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Abstract

A Bayesian estimation procedure is developed for estimating multiple regime (multiple threshold)
vector autoregressive models appropriate for deviations from financial arbitrage relationships. This
approach has clear advantages over classical stepwise threshold autoregressive analysis. Whereas
classical procedures first have to identify thresholds and then perform piecewise autoregressions, we
simultaneously estimate threshold and autoregression parameters. To illustrate the Bayesian
procedure, we estimate a no-arbitrage band within which index futures arbitrage is not profitable
despite (persistent) deviations from parity. '
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1. Introduction

The arbitrage argument provides a powerful tool for financial economists in deriving
equilibrium conditions. It is therefore no surprise that there is an extensive literature
trying to explain and/or accommodate consistent deviations from well known financial
arbitrage or parity relationships. Whereas it is tempting to conclude from the empirical
evidence that such deviations imply market inefficiencies, any profit potential seems to

be severely obstructed by arbitrage costs. Unfortunately, some aspects of the total
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arbitrage cost are difficult to measure, and hence it is difficult to determine when an
arbitrage opportunity truly exists. One approach would be to attempt to identify the
total arbitrage cost by exploiting any measurable peculiarities in the observed

deviations from equilibrium. This results in searching for threshold values away from

the equilibrium condition beyond which the deviations from equilibrium are large

enough to imply an arbitrage opportunity.

Regime switching models seem most appropriate for describing this arbitrage
threshold idea, since they distinguish between regimes based on apparent differences in
the stochastic process of the variable of interest. In the arbitrage setting, we postulate a
middle regime where transaction costs prevent profitable arbitrage and two (upper and
lower) outer regimes where arbitrage will occur. Tong’s (1983) seminal book on
threshold models introduces threshold autoregressive (TAR) models relevant to
economic problems. TAR models consist of piecewise linear autoregressions. They are
linear in the state space of the stochastic process of the variable of interest, but
nonlinear in the time domain. Usually there is a threshold variable indicating at each
point in time which regime prevails. This variable can be a function of the observable
history, or an unobservable latent variable, e.g., a saturating consumption utility level;
see Pole and Smith (1985). Markov Chain regime switching models typically allow for
unobservables to identify the regime. Potter (1995) illustrates how these apparently
distinctive models can be nested in a single index generalized multivariate
autoregressive (SIGMA) model class.

One appealing special case in the SIGMA class is given by the Self Exciting TAR
(SETAR) model, where the regime indicator is given by the (lagged) variable of
interest itself. This-facilitates estimation in comparison with the unobservable indicator
model. There is also a pragmatic argument in favour of using this feature. If a strictly
homogeneous asset is traded simultaneously in two markets, it should have the same
price in both markets. However, consider the fact that these markets are geographically
separated. It will then take some time for participants in both markets to observe
occasional price differences. The SETAR model will then use the (appropriately)

lagged price difference as an indicator variable triggering arbitrage if this difference is




sufficiently large (i.e., exceeds some threshold) to offset the transportation costs of
moving the asset from the lower price to the higher price market.

A number of papers have recently appeared providing estimation methodologies to
cope with threshold estimation problems. Relevant to our purposes, Balke and Fomby
(1993), Yadav, Pope, and Paudyal (1994), and Martens, Kofman, and Vorst (1996)
propose the SETAR modelling procedure to identify arbitrage thresholds or triggers.
Unlike other threshold papers this implies that there is a well defined economic model
underlying the analysis. The underlying threshold autoregression methodology used,
based on Tsay (1989), relies on recursive arranged autoregressions. Visual inspection
of the residual scatterplots of the arranged regressions leads to an indication of a range
of possible thresholds. A minimizing sum of squared errors grid search on this range
then defines the threshold. In practice, it proves difficult to operationalize this
technique. Whereas the method seems to be rather powerful in detecting evidence of
non-linearity, its threshold estimation power is much less impressive. The problems
encountered in deriving suitable threshold values are rather evident in for e.g.,
Martens, Kofman, and Vorst (1996). Appropriately picking the grid range from
scatterplots is tedious at best. In particular, the ordering of the deviations (ascending or
descending) influences the range of possible thresholds and the probability of
detection. Due to the very concept of arbitrage, any crossing of the thresholds will by
definition only persist for a very short time. The subsequent small sample size for the
outer regimes hampers proper threshold identification. Balke and Fomby (1993)
suggest that the TAR modelling procedure may then not be useful.

An obvious alternative is then to look at a Bayesian threshold methodology. A few

papers have recently appeared’, discussing univariate TAR models from a Bayesian

perspective. Geweke and Terui (1993) develop a 2-regime AR-model and provide
analytical solutions for the marginal posterior density of the threshold variable. Koop
(1996) considers a similar model, but focuses on subsequent impulse response
analysis. We propose a Bayesian estimation methodology for a threshold vector

autoregression model which simultaneously estimates thresholds, delay, and

! Pole and Smith (1985) present a Bayesian analysis of the related threshold regime switching models.




interaction parameters. Thus, it avoids some of the troublesome aspects of the classical
methodology predominantly used in this line of research. We extend Geweke and Terui
by considering multiple thresholds in a vector autoregressive (VAR) setting. We
illustrate that it is possible to obtain a straightforward humerical sélution for this case.
In addition, we use ‘Rao-Blackwellized’ estimators for calculating marginal posterior
summaries. Chen and Lee (1995) suggest that a simple alternative to Geweke and
Terui’s model can be obtained via Markov chain Monte Carlo (MCMC) methods. We
argue that our solution dominates this simulation approach when noninformative prior
distributions are used.

The remainder of this paper is organized as follows. Section 2 introduces a
threshold error correction model for arbitrage in a simple context and then extends the
ideas to a more general arbitrage case. Section 3 gives an outline of the computational
method proposed for obtaining an independent sample from the joint posterior
distribution, and proceeds in providing details regarding the calculation of marginal
posterior quantities of interest, such as posterior moments and marginal densities. We
then apply our model empirically to index futures arbitrage in the S&P500 stock index.

Details of the derivations relevant to Section 3 are given in an appendix.

2. A Threshold Error Correction Model for Arbitrage

Threshold autoregressive models have been applied to economic problems.
Unfortunately, for some applications the rationale for a threshold or the interpretation
of the autoregressive estimates is difficult to grasp. One area where we might expect
meaningful and interpretable applications is given by financial arbitrage relations. Our
starting point, therefore, is the simplest of these; the law of one price (LOOP).
According to the LOOP, a strictly identical asset which is traded in separate markets
should have the same price at the same time to avoid arbitrageurs from buying in the
cheapest market and simultaneously selling in the dearest market. We can specify,

z=F-p, (1)

where P, is the price of the asset at time # in market 1, and p, is the price of the same

asset at time # in market 2. While it is possible for the price wedge z, to be occasionally




non-zero, it should have zero expectation and display strong mean-reverting behaviour.
Furthermore, if the z, are sufficiently small, the costs of arbitrage will not outweigh the
profits. This implies that it is possible for z, to be persistently positive or negative.
Thus, we use (1) to construct the hypothesized error correction terms, which will
become ‘active’ as soon as some arbitrage preventing threshold is surpassed. Once we
are able to identify this threshold, we can split up our sample into regimes; outer
regimes where arbitrage is effectively driving asset prices back towards their no-
arbitrage value, and an inner regime where asset prices are (relatively) free to diverge
from this value, i.e., behave locally as a random walk.

To describe the threshold error correction model (ECM), we begin with some
notation. Define three regimes R”, j = 1, 2 and 3, by R ={z:r, <z, <r;}, with
r, =—c and r, = +e. Here d is known as the threshold lag or delay parameter, and the
vector r’=(r,r,) gives the threshold values which determine the regimes. Let g be an

index for the observed data such that z, <z, for all ¢ = I, ..., T-I. Using this

q+1

ordering, there correspond values of g = Q% where z o € RY and z

(4D i
oy € R, for j

=1,and 2, and ¥ =T- Q¥ - 0%
The ECM describes the distribution of the changes in the observed prices, given
the values of the unknown parameters, past changes in prices and deviations from

arbitrage equilibrium. We have, for each regime where z,_, € R,

(1) (J)
— Cﬁ,’) +Z¢(1) AR;-k +26(J) qu-k +,y(1) Zpa + 85.!2]
k=1
i) ,_u) )

= c(]) +Z¢())A‘Pq—k +29(J)qu-k +;y(]) +8(p{l

I4 q-d
k=1

~ where ¢ and 6 are the autoregressive (‘short-run’) parameters and Y is the equilibrium

adjustment (‘long-run’) parameter. Now, whenever z,_, does not exceed either the

q-d
upper or lower threshold, 7% and 7, are zero and prices P and p do not respond to

disequilibria in the LOOP. Whenever z, , does exceed either threshold, ¥» and/or %,

are non-zero and negative, respectively positive, to restore equilibrium. The constants




¢, the drift in price changes, may also contribute to restore equilibrium if they have the
appropriate (opposing) signs. Conditionally on regime R?” and the other parameters, we

assume that the random vectors
) e(rj) . ()
g;” =| (7 |~ independent Normal (02,2 ) ?3)

()
€ra

within each regime R?”. The above ECM for each regime can then be written as a

vector autoregression as follows:

Y, = W+ Al(j)yq_l +...+A,£j)yq_L + y(j)zq_,, +8‘(Ij) 4)

for g=0U™" +1,...,0¥ with 0= 0 and I = max{1?, 19, 1", 1}

2.1 A General Arbitrage Threshold ECM
The equilibrium relationship implied by arbitrage can be more general than what is
indicated in (1), in that more than two variables may be involved. For the general
arbitrage threshold ECM, we define the univariate mispricing error variable

z, =F(y,) (6)
where y, is an mXx1 vector of prices comprising the equilibrium and the functions
F:@" — 2' are assumed to be given by the arbitrage theory in this context. In the

LOOP case, y,'= (AP, Ap,) and F,(y)=(1-1)y.




We can write the VAR model for each regime R?, j = 1, 2, 3 in compact form

YW = x4y, )
where

YW= [}’Qu-x)ﬂv--’ yQu)]’

().

XU .—[XQ(,._,)H,..
(1 )
Yq

X o ], where

yq—L+1
\ Zg-¢ )
B(")':=[c(j),Afj),...,A,fj),y(j)], and

().—
v = € 0 yyo-++ € gl |

Note that Y is a N¥ x m matrix of observed variables, where m is the number of
equations in the ECM and N¥ is the number of observations in regime RY; XY is an
NP x k9 matrix of regressors, where kX%=m(L”+2) and LY is the maximum number of
lags included in the ECM; B? is a k¥ x m matrix of regression coefficients and U? is
an N x m matrix of errors for regime R”. So far we have assumed the regimes to be
fixed and the values of r and d known. However, it is one of our objectives to estimate
these parameters, and hence we treat them as unknown parameters. Note that variables
indexed by j are implicitly functions of both r and d. We proceed for a general m-
dimensional ECM and apply it to intraday futures and index returns data (where m=2.)
in Section 4.

Martens, Kofman, and Vorst (1996) estimate an arranged autoregression in z,
based on Tsay’s Threshold Autoregressive (TAR) method, which can be used to define
the three regimes. Once the regimes are defined, an ECM is then estimated for each
regime, for each equation in (2). This two-step procedure, while intuitively appealing
for describing threshold concepts, does not by its very nature estimate parameters
simultaneously. In addition, the two step procedure does not utilize a single
representation of the dynamic structure implicit in the setting, and consequently the

assumptions of the TAR model and the ECM are potentially conflicting.




We therefore prefer to use a Bayesian approach for analyzing the ECM, while
imposing a threshold component directly to capture the desired feature of differing
behaviour of the z, variables when they are out of equilibrium. Balke and Fomby
(1993) also discuss using thresholds in error correction representations, however they
do not actually use the Bayesian approach in their analyses. One of the benefits of the
our approach is that we are able to obtain simultaneous estimation of all parameters
considered. In addition, we obtain posterior density estimates for both single
parameters and various combinations of parameters of particular interest. That is, we
can obtain the range of plausible parameter values and, given the data, the probabilities

associated with these values.

3. Bayesian Threshold ECM Estimation

Given the threshold and delay parameters, r and d, respectively, Bayesian analysis of
the ECM in each regime follows a standard Bayesian analysis for vector autoregressive
(VAR) processes. See Liitkepohl (1993) and Zellner (1971). If we assume for the
moment that the values of r and d are known, we have then the following results for
the posterior distributions of the autoregression coefficients 5% = vec(BY”) and
variance-covariance matrices =%, for j = 1, 2, 3 under the assumption of the following
prior for b% and =,

~(m+1)12

. 3 . :
p(b(j),z(’)lr,d) o H s ) 9)
j=1

We have

Z(f) given Y,r.d ~ independent Iwm (V(j),S(j)) (10)

b given £),Y,r,d ~ independent N il (E(j)’}:(j) ®X (j)'X(j)) -4

where bY) = vec(BY) and 1§(”=(XU”X"'))-IX(”'Y"" is the OLS estimator of B

4

given r and 4, V) = N9 - k) apg sV =(Y(j) —X(j)ﬁ(j)) (Y(j)— X(j)ﬁ(j)). Here IWm(v,S)

refers to an inverted Wishart distribution for an m x m positive definite symmetric

matrix with degrees of freedom parameter v and matrix parameter S.




Since r and 4 are unknown, to produce a sample from the joint posterior

distribution of {b(j),z(j), Jj= 1,2,3},r and d, we must first be able to obtain r and d from

the marginal posterior distribution p(r,dly). Once we have r and d, we can sample

{E(j), j= 1,2,3} and then {b(j), j= 1,2,3} using (10) and (11), respectively.

Following Geweke and Terui (1993), we assume a uniform prior p(r,d)e<1, for
a,<rn<nr<a, andd =1, 2,..., D, and derive an expression for the marginal posterior

distribution for r and d

p(r.dly) =< f[n‘"”””zf[ r[(v‘f’ +1-i)/ 2](5“’ "VU)”]XU>'X“’|""'2. (12)
j=1

j=1
Details of derivations of (10) (11) and (12) are given in the appendix. Notice that
potentially many values for the threshold and delay parameters are included in the

marginal posterior distribution of r and d. The values that appear most likely, given the

observed data y, will have the greatest influence on the estimates of =) and .

To actually sample from the above joint posterior p(r,dly), we numerically
normalize the right hand side of (12) and sample from the resulting empirical
distribution. Then, given sampled values of r and d, the =) are sampled from
independent IW,,(WW,5%) distributions. Finally, given r, d and =V, the elements of
b = vec(BY) are jointly normally distributed with mean values given by the OLS
estimator of 5, namely 5 = vec(B"), and variance-covariance matrix of b given

by (Z‘j) ®xWx (j)). In this manner, a sample of any size can be obtained from the full

joint posterior distribution.

3.1 Estimating Marginal Posterior Distributions

The above method describes how to sample from the full joint posterior distribution of
r,d and = and b"” for each regime. However, often we are interested in marginal
posterior distributions for each of the variables, and specifically marginal posterior
means and variances for each. One approach is to use Monte Carlo sample summaries

for the marginal posterior means and variances for each variable based on the values




obtained via Monte Carlo sampling of r,d,=) and 5, for j = 1, 2,..., R. However, the
so-called ‘Rao-Blackwellized’ estimators of marginal densities and moments will
provide Monte Carlo estimators with smaller (Monte Carlo) mean squared error. See
Gelfand and Smith (1990). Here we report on the form of these estimators for marginal
posterior means, variances and densities for the regression coefficients in each regime.

Let b”denote the /" element of the regression coefficient vector 5 in the j*
ECM and (r,,d;,=) for i = 1,2,.,M be a sample of size M from the posterior
distribution. A ‘Rao-Blackwellized’ estimate of the posterior mean of 5!’ is given by a

sample average of the OLS estimates 54 of b

M AL,
E b= S B (3

i=1
A Rao-Blackwellized estimate of the marginal posterior variance of b’ can be

similarly obtained using

V&r,b(bf”zly)=[—;;i{vlff’+(5,‘..-”)2}]—(E,,,[b,‘”ly]f (14)

i=1
where V) is the I* diagonal element of (ZE”@X,.“)'X,.(")). Covariances between

elements of b’ can also be obtained.
Rao-Blackwellized estimates of marginal posterior density functions are also

possible by averaging the marginal (conditional) posterior densities of 5, given
sampled values (r,,d;, =), over a grid of possible values. That is, for each point b, we

have

5 bl _LM 2 -1/2|V(i)|—1/2 -1 (b_l;(i))z
p,(bly) = MZ( ) L €Xp WD Li .

i=1 L
Bivariate density estimates can be similarly obtained.

In summary, due to the particular choice of the prior distribution, the marginal
posterior density for randdis available analytically up to a normalizing constant.
Sampling from this distribution is straightforward. Conditional on sampled pairs r and

d, simulation of the remaining variables from the full joint posterior distribution is




straightforward, and as a result various summary statistics of the posterior distribution
are readily accessible, to any desired degree of accuracy.

We have given a detailed approach for analyzing a threshold error correction model
under the assumption that there are two threshold resulting in three regimes. Extension
to any fixed number of regimes is straightforward. In addition, our approach may be
appropriate for some alternative specifications of the prior distribution, however each

choice would need to be evaluated individually to determine if direct sampling from

the joint posterior distribution is possible. In particular, if a different prior distribution

was desired and was of a form that analytical reduction to the marginal posterior
density of r and d was not possible, other techniques, such as using Markov chain
Monte Carlo (MCMC) methods might be more suitable. For a discussion of a Bayesian
analysis of a univariate TAR model using MCMC methods, refer to Chen and Lee
(1995). However, we believe unless formal prior information is available that is not
compatible with our specification, the approach presented here is preferable in that it

does not require more elaborate computational techniques.

4. Empirical Application

In this section, we apply our estimation procedure to index futures arbitrage. This type
of arbitrage consists of simultaneously buying (short-selling) the stock index and
selling (buying) the stock index futures whenever their prices diverge by more than the
cost of ‘carrying’ the stock index through time until maturity of the futures contract.
Brenner and Kroner (1995) give the following cost-of-carry expression,

Fr=S,=(rs=qs)T~1)+z - (16)

where F), S, are the logarithms of respectively futures and stock index prices, r, 7 is the
risk-free interest rate, g, r is the dividend yield on the stock index, and (7-¢) is the time
to maturity of the futures contract. For arbitrage to be profitable, we require that z, has
to exceed a certain (absolute) value determined by transaction costs. However, this will
not be a sufficient determinant for the arbitrage ‘wedge’, since we consider an
intertemporal arbitrage relation. Hence, we distinguish between two types of no-

arbitrage costs. The ‘direct costs’, such as transaction costs, short-selling restrictions




and unequal borrowing and lending rates are relatively easy to measure. The ‘indirect
cost’ components, such as index tracking error, execution risk, and dividend and
interest rate risk on the other hand are much more difficult to determine, necessitating
estimation of the thresholds to determine the total no-arbitrage band .

For illustration we use one month (May 1995) of intraday transaction data for the

S&P500 stock index and its (nearest delivery) futures contract traded at the Chicago

Mercantile Exchange. The maturity date for this particular contract is June. Even
though theoretically spot and futures prices converge towards maturity, it is well
known empirically that this does not affect the stochastic behaviour of z, the
mispricing error, well in advance of maturity. To avoid (or moderate) typical
microstructural problems like bid-ask bounce and infrequent trading, we construct a
one minute bivariate price series, generating 7,060 observations.

For detailed information on the univariate statistical properties of these series we
refer to Martens, Kofman, and Vorst (1996). Most important for our purpose is the fact
that futures and spot price are cointegrated, where the appropriate cointegrating
relationship is given by (16) above. Instead of focusing on this cointegration
relationship, we straightforwardly specify (and estimate) our implied threshold vector

error correction model,
(J) L(zj)
Aln Ez, T= Cg D 2 ¢(I:',)I<A In Ez,—k,T + Z 6(;{.)ch In S:r,—k + Y(Fj)zn:,—d + e(f{.):r,
k=1 k=1 (17)

AlnS, =c{+ §¢g{,1A1n F, .r +§9§{,{A1n Se V2, +ed)
k=1 k=1
where z, is as defined in (16). We postulate a three-regime model for our analysis.
Yadav, Pope, and Paudyal (1994) and Martens, Kofman, and Vorst (1996) allow for
even larger models. Yadav, Pope, and Paudyal, for example, argue that at different
thresholds different arbitrageurs become active depending on their relative cost
(dis)advantage. This is especially the case if arbitrage capital is constrained. It seems
unlikely to us that large sophisticated financial institutions will leave any opportunities

to less equipped arbitrageurs. Fully automated program trading, for example,

automatically triggers the appropriate arbitrage strategy based on preset mispricing




thresholds. It is also difficult to imagine a shortage of arbitrage capital for these least-
cost arbitrageurs. For the purpose and transparency of our analysis, we therefore prefer
to focus on a small model. Larger models with many more regimes can nevertheless be
accommodated for in this methodology.

A second choice we have to make is the lag length LY for each regime. Once
more, we take a pragmatic view. For all regimes we set the lag length equal to eight,
given the results in Martens, Kofman, and Vorst (1996). We realize the risk of a
potentially overparameterized model, but for now want to focus on estimation of the
other parameters of interest, i.e., d,r,¢,0, and ¥, conditionally on this lag length choice.

First, we report on the posterior density of d where we find overwhelming evidence
for a threshold lag of just one minute. We do not observe any probability at higher lags
(we restrict the analysis to a maximum threshold lag of four minutes?). Next, Table 1
provides the marginal posterior probabilities for some individual threshold candidates

pairs (r; ,r;). As the six pairs of threshold values given account for approximately 98%

of the marginal posterior probability®, we give only these values here. No other pair

contributes more than 0.4% of .the total probability. The lower threshold has a modal
~value of -0.10381 percent, the upper threshold has a modal value of 0.12763 percent,
and hence they appear to be close to being symmetric around zero. Translated into
commonly used arbitrage index points, this amounts to a no-arbitrage band of 1.03
index points.* This value corresponds to the band with the greatest posterior
probability (approximately 88%). We find some evidence of alternative threshold
candidates, e.g., -0.09542 percent for the lower bound and 0.12763 percent for the
upper threshold. According to this data, the smallest no-arbitrage band we observe with
any significant probability is 0.99 index points, corresponding to approximately 10%
of the posterior probability. Martens, Kofman, and Vorst (1996) find a no-arbitrage
band of 1.61 index points for the same sample period. The ‘direct’ costs involved in an

arbitrage transaction consist mainly of bid-ask spread costs for the least-cost

2 Program traders are guaranteed execution of trades within 3 minutes.
Empmca] probability associated with numerical approximation to marginal posterior distribution of r.
* We find this value by multiplying the threshold bandwidth and the average cash index level for May, which is
445.25.




arbitrageurs. Given that this cost component is about 0.75 index points for our sample
period, we could argue that a value between 1.0 and 1.03 index points is a more likely

candidate for the total cost threshold.

Table 1. Bayesian Threshold Candidates

Threshold values Posterior Index point
r; T2 probability | no arbitrage band
-0.10381 0.12627 0.019 1.03
-0.10381 0.12695 0.099 1.03
-0.10381 0.12763 0.707 - 1.03
-0.10381 0.12831 0.058 1.03
-0.09542 0.12695 0.012 0.99
-0.09542 0.12763 0.084 0.99
0.979

Having discussed d and r, we can now move on to our error correction model
estimates for each regime. We reviewed the marginal posterior density estimates for
each individual regression coefficient in the ECM. For our data, all of the plots
appeared to match a normal distribution with mean and standard error given by the
estimates in Table 2. Therefore, we do not present them all here. A typical finding for
index-futures arbitrage is that the futures market tends to be more informationally
efficient than the cash market. In lead-lag terms, this implies that futures returns lead
the stock index returns. Kawaller, Koch, and Koch (1987), e.g., find that for 1984-
1985 the S&P futures price significantly leads the spot price up to 20-45 minutes.
Sometimes the spot price is found to lead, but this lead seldom extends beyond one

minute. We find a similar lead-lag structure though less pronounced for the futures




Table 2. Bayesian T-VAR estimates (Posterior standard deviations) ©

Lower Regime

Central Regime

Upper Regime

AF

AS

AF

AS

AF

AS

0.00005
(0.00009)

-0.12447
(0.05566)

-0.03962
(0.05763)

-0.01052
(0.06345)

0.06107
(0.06648)

0.02123
(0.06370)

-0.07004
(0.06903)

-0.00048
(0.07183)

-0.11277
(0.06583)

0.00015
(0.00006)

0.15643
(0.03718)

0.29075
(0.03704)

0.17205
(0.04045)

0.12165
(0.04222)

0.13770
(0.04102)

0.09002
(0.04473)

0.09363
(0.04561)

0.05900
(0.04163)

0.00000
(0.00000)

-0.05627
(0.01490)

0.01948
(0.01473)

0.03519
(0.01491)

0.01021
(0.01506)

0.01200
(0.01507)

-0.00861
(0.01485)

0.00085
(0.01439)

-0.01073
(0.01389)

0.00000
(0.00000)

0.04083
(0.00625)

0.10659
(0.00623)

0.10486
(0.00626)

0.08488
(0.00632)

0.06408
(0.00634)

0.04895
(0.00628)

0.04042
(0.00604)

0.01998
(0.00584)

0.00021
(0.00011)

0.05203
(0.06240)

-0.00762
(0.06287)

0.01773
(0.06775)

-0.01979
(0.06675)

0.02828
(0.06991)

0.04478
(0.06857)

0.12125
(0.06876)

0.00793
(0.06453)

-0.00011
(0.00005)

0.04588
(0.03104)

0.17707
(0.03124)

0.11109
(0.03363)

0.05400
(0.03318)

-0.00974
(0.03473)

-0.00998
(0.03409)

0.02603
(0.03414)

-0.01393
(0.03207)
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lead (up to eight minutes).” This is most apparent in the upper regime where we only
observe a significant two- and three-minute lead of the futures returns.

The parameter ¢, is significantly negative for the lower and middle regimes and
ambiguously so for the upper regime. This illustrates the bid-ask spread induced

bounce, which implies significant negative first-order serial correlation in futures price

changes. Parameter 65 ; on the other hand, is only signiﬁcéntly negative in the middle

regime. This can be an indication of the fact that spot price changes in the outer
regimes are mostly driven by infrequent trading instead of the bid-ask bounce. The
positive serial correlation implied by infrequent trading more than offsets the bid-ask
bounce driven negative serial correlation. This phenomenon also explains why most of
the equilibrium adjustment seems to occur in the spot (stock index) price changes.

For illustration, the Rao-Blackwellized marginal posterior density estimates for the
first-order ‘cross-autoregression’ parameters for each regime are shown in Figure 1.
The parameter Of; appears to be only significantly different from zero in the middle
regime, while parameter ¢g; is significant for all regimes (strongest in the outer
regimes). This reinforces our finding that the spot market is responding to futures
market information, but much less so the other way around.

Summarizing the short-run dynamics, it is quite apparent that spot price changes
are more time- and cross-dependent than futures price changes. Also apparent is the
normality of the posterior plots for those parameters. The near normality appears to be
due to the sharpness of the marginal posterior distribution for r and d and the large
sample size.

Somewhat puzzling is the significant drift term for the index returns in the outer
regimes. For both lower and upper regimes, the signs imply a drift away from the no-
arbitrage band instead of a reversion. However, it is not so easy to interpret individual
parameters in this model. Apparently, the drift is more than offset by the lagged

variables and error correction parameter. For a closer investigation of the error

5 Note that we have restricted our lead/lag order to eight minutes. Martens, Kofman and Vorst (1996) do find
some longer significant lags.




correction parameters we plot the joint posterior density of 9 and s in Figures 2 for
each regime.

For strong error correction behaviour, we expect to observe a predominance of
probability in the second quadrant (negative values for 9 and positive values for 7).
This is most evident in the upper regime, and least so in the middle regime. Broadly
speaking, this confirms our arbitrage threshold model. Once again, the significant
positive vy, confirms that it is the stock market restoring equilibrium. In the outer

regimes this is evidently stronger, most likely due to arbitrage.

5. Conclusion

Proper identification of regimes in a nonlinear threshold VAR is notoriously difficult.
In this paper we develop a Bayesian approach which is better suited to the intricate
‘endogenous’ nature of the problem at hand. We simultaneously estimate the delay
parameter, threshold values, and VAR parameters. Thus, our model avoids the
somewhat awkward stepwise classical approach.

We also show that it is possible to obtain analytical solutions in a multiple
threshold model. Chen and Lee’s (1995) claim that their Gibbs sampling procedure
outperforms the analytical solution in Geweke and Terui (1993) does not seem to be
valid for the problem considered in this paper. Whereas the Gibbs sampling approach
may be worthwhile for the more complicated case of incorporating informative prior
information, the analytical solution seems preferable in our case.

A number of issues have yet to be resolved. First, we ‘assume’ a cointegrating
relationship and focus straightforwardly on the error correction representation.
Whereas this seems to be a valid exercise for parity relationships imposed by economic

theory, this is often not the case for other interesting economic applications where we

do not have a solid economic foundation. Second, a proper analysis would incorporate

a model selection strategy. Selection of an appropriate lag structure could be achieved
by applying the PIC (Posterior Information Criterion) procedure, see Phillips (1996).

PIC can be used to achieve joint order selection of the cointegrating rank and selection




of the autoregressive lag length. This may, however, be more complicated in our
interdependent threshold setting.

An interesting extension will be given by impulse response functions (IRF’s)
analysis as in Koop (1996), for our threshold VAR model. However, this is already
rather complicated in a two-regime model, let alone a multiple regime model. The
explosion of possible histories and future trajectories might make a meaningful IRF
analysis rather intractable. Another methodological extension can bé found in the
smooth transition literature. Our thresholds create a discontinuity, whereas one might
argue that many economic regime changes occur in a rather smooth way. The next step
will therefore inevitably include a Bayesian STAR model.

A second extension is given by Geweke and Terui who exploit their model to
predict regime changes. We might be similarly interested in the probability that a
future price variable will lie, for example, in the upper arbitrage regime. Conceptually,

this should be rather easy to achieve.
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Appendix

The Likelihood Function, Prior and Posterior Distributions
The likelihood function for the threshold ECM is given by the product of R individual
functions stemming from the usual likelihood function for a VAR model.
) . 3 YY) ’
L({B(’),Z(’),j = 1,...,R},r,d) oc H(zn,)—mN(j)/z Z(/)I N2
= (A1)
-exp{—-;- 1SV + (BY = Dy x D x D (D _ B )]Z(i)"}
where BY = (xx "'))_1 XP'yY is the OLS estimator of BY, given r and d and
st =(Y"7 —x g(i)) (Y(j) —x0 I}(i)) - (A2)
is an m x m sample covariance matrix for regime R‘’, given r and d. Here each
element b € 2',=) is an m x m positive definite matrix, a, <r, <r, <q, andd =1, 2,
wees D
To complete a Bayesian analysis of our model, the specification of the joint prior

distribution for our unknown parameters must be included. Our choice is of the form

p({BV.2Y, j=1,...R},r.d)= f[lz(f’ M2 p(r.d) . (A3)
j=1

so that the joint prior for B and =%, conditional on r and d, is of the usual Jeffreys®
form, assuming a priori independence of BY and 39 (see Zellner, 1971). In addition,
we let the marginal prior distribution for r and d be uniform over the appropriate
region, so that

p(r.d)e<1fora, =r,<r <..<rp=a,, andd =12,...,D. (Ad)
Note that, under this specification, both the likelihood function, the prior density and,

consequently, the posterior density are flat for any r/ in [z,,z,,,). Consequently, no

distinction can be made with respect to threshold values between observed z values.

¢ The prior given is a Jeffreys prior for multiple regression as given in Zellner (1971). For discussion of a Jeffreys
prior in the context of time series models, see Phillips (1991)
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Under the above prior specification, the marginal posterior density for » and d can
be obtained by integrating the product of the likelihood function in (A1) and the prior
density given by (A3) and (A4), and integrating first with respect to B

(NDema1)2

p(z(l), r,dly) o ﬁj(zn)_m(i)/zlz(ﬂl_
(A6)
.exp{__;. tr{( SW 4 (W — gy xr x () (gt _ B?(i)))z(i)" }} 4B

—-vI2|_ . o k) N el
x U X(nrk ’zexp{_%,,.swzm } (A7)

3 i .
p(z(l), r,dly) o H (27‘7)—mv( )/2!2(])
j=1

and hence, for given r and d, the above is proportional to an IW (v'”,S) density.

Integrating (A7) with respect to =), the marginal posterior density of r and d yields

p( r, dl y) o ﬁ g l—mI I"[(V(j) +1— i) / 2]| sU) _V(f)/le 0 0 I_,,,,z a8)
j=1 j=1

where r and d are constrained to a, =1, <n <...<ry =a,, andd =12,...,D.
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Figure 2. Joint Posterior Densities for the Gamma Parameters
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Figure 2. continued.
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Figure 2. continued.

Lower Regime
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