity relationships. Whereas it is tempting to conclude from the empirical

evidence that such deviations imply market inefficiencies, any profit potential seems to

be severely obstructed by arbitrage costs. Unfortunately, some aspects of the total

* The authors thank Herman van Dijk, Gael Martin, and seminar participants at Monash
University for helpful comments. Paul Kofman acknowledges research support by a
Monash University Faculty Research Grant.



arbitrage cost are difficult to measure, and hence it is difficult to determine when an

arbitrage opportunity truly exists. One approach would be to attempt to identify the

total arbitrage cost by exploiting any measurable peculiarities in the observed

deviations from equilibrium. This results in searching for threshold values away from

the equilibrium condition beyond which the deviations from equilibrium are large

enough to imply an arbitrage opportunity.

Regime switching models seem most appropriate for describing this arbitrage

threshold idea, since they distinguish between regimes based on apparent differences in

the stochastic process of the variable of interest. In the arbitrage setting, we postulate a

middle regime where transaction costs prevent profitable arbitrage and two (upper and

lower) outer regimes where arbitrage will occur. Tong's (1983) seminal book on

threshold models introduces threshold autoregressive (TAR) models relevant to

economic problems. TAR models consist of piecewise linear autoregressions. They are

linear in the state space of the stochastic process of the variable of interest, but

nonlinear in the time domain. Usually there is a threshold variable indicating at each

point in time which regime prevails. This variable can be a function of the observable

history, or an unobservable latent variable, e.g., a saturating consumption utility level;

see Pole and Smith (1985). Markov Chain regime switching models typically allow for

unobservables to identify the regime. Potter (1995) illustrates how these apparently

distinctive models can be nested in a single index generalized multivariate

autoregressive (SIGMA) model class.

One appealing special case in the SIGMA class is given by the Self Exciting TAR

(SETAR) model, where the regime indicator is given by the (lagged) variable of

interest itself. This facilitates estimation in comparison with the unobservable indicator

model. There is also a pragmatic argument in favour of using this feature. If a strictly

homogeneous asset is traded simultaneously in two markets, it should have the same

price in both markets. However, consider the fact that these markets are geographically

separated. It will then take some time for participants in both markets to observe

occasional price differences. The SETAR model will then use the (appropriately)

lagged price difference as an indicator variable triggering arbitrage if this difference is
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sufficiently large (i.e., exceeds some threshold) to offset the transportation costs of

moving the asset from the lower price to the higher price market.

A number of papers have recently appeared providing estimation methodologies to

cope with threshold estimation problems. Relevant to our purposes, Balke and Fomby

(1993), Yadav, Pope, and Paudyal (1994), and Martens, Kofman, and Vorst (1996)

propose the SETAR modelling procedure to identify arbitrage thresholds or triggers.

Unlike other threshold papers this implies that there is a well defined economic model

underlying the analysis. The underlying threshold autoregression methodology used,

based on Tsay (1989), relies on recursive arranged autoregressions. Visual inspection

of the residual scatterplots of the arranged regressions leads to an indication of a range

of possible thresholds. A minimizing sum of squared errors grid search on this range

then defines the threshold. In practice, it proves difficult to operationalize this

technique. Whereas the method seems to be rather powerful in detecting evidence of

non-linearity, its threshold estimation power is much less impressive. The problems

encountered in deriving suitable threshold values are rather evident in for e.g.,

Martens, Kofman, and Vorst (1996). Appropriately picking the grid range from

scatterplots is tedious at best. In particular, the ordering of the deviations (ascending or

descending) influences the range of possible thresholds and the probability of

detection. Due to the very concept of arbitrage, any crossing of the thresholds will by

definition only persist for a very short time. The subsequent small sample size for the

outer regimes hampers proper threshold identification. Balke and Fomby (1993)

suggest that the TAR modelling procedure may then not be useful.

An obvious alternative is then to look at a Bayesian threshold methodology. A few

papers have recently appearedl, discussing univariate TAR models from a Bayesian

perspective. Geweke and Terui (1993) develop a 2-regime AR-model and provide

analytical solutions for the marginal posterior density of the threshold variable. Koop

(1996) considers a similar model, but focuses on subsequent impulse response

analysis. We propose a Bayesian estimation methodology for a threshold vector

autoregression model which simultaneously estimates thresholds, delay, and

1 Pole and Smith (085) present a Bayesian analysis of the related threshold regime switching models.
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interaction parameters. Thus, it avoids some of the troublesome aspects of the classical

methodology predominantly used in this line of research. We extend Geweke and Terui

by considering multiple thresholds in a vector autoregressive (VAR) setting. We

illustrate that it is possible to obtain a straightforward numerical solution for this case.

In addition, we use 'Rao-Blackwellized' estimators for calculating marginal posterior

summaries. Chen and Lee (1995) suggest that a simple alternative to Geweke and

Terui' s model can be obtained via Markov chain Monte Carlo (MCMC) methods. We

argue that our solution dominates this simulation approach when noninformative prior

distributions are used.

The remainder of this paper is organized as follows. Section 2 introduces a

threshold error correction model for arbitrage in a simple context and then extends the

ideas to a more general arbitrage case. Section 3 gives an outline of the computational

method proposed for obtaining an independent sample from the joint posterior

distribution, and proceeds in providing details regarding the calculation of marginal

posterior quantities of interest, such as posterior moments and marginal densities. We

then apply our model empirically to index futures arbitrage in the S&P500 stock index.

Details of the derivations relevant to Section 3 are given in an appendix.

2. A Threshold Error Correction Model for Arbitrage

Threshold autoregressive models have been applied to economic problems.

Unfortunately, for some applications the rationale for a threshold or the interpretation

of the autoregressive estimates is difficult to grasp. One area where we might expect

meaningful and interpretable applications is given by financial arbitrage relations. Our

starting point, therefore, is the simplest of these; the law of one price (LOOP).

According to the LOOP, a strictly identical asset which is traded in separate markets

should have the same price at the same time to avoid arbitrageurs from buying in the

cheapest market and simultaneously selling in the dearest market. We can specify,

zt = P, — p„ (1)

where Pt is the price of the asset at time t in market 1, and pt is the price of the same

asset at time t in market 2. While it is possible for the price wedge zt to be occasionally

6
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non-zero, it should have zero expectation and display strong mean-reverting behaviour.

Furthermore, if the z, are sufficiently small, the costs of arbitrage will not outweigh the

profits. This implies that it is possible for z, to be persistently positive or negative.

Thus, we use (1) to construct the hypothesized error correction terms, which will

become 'active' as soon as some arbitrage preventing threshold is surpassed. Once we

are able to identify this threshold, we can split up our sample into regimes; outer

regimes where arbitrage is effectively driving asset prices back towards their no-

arbitrage value, and an inner regime where asset prices are (relatively) free to diverge

from this value, i.e., behave locally as a random walk.

To describe the threshold error correction model (ECM), we begin with some

notation. Define three regimes RW, j = 1, 2 and 3, by R( j) = tz,:ri_i zt-d <r}, with

= and rR = +00. Here d is known as the threshold lag or delay parameter, and the

vector r' =(rl,r2) gives the threshold values which determine the regimes. Let q be an

index for the observed data such that zq zq, for all q = 1, ..., T-1. Using this

ordering, there correspond values of q = ai) where zQ(i) E R
(i) and z ti, E R(j+1) for j

= /, and 2, and Q(3) = T - Q" ) - Q(2) .

The ECM describes the distribution of the changes in the observed prices, given

the values of the unknown parameters, past changes in prices and deviations from

arbitrage equilibrium. We have, for each regime where Zq_d E

4i)

APq = C(pj) -FE0v,16,.pq_k +1,0(44q-k -1-7(/),_d+ E(1,)q
k=1 k=1(J) (J)
yin,opil6pq, +1,4 q.d pj

k=1 k=1

where (1) and 0 are the autoregressive ('short-run') parameters and yis the equilibrium

adjustment ('long-run') parameter. Now, whenever zq_d does not exceed either the

upper or lower threshold, yp and 71, are zero and prices P and p do not respond to

disequilibria in the LOOP. Whenever zq_d does exceed either threshold, yp and/or rp

are non-zero and negative, respectively positive, to restore equilibrium. The constants

(2)
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c, the drift in price changes, may also contribute to restore equilibrium if they have the

appropriate (opposing) signs. Conditionally on regime R(1) and the other parameters, we

assume that the random vectors

r(i)
E(j) - independent Normal (02,E(j))

(i)
P,4

(3)

within each regime ki). The above ECM for each regime can then be written as a

vector autoregression as follows:

yq = c(j) + q_L+ + eqU) (4)

where

(5)

for q= Q 1) +1,...,Q(') with Q"= 0 and LP) = max14)),),4)),L,(41)1.

2.1 A General Arbitrage Threshold ECM

The equilibrium relationship implied by arbitrage can be more general than what is

indicated in (1), in that more than two variables may be involved. For the general

arbitrage threshold ECM, we define the univariate mispricing error variable

z, = 17,00 (6)

where y, is an m x 1 vector of prices comprising the equilibrium and the functions

Ft:Rm ---> 1 are assumed to be given by the arbitrage theory in this context. In the

LOOP case, y,'= (AP„ Apt) and Ft (y) = (1,-1)y .
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We can write the VAR model for each regime ki), j = 1, 2, 3 in compact form

y(i) x(i) BO) uCi)

where

YQ
(i-1)-4-1' • ' ” YQ(i)1,

X(f)':= rx ,••• XQ(;)1, where

( 1

X :--q

Yq

q-L+1

Zq_d

(7)

(8)

and

U(j)':= k(J-1)+1,-"EQ(j)]*

Note that Yu) is a Mi) x m matrix of observed variables, where m is the number of

equations in the ECM and MD is the number of observations in regime R(j) ; X(j) is an

x kW matrix of regressors, where Ic(i)=--m(LW+2) and L(1) is the maximum number of

lags included in the ECM; B(i) is a kW x m matrix of regression coefficients and UW is

an NW x m matrix of errors for regime ki). So far we have assumed the regimes to be

fixed and the values of r and d known. However, it is one of our objectives to estimate

these parameters, and hence we treat them as unknown parameters. Note that variables

indexed by j are implicitly functions of both r and d. We proceed for a general m-

dimensional ECM and apply it to intraday futures and index returns data (where m=2.)

in Section 4.

Martens, Kofman, and Vorst (1996) estimate an arranged autoregression in zq

based on Tsay' s Threshold Autoregressive (TAR) method, which can be used to define

the three regimes. Once the regimes are defined, an ECM is then estimated for each

regime, for each equation in (2). This two-step procedure, while intuitively appealing

for describing threshold concepts, does not by its very nature estimate parameters

simultaneously. In addition, the two step procedure does not utilize a single

representation of the dynamic structure implicit in the setting, and consequently the

assumptions of the TAR model and the ECM are potentially conflicting.

7



We therefore prefer to use a Bayesian approach for analyzing the ECM, while

imposing a threshold component directly to capture the desired feature of differing

behaviour of the z, variables when they are out of equilibrium. Balke and Fomby

(1993) also discuss using thresholds in error correction representations, however they

do not actually use the Bayesian approach in their analyses. One of the benefits of the

our approach is that we are able to obtain simultaneous estimation of all parameters

considered. In addition, we obtain posterior density estimates for both single

parameters and various combinations of parameters of particular interest. That is, we

can obtain the range of plausible parameter values and, given the data, the probabilities

associated with these values.

3. Bayesian Threshold ECM Estimation

Given the threshold and delay parameters, r and d, respectively, Bayesian analysis of

the ECM in each regime follows a standard Bayesian analysis for vector autoregressive

(VAR) processes. See Liitkepohl (1993) and Zellner (1971). If we assume for the

moment that the values of r and d are known, we have then the following results for

the posterior distributions of the autoregression coefficients bil) = vec(e) and

variance-covariance matrices EU), for j = 1, 2, 3 under the assumption of the following

prior for bu) and ZW,

2p(b(j),ZWIr,d) .111E(f)rm+1)/2

We have

(9)

Z(j) given Y,r,d - independent IW,„ (v(j), (10)

b(j) given E(j), Y,r,d - independent Nn(J)( ),E() X(f)' X(j)) (11)

where L(j) = vec(f3(j)) and iii1/4(j) = (X(f)' X(j))' X(mY(f) is the OLS estimator of IP)

given r and d, = NC1) - kW and S(j) = - X(j)h(j)) (YU) - X(i)E(j)). Here IWm(v,S)

refers to an inverted Wishart distribution for an m x m positive definite symmetric

matrix with degrees of freedom parameter V and matrix parameter S.
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Since r and d are unknown, to produce a sample from the joint posterior

distribution of tb(j),Z(j), j =1,2,31,r and d, we must first be able to obtain r and d from

the marginal posterior distribution p(r,dly). Once we have r and d, we can sample

tz(j), j =1,2,31 and then tb(j), j =1,2,31 using (10) and (11), respectively.

Following Geweke and Terui (1993), we assume a uniform prior p(r,d) .1, for

a, ri <r2 au and d = 1, D, and derive an expression for the marginal posterior

distribution for r and d

p(r , dly) nr-mv(i)nntv(i) +1421501 v(J)/21x(i).x m12 . (12)
i=1 i=1

Details of derivations of (10) (11) and (12) are given in the appendix. Notice that

potentially many values for the threshold and delay parameters are included in the

marginal posterior distribution of r and d. The values that appear most likely, given the

observed data y, will have the greatest influence on the estimates of z(j) and

To actually sample from the above joint posterior p(r, dly) , we numerically

normalize the right hand side of (12) and sample from the resulting empirical

distribution. Then, given sampled values of r and d, the z(j) are sampled from

independent /Wm(0),SW) distributions. Finally, given r, d and z'), the elements of

b(j) = vec(B(j)) are jointly normally distributed with mean values given by the OLS

estimator of b(j), namely Pi) = vec(b(j)), and variance-covariance matrix of bu) given

by (z(j) X(frX(j)). In this manner, a sample of any size can be obtained from the full

joint posterior distribution.

3.1 Estimating Marginal Posterior Distributions

The above method describes how to sample from the full joint posterior distribution of

r,d and Z(j) and b(j) for each regime. However, often we are interested in marginal

posterior distributions for each of the variables, and specifically marginal posterior

means and variances for each. One approach is to use Monte Carlo sample summaries

for the marginal posterior means and variances for each variable based on the values

9



obtained via Monte Carlo sampling of r,d, EU) and b(j) , for j = 1, 2,..., R. However, the

so-called 'Rao-Blackwellized' estimators of marginal densities and moments will

provide Monte Carlo estimators with smaller (Monte Carlo) mean squared error. See

Gelfand and Smith (1990). Here we report on the form of these estimators for marginal

posterior means, variances and densities for the regression coefficients in each regime.

Let b' denote the Ph element of the regression coefficient vector bu) in the jth

ECM and (ri,dZ?)) for i = 1,2,...,M be a sample of size M from the posterior

distribution. A 'Rao-Blackwellized' estimate of the posterior mean of bP) is given by a

sample average of the OLS estimates ip of b.P)
1 M ^ •

Erb[bl(i)1Y1= -IN?) •m i=1
(13)

A Rao-Blackwellized estimate of the marginal posterior variance of bP) can be

similarly obtained using

1 m r 
17

• 1 / r
Varth(bP)21y)= t[—I 1(?) +P))

2 
11-0"thib 

])

2j)ly
A 1

(14)

where 17/(/) is the th diagonal element of (zj) XP)'Xi(j)). Covariances between

elements of b' canalso be obtained.

Rao-Blackwellized estimates of marginal posterior density functions are also

possible by averaging the marginal (conditional) posterior densities of k j), given

sampled values (rocli,V)) , over a grid of possible values. That is, for each point b, we

have

13th(bly) = —1 (270-1/21V(f)I-1/2 exp  —1 (b. —LP))2/,i 
217(j)M i=i

(15)

Bivariate density estimates can be similarly obtained.

In summary, due to the particular choice of the prior distribution, the marginal

posterior density for r and d is available analytically up to a normalizing constant.

Sampling from this distribution is straightforward. Conditional on sampled pairs r and

d, simulation of the remaining variables from the full joint posterior distribution is

10



straightforward, and as a result various summary statistics of the posterior distribution

are readily accessible, to any desired degree of accuracy.

We have given a detailed approach for analyzing a threshold error correction model

under the assumption that there are two threshold resulting in three regimes. Extension

to any fixed number of regimes is straightforward. In addition, our approach may be

appropriate for some alternative specifications of the prior distribution, however each

choice would need to be evaluated individually to determine if direct sampling from

the joint posterior distribution is possible. In particular, if a different prior distribution

was desired and was of a form that analytical reduction to the marginal posterior

density of r and d was not possible, other techniques, such as using Markov chain

Monte Carlo (MCMC) methods might be more suitable. For a discussion of a Bayesian

analysis of a univariate TAR model using MCMC methods, refer to Chen and Lee

(1995). However, we believe unless formal prior information is available that is not

compatible with our specification, the approach presented here is preferable in that it

does not require more elaborate computational techniques.

4. Empirical Application

In this section, we apply our estimation procedure to index futures arbitrage. This type

of arbitrage consists of simultaneously buying (short-selling) the stock index and

selling (buying) the stock index futures whenever their prices diverge by more than the

cost of 'carrying' the stock index through time until maturity of the futures contract.

Brenner and Kroner (1995) give the following cost-of-carry expression,

Ftx - St = (rtx - q t ,T)(T — t) + z. (16)

where Ft, St are the logarithms of respectively futures and stock index prices, rt,T is the

risk-free interest rate, go- is the dividend yield on the stock index, and (T-t) is the time

to maturity of the futures contract. For arbitrage to be profitable, we require that zt has

to exceed a certain (absolute) value determined by transaction costs. However, this will

not be a sufficient determinant for the arbitrage 'wedge', since we consider an

intertemporal arbitrage relation. Hence, we distinguish between two types of no-

arbitrage costs. The 'direct costs', such as transaction costs, short-selling restrictions
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and unequal borrowing and lending rates are relatively easy to measure. The 'indirect

cost' components, such as index tracking error, execution risk, and dividend and

interest rate risk on the other hand are much more difficult to determine, necessitating

estimation of the thresholds to determine the total no-arbitrage band.

For illustration we use one month (May 1995) of intraday transaction data for the

S&P500 stock index and its (nearest delivery) futures contract traded at the Chicago

Mercantile Exchange. The maturity date for this particular contract is June. Even

though theoretically spot and futures prices converge towards maturity, it is well

known empirically that this does not affect the stochastic behaviour of z„ the

mispricing error, well in advance of maturity. To avoid (or moderate) typical

microstructural problems like bid-ask bounce and infrequent trading, we construct a

one minute bivariate price series, generating 7,060 observations.

For detailed information on the univariate statistical properties of these series we

refer to Martens, Kofman, and Vorst (1996). Most important for our purpose is the fact

that futures and spot price are cointegrated, where the appropriate cointegrating

relationship is given by (16) above. Instead of focusing on this cointegration

relationship, we straightforwardly specify (and estimate) our implied threshold vector

error correction model,

4i)
Mn Fir = c(j) + yov)„AinF k,T Eov)„Ains k -1-7(pz +Ev)7r,-d

k=1

41)

ln = c(sj)+ OLA ln
k=1

k=1

LY)

-FyievlA1nsk+T(Pz7d+E(si,,r),
k=1

(17)

where z, is as defined in (16). We postulate a three-regime model for our analysis.

Yadav, Pope, and Paudyal (1994) and Martens, Kofman, and Vorst (1996) allow for

even larger models. Yadav, Pope, and Paudyal, for example, argue that at different

thresholds different arbitrageurs become active depending on their relative cost

(dis)advantage. This is especially the case if arbitrage capital is constrained. It seems

unlikely to us that large sophisticated financial institutions will leave any opportunities

to less equipped arbitrageurs. Fully automated program trading, for example,

automatically triggers the appropriate arbitrage strategy based on preset mispricing

12



thresholds. It is also difficult to imagine a shortage of arbitrage capital for these least-

cost arbitrageurs. For the purpose and transparency of our analysis, we therefore prefer

to focus on a small model. Larger models with many more regimes can nevertheless be

accommodated for in this methodology.

A second choice we have to make is the lag length Lp) for each regime. Once
more, we take a pragmatic view. For all regimes we set the lag length equal to eight,

given the results in Martens, Kofman, and Vorst (1996). We realize the risk of a

potentially overparameterized model, but for now want to focus on estimation of the

other parameters of interest, i.e., d,r,0,0, and y, conditionally on this lag length choice.

First, we report on the posterior density of d where we find overwhelming evidence

for a threshold lag of just one minute. We do not observe any probability at higher lags

(we restrict the analysis to a maximum threshold lag of four minutes2). Next, Table 1

provides the marginal posterior probabilities for some individual threshold candidates

pairs (r ,r 2) . As the six pairs of threshold values given account for approximately 98%

of the marginal posterior probability3, we give only these values here. No other pair

contributes more than 0.4% of .the total probability. The lower threshold has a modal

value of -0.10381 percent, the upper threshold has a modal value of 0.12763 percent,

and hence they appear to be close to being symmetric around zero. Translated into

commonly used arbitrage index points, this amounts to a no-arbitrage band of 1.03

index points.4 This value corresponds to the band with the greatest posterior

probability (approximately 88%). We find some evidence of alternative threshold

candidates, e.g., -0.09542 percent for the lower bound and 0.12763 percent for the

upper threshold. According to this data, the smallest no-arbitrage band we observe with

any significant probability is 0.99 index points, corresponding to approximately 10%

of the posterior probability. Martens, Kofman, and Vorst (1996) find a no-arbitrage

band of 1.61 index points for the same sample period. The 'direct' costs involved in an

arbitrage transaction consist mainly of bid-ask spread costs for the least-cost

2 Program traders are guaranteed execution of trades within 3 minutes.
3 Empirical probability associated with numerical approximation to marginal posterior distribution of r.
4 We find this value by multiplying the threshold bandwidth and the average cash index level for May, which is
445.25.
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arbitrageurs. Given that this cost component is about 0.75 index points for our sample

period, we could argue that a value between 1.0 and 1.03 index points is a more likely

candidate for the total cost threshold.

Table 1. Bayesian Threshold Candidates

Threshold values

-0.10381
-0.10381
-0.10381
-0.10381
-0.09542
-0.09542

r2
0.12627
0.12695
0.12763
0.12831
0.12695
0.12763 

total

Posterior
probability

0.019
0.099
0.707
0.058
0.012
0.084
0.979

Index point
no arbitrage band

1.03
1.03
1.03
1.03
0.99
0.99

Having discussed d and r, we can now move on to our error correction model

estimates for each regime. We reviewed the marginal posterior density estimates for

each individual regression coefficient in the ECM. For our data, all of the plots

appeared to match a normal distribution with mean and standard error given by the

estimates in Table 2. Therefore, we do not present them all here. A typical finding for

index-futures arbitrage is that the futures market tends to be more informationally

efficient than the cash market. In lead-lag terms, this implies that futures returns lead

the stock index returns. Kawaller, Koch, and Koch (1987), e.g., find that for 1984-

1985 the S&P futures price significantly leads the spot price up to 20-45 minutes.

Sometimes the spot price is found to lead, but this lead seldom extends beyond one

minute. We find a similar lead-lag structure though less pronounced for the futures

14



Table 2. Bayesian T-VAR estimates (Posterior standard deviations) a

Lower Regime Central Regime Upper Regime

AF AS AF AS

,

AF AS

C 0.00005 0.00015 0.00000 0.00000 0.00021 -0.00011
(0.00009) (0.00006) (0.00000) (0.00000) (0.00011) (0.00005)

(1341 -0.12447 0.15643 -0.05627 0.04083 0.05203 0.04588
(0.05566) (0.03718) (0.01490) (0.00625) (0.06240) (0.03104)

(I)2 -0.03962 0.29075 0.01948 0.10659 -0.00762 0.17707
(0.05763) (0.03704) (0.01473) (0.00623) (0.06287) (0.03124)

03 -0.01052 0.17205 0.03519 0.10486 0.01773 0.11109
(0.06345) (0.04045) (0.01491) (0.00626) (0.06775) (0.03363)

04 0.06107 0.12165 0.01021 0.08488 -0.01979 0.05400
(0.06648) (0.04222) (0.01506) (0.00632) (0.06675) (0.03318)

05 0.02123 0.13770 0.01200 0.06408 0.02828 -0.00974
(0.06370) (0.04102) (0.01507) (0.00634) (0.06991) (0.03473)

4)6 -0.07004 0.09002 -0.00861 0.04895 0.04478 -0.00998
(0.06903) (0.04473) (0.01485) (0.00628) (0.06857) (0.03409)

(I)7 -0.00048 0.09363 0.00085 0.04042 0.12125 0.02603
(0.07183) (0.04561) (0.01439) (0.00604) (0.06876) (0.03414)

08 -0.11277 0.05900 -0.01073 0.01998 0.00793 -0.01393
(0.06583) (0.04163) (0.01389) (0.00584) (0.06453) (0.03207)

01 0.08200 0.07006 -0.05693 -0.04329 0.10122 0.23187
(0.10423) (0.06715) (0.02913) (0.01223) (0.10663) (0.05299)

02 -0.18371 0.04821 -0.04360 -0.01548 -0.02401 -0.04405
(0.11368) (0.07261) (0.02836) (0.01192) (0.11388) (0.05659)

03 -0.05454 -0.21135 0.02111 -0.01344 -0.19458 -0.04320
(0.12602) (0.08057) (0.02782) (0.01169) (0.11623) (0.05778)

04 0.14164 0.17854 0.00794 -0.00224 -0.00093 0.01140
(0.11573) (0.07436) (0.02776) (0.01166) (0.11723) (0.05824)

05 0.42977 -0.11556 0.01593 0.02194 -0.06630 -0.01427
(0.12369) (0.07867) (0.02744) (0.01153) (0.10813) (0.05373)

06 0.07636 0.04406 0.03863 0.00159 0.07089 0.07668
(0.10947) (0.07005) (0.02684) (0.01130) (0.11177) (0.05554)

07 -0.22189 -0.04924 -0.00389 0.01807 -0.24684 0.01205
(0.10819) (0.06847) (0.02589) (0.01086) (0.11102) (0.05518)

Os -0.06405 0.03552 0.00655 0.01732 0.18237 0.03159
(0.11379) (0.07227) (0.02543) (0.01068) (0.10438) (0.05189)

7 0.00056 0.00132 0.00002 i 0.00017 -0.00130 0.00110
(0.00073) (0.00047) (0.00008) i (0.00003) (0.00076) (0.00038)

[0.0000000975 0.00000001701 z r0.0000000793 0.0000000085 0.0000001505 0.00000002601
E, =

0.0000000170 O.0000000397 j'

c. 

[0.0000000085 0.00000001401 
= 

u [0.0000000260 0.0000000372i

a Rao-Blackwellized means and standard errors.
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lead (up to eight minutes).5 This is most apparent in the upper regime where we only

observe a significant two- and three-minute lead of the futures returns.

The parameter (PF,1 is significantly negative for the lower and middle regimes and

ambiguously so for the upper regime. This illustrates the bid-ask spread induced

bounce, which implies significant negative first-order serial correlation in futures price

changes. Parameter 05,1 on the other hand, is only significantly negative in the middle

regime. This can be an indication of the fact that spot price changes in the outer

regimes are mostly driven by infrequent trading instead of the bid-ask bounce. The

positive serial correlation implied by infrequent trading more than offsets the bid-ask

bounce driven negative serial correlation. This phenomenon also explains why most of

the equilibrium adjustment seems to occur in the spot (stock index) price changes.

For illustration, the Rao-Blackwellized marginal posterior density estimates for the

first-order 'cross-autoregression' parameters for each regime are shown in Figure 1.

The parameter ez1 appears to be only significantly different from zero in the middle

regime, while parameter Os,/ is significant for all regimes (strongest in the outer

regimes). This reinforces our finding that the spot market is responding to futures

market information, but much less so the other way around.

Summarizing the short-run dynamics, it is quite apparent that spot price changes

are more time- and cross-dependent than futures price changes. Also apparent is the

normality of the posterior plots for those parameters. The near normality appears to be

due to the sharpness of the marginal posterior distribution for r and d and the large

sample size.

Somewhat puzzling is the significant drift term for the index returns in the outer

regimes. For both lower and upper regimes, the signs imply a drift away from the no-

arbitrage band instead of a reversion. However, it is not so easy to interpret individual

parameters in this model. Apparently, the drift is more than offset by the lagged

variables and error correction parameter. For a closer investigation of the error
t.

5 Note that we have restricted our lead/lag order to eight minutes. Martens, Kofman and Vorst (1996) do find
some longer significant lags.
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correction parameters we plot the joint posterior density of yF and ys in Figures 2 for

each regime.

For strong error correction behaviour, we expect to observe a predominance of

probability in the second quadrant (negative values for 7F and positive values for vs).

This is most evident in the upper regime, and least so in the middle regime. Broadly

speaking, this confirms our arbitrage threshold model. Once again, the significant

positive ys confirms that it is the stock market restoring equilibrium. In the outer

regimes this is evidently stronger, most likely due to arbitrage.

5. Conclusion

Proper identification of regimes in a nonlinear threshold VAR is notoriously difficult.

In this paper we develop a Bayesian approach which is better suited to the intricate

'endogenous' nature of the problem at hand. We simultaneously estimate the delay

parameter, threshold values, and VAR parameters. Thus, our model avoids the

somewhat awkward stepwise classical approach.

We also show that it is possible to obtain analytical solutions in a multiple

threshold model. Chen and Lee's (1995) claim that their Gibbs sampling procedure

outperforms the analytical solution in Geweke and Terui (1993) does not seem to be

valid for the problem considered in this paper. Whereas the Gibbs sampling approach

may be worthwhile for the more complicated case of incorporating informative prior

information, the analytical solution seems preferable in our case.

A number of issues have yet to be resolved. First, we 'assume' a cointegrating

relationship and focus straightforwardly on the error correction representation.

Whereas this seems to be a valid exercise for parity relationships imposed by economic

theory, this is often not the case for other interesting economic applications where we

do not have a solid economic foundation. Second, a proper analysis would incorporate

a model selection strategy. Selection of an appropriate lag structure could be achieved

by applying the PIC (Posterior Information Criterion) procedure, see Phillips (1996).

PIC can be used to achieve joint order selection of the cointegrating rank and selection
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of the autoregressive lag length. This may, however, be more complicated in our

interdependent threshold setting.

An interesting extension will be given by impulse response functions (ERF' s)

analysis as in Koop (1996), for our threshold VAR model. However, this is already

rather complicated in a two-regime model, let alone a multiple regime model. The

explosion of possible histories and future trajectories might make a meaningful IRF

analysis rather intractable. Another methodological extension can be found in the

smooth transition literature. Our thresholds create a discontinuity, whereas one might

argue that many economic regime changes occur in a rather smooth way. The next step

will therefore inevitably include a Bayesian STAR model.

A second extension is given by Geweke and Terui who exploit their model to

predict regime changes. We might be similarly interested in the probability that a

future price variable will lie, for example, in the upper arbitrage regime. Conceptually,

this should be rather easy to achieve.
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Appendix

The Likelihood Function, Prior and Posterior Distributions

The likelihood function for the threshold ECM is given by the product of R individual

functions stemming from the usual likelihood function for a VAR model.

3

Lae), E(i) = 1, 1?1, r, d) oc 1-1(270—No)/21z(i)l-N())/2
j., (Al)

• expt tr[S(j) + (B(j) — h(f)Y X(D' X(j)(B(j) — h(j))]Z(j)11

where ki) =(x(D' x(j)11 x(i)t y(i) is the OLS estimator of B(f) , given r and d and

s(i) = (y(i) _ x(i)13(i)) (y(i) _ x(i)h(i)) (A2)

is an m x m sample covariance matrix for regime R(j), given r and d. Here each

element bP) R1 ,z(j) is an m x m positive definite matrix, azi <r au and d = 1, 2,

••., D.

To complete a Bayesian analysis of our model, the specification of the joint prior

distribution for our unknown parameters must be included. Our choice is of the form

= 1,• • • ,R1,r,d) 1-1 0. 3 E( j)1-(m+1)/2p(r, d) (A3)
J.1

so that the joint prior for /3(i) and EU), conditional on r and d, is of the usual Jeffreys6

form, assuming a priori independence of B(l) and fj) (see Zellner, 1971). In addition,

we let the marginal prior distribution for r and d be uniform over the appropriate

region, so that

p(r,d) oc 1 for aL= ro <r <...<rR = au , and d = 1,2,..., D. (A4)

Note that, under this specification, both the likelihood function, the prior density and,

consequently, the posterior density are flat for any r1 in [zg, zg+,) . Consequently, no

distinction can be made with respect to threshold values between observed z values.

6 The prior given is a Jeffreys prior for multiple regression as given in Zellner (1971). For discussion of a Jeffreys
prior in the context of time series models, see Phillips (1991)
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Under the above prior specification, the marginal posterior density for r and d can

be obtained by integrating the product of the likelihood function in (Al) and the prior

density given by (A3) and (A4), and integrating first with respect to B(j)

SO

3

p(E(l), r, dl y) oc fJ 
(270-inN(i)/21x(i)1-(N(I)+m+1)/2

j=1

• trt(S(') + (kJ) — hu)Y x'' X (I) (B(') — /3(j)))Z(')-1 ildB(')

(A6)

3

p(Z(j) ,r, at y) oc 1-1(2,7)-mvulzwrv121x-ci),xlmk(i)/2 trS(j)fj)-1 1 (A7)
j=1

and hence, for given r and d, the above is proportional to an 1Wm (VD, S) density.

Integrating (A7) with respect to E('), the marginal posterior density of r and d yields

3 m

p(r,dly) HZ-mv/2 Htv(i)+1—i)/21sul-v(i)/2lx(fYx(i)rm12
j=1 j=1

where r and d are constrained to a L = rc, <r1 <...<rR = a, and d = 1,2,..., D.

(A8)
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Figure 2. joint Posterior Densities for the Gamma Parameters








