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Abstract

The analysis of economic time series assumes specific economic behaviour of a representative
agent. The data used in analysis is generated by aggregating observations of all individuals in a
population. This is valid only if all members of a population have the same data generating
process, but what happens if their behaviour is heterogeneous? This paper examines the properties
of test statistics for cointegration when the aggregate data consists of heterogeneous individuals.
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1. Introduction

Macro-econometric analyses are usually based on aggregate economic time series. Many of these

time series are non-stationary. The problemk whether they have unit roots is usually extensively

studied. Evidence is sometimes inconclusive, but it frequently points towards integratedness. By
now, most macro-economists also engaged in empirical work have learnt that time series with unit
roots need special care, and the long-run properties of such models can best be represented by a
cointegration model. There has been an abundance of papers analysing whether specific clusters of

macroeconomic time series are cointegrated.

Such papers frequently fail to spell out the economic and statistical assumptions leading to
cointegration. In many cases however, it is possible to show that if, for any reason, economic agents
are in a situation where activities generate integrated series then those series should be cointegrated.
For example, dccepting the life cycle-permanent income hypothesis of consumer behaviour it is
pretty straightforward to demonstrate that if the disposable income and consumption series are
integrated they should be cointegrated for that consumer (see Molana (1991), for example).
However, the derivation concerns the behaviour of an individual consumer, and the heroic
assumption is taken that all consumers behave uniformly, thus the aggregate consumption function
has the same characteristics as that of a single household. Unfortunately, cross sectional analyses
regularly reveal that households do not have a uniform behaviour (see Blundell e al. (1993), for
example) and thus, the representative agent does not exist. And this is just one example of
macroeconomic models derived from microeconomic assumptions and the hypothesis of
homogeneous behaviour. The same representative agent, i.e., homogeneity assumption underpins
almost all aspects of macro modelling from money demand to international trade. However,
economic decisions are made by individual agents, and their behaviour will only be uniform if there
are strong economic and/or social forces ensuring homogeneity. If the liquidity preference of the
households is not uniform there is no valid aggregate money demand function, etc. The lack of this

uniformity may severely hamper any empirical work.'

! Let us just give one example: In a very argumentative paper about money demand in the UK, Hendry and Ericsson

(1991) strongly argued that real money and income must be cointegrated, and failing to properly set up the

cointegration-error correction model any empirical analysis is flawed. However, when they test if the ratio of real

money and income is cointegrated with the interest rate they cannot reject the no-cointegration null at the usual




With the emergence of tests for integration and cointegration there have been several studies
analysing the effects of temporal aggregation on the properties of these tests, (e.g., Choi (1992),
Granger (1990), and Granger (1992)). However, there has not been any interest in cross sectional
aggregation, although that is how macroeconomic time series are derived. The reason may be that
the effects of this were extensively studied in the traditional econometric modelling framework.
However, we believe that the consequences of cross sectional aggregation are non-trivial on the
long-run properties of economic time series and relationships. A previous paper studied the effects of
aggregation on the integratedness of time series and on the corresponding tests (Korosi, et al.

(1995)). In this paper we explore the consequences of cross sectional aggregation on cointegration.

There may be several different situations in reality. It may well happen that for some economic
agents the time series in question are cointegrated, but others follow very different behavioural rules

and for them the time series are not cointegrated. Accepting the usual interpretation that

cointegration represents a long-ruri equilibrium path, a more likely situation may be that all economic

agents behave in a way which generates cointegrated time series, thus their characteristics are
qualitatively uniform, but the details of the behaviour of the actual parameters, are not. There may be
random differences among the parameters, or there may be distinct, clearly distinguishable

behavioural patterns. In this paper we study the consequences of such inhomogeneities.

The plan of this paper is as follows. An introduction of cointegration and a discussion of some
popular tests for the hypothesis of cointegration can be found in Section 2. The experiment is
outlined and the behaviour of the aggregate series generated is discussed in Section 3. Section 4

contains the results of the Monte Carlo study and Section 5 concludes.

significance levels. They still maintain the hypothesis of cointegration, without much empirical evidence. However,

the lack of cointegration may well be the consequence of their use of aggregate time series in a situation where the

behaviour of economic agents-e.g., households and firms-is different on the financial markets.




2. Models and Methods

2.1 Cointegration - definition

We begin with some definitions and properties which are specific versions of those found in Kérési,

et al. (1995).

Definition 1. Two time series x; and y, are cointegrated if:
- Both series are I(1);
- a linear combination z; = y; - Bx; is I(0) for some B.

In this case, the cointegrating vector is (1, -f).

Property 1. If x;; and y; are cointegrated as in definition 1, with cointegrating vector (1, B;) for i =

1,...n individuals, and B, #[; for any i and j, then the aggregate time series x, =2x,., and

i=1

Y, = Zyi, are not cointegrated. This is important since all individuals in the population are

i=1

cointegrated, the aggregate series is not cointegrated.

In an applied setting, bivariate cointegration analysis may be conducted in two ways. The first, and
more simple method is by the construction of the Dickey-Fuller (DF) and Augmented Dickey-Fuller
(ADF) varieties of tests. The other method is to analyse the data as a Vector Autoregression (VAR)

with just two variables and then check the rank of the long run effects matrix.

2.2 The test statistics

The tests under scrutiny are the Dickey-Fuller (DF) type tests, the Johansen and Juselius (1990)

maximal eigenvalue statistic and two variants of Shin (1994), C and CL.

(a) Dickey-Fuller Test

Step 1: For two I(1) variables, x; and y;, use the OLS residuals from a regression of y, on a

constant and x;, z,.




Step 2: Form the regression Az, = pz,_, + u, and estimate p by OLS and form the t-ratio.

Step 3: Compare the t-ratio with the tabulated critical values in Table 1 of MacKinnon
(1991). The null hypothesis is that p=0, or that the OLS residuals contain a unit root. Therefore Hy =

Y and X are not cointegrated and H, = Y and X are cointegrated.

(b) Augmented Dickey Fuller Test

Repeat Step 1 for the DF test, but include lagged first differences of the residuals of the first step in

the autoregression.

Another variant of the DF type test is to include a time trend in the cointegrating regression in step 1.

MacKinnon (1991) states that the distribution of the DF test statistic depends on the constant in the
regression when there is no time trend. The test is invariant to the constant when the time trend is

included, however it then depends on the coefficient of the time trend.

(c) Johansen and Juselius (1990) Ao, Test

This test is implemented using the Johansen procedure for estimating a vector autoregression and
testing the rank of the long-run impact matrix. The null hypothesis is that the two I(1) variables are

not cointegrated, the alternative is that the variables are cointegrated.
Step 1: Arrange the two I(1) variables x; and y,, into a vector X, = (x;, y,)’.

Step 2: Estimate the differenced VAR by maximum likelihood under the null and alternative
hypotheses, following Johansen and Juselius (1990). The process is as follows: Begin by
transforming the model

X, =ILX,  +ILX, ,+.+I1 X, , + 1, + Wt +€,
into differences, noting that a deterministic trend is included since the DGP in the simulation study

contains a trend.




AX, =T\AX, | +T,AX, ,+. 40 AX, , , +1IX, , + Ko+ Z+E,
I, =-(1-10,-.-1I,)
H = -(I —Hl"...—nk)

This is a first difference VAR model, except for the term IIX -« - We are interested in the rank of the
coefficient matrix I, since this will contain information about any long run relationship between the
variables in X;. Since we know that the both variables in X, are I(1), the rank will not be equal to two,
hence we want to know whether the rank is zero, or greater than zero. If the rank equals zero, the
two variables are I(1), but are not cointegrated. If the rank is one, then there is a unique
cointegrating vector between the two variables. The aim of the Johansen and Juselius test is to find
the statistical significance of the rank of IT. The rank of a matrix is the number of non-zero roots of

the characteristic polynomial |IT—AJ|=0. The null hypothesis is

Ho: Rank(IT) = 0, or that all of the roots are zero;
and is tested against the alternative hypothesis

H.: Rank(IT) > 0, or that at least one of the roots are greater than zero.
We do not know the true long run impact matrix I, so it is estimated by maximum likelihood. The
eigenvalues A; > A, are calculated and then the larger of the two, A; is substituted into the test

statistic:

0, =—21n(Q;r=()|r= 1)=—Tln(1—}:,) and has a non standard distribution. In this

case, p=2 variables and =0 under Hy. Therefore one should look in the p-r=2 row of table 2 in

Osterwald-Lenum (1992). Values in the upper tail of the distribution are evidence against the null.

(d) Shin (1994)

This test is different from the others because the null hypothesis is that of cointegration, whilst the
alternative is that the variables are not cointegrated. Consider the two I(1) series x; and ¥, and
estimate the three following models:

yI=BxI+uI (1)
yxzap+Bpxt +u, (2)
Y =0, +8. 24+ B.x, +u, (3)

Now let #,,4,,,i,, denote the OLS residuals from (1), (2) and (3) respectively. Now generate S,, Su

and Sy as the partial sums of the OLS residuals from (1), (2) and (3). The test statistics for

cointegration are:




CI = T'2
2 T SZ
Cl,=T"

_lp.

— T2

t—l
where s%(1 ),sj( 1),s3(1) are consistent semi-parametric estimators of the long-run variance of the
regression error. The estimator chosen for this study was derived from Andrews (1991) using the
Quadratic Spectral (QS) kernel with Automatic (data driven) Bandwidth Selection (See Appendix 1).
This estimator was chosen because it has some optimality properties concerning efficiency and its

rate of convergence.

The OLS estimator of the cointegrating vector (in this case scalar) B is super-consistent, but

inefficient. An efficient estimator includes lags of the differenced x; series as follows.

K
= th + zﬁijt-j +izt (7)

j==K

y, =6, +B,x + anij,_J +1, (8)

——K

+8,1 +Bx2nvAx A ()

j==K

The test statistics are constructed in the same way as CI,
(10)
(11)
(12)

T

with the partial sum terms and the estimates of the long-run error variance calculated from the OLS

estimates of (7), (8) and (9).

Shin (1994) shows that the limiting distributions of C and CI are equivalent and he tabulates the
lower tail for several values. The hypothesis of cointegration should be rejected for ‘large’ values,

that is, the test rejects cointegration at the o significance level if the test statistic C > Cj.q.




It is instructive to consider the qualitative differences between the three types of tests, DF, Johansen,
and Shin. The DF tests have a null of no cointegration and accept the null if the OLS residuals from
the cointegrating regression follow a random walk. The Johansen type tests examine the long run
impact matrix of the error correction model. In essence, this test is looking for a long run equilibrium
relationship between the two (or more) variables. The Shin tests are different in that the null is
cointegration and the alternative is no cointegration. The residual from the cointegrating regression is
assumed to have two stochastic components. One is a random walk, and the other is an independent,
contemporaneous innovation. The combined disturbance is stationary if the variance of the random
walk innovation is zero. Hence the null of cointegration is equivalently expressed by having zero
variance in the random walk component. If variance is constant across time, then the variance
estimates using any subset of the sample should be approximately equal. If variance is increasing
over time, as would be the case if the residual were I(1), then the variance of a small subset
beginning at the first observation would be smaller than the variance of a longer subset which also

begins at the first observation.

3. The Simulation Study

The behaviour of the cointegration test statistics is analysed under eight different scenarios for two
pairs of aggregate time series which are designed to be cointegrated at the individual level. The
design of the experiment is as follows. Firstly, six time series of length T are generated for N

independent individuals.

P &y ~ IMAG00) — yP (@) =p+ef ()

y3 &y5p ~ IMAQ) — yd (1) =p+ed()+0eR(-1) i=1,
¥y ~ IMA(1,0) — Ay, (£) = L+E5,(F)

Yai ~ IMA(1,1) — Ay, () = L +£,,() +0e, (t - 1)

Note that ) ~iidN(0,1) Vi, j,k

The drift parameter L is set equal to one for all i and all series, the MA(1) parameter 0 is set equal to
0.8 for all i and all series. These series are then aggregated into four series as follows.

N N N N
x{l)=z}’3i+2)’l(i”’ x1(2)=ZB"y3"+Zy{i2)
i=1

i=1 i=1 i=1

N N N N
xy) = ZJ’4i '*'z)’;;)’ xyt = ZB;Y«' +zygi2)

i=1 i=1 i=1 i=1




Bi is the heterogeneity parameter and nine possible scenarios for the heterogeneity are considered.

Case A: B, =B, +sy,; wherey, ~iidN(0,]).
a. s=0.1 Bo=0 d. s=1Bp=0
b. s=0.1 Bo=1 e. s=1 Bo=1A
c. s=0.1 Bo=10 f. s=1Bo=10

Case B: Bi=0;Bi=1,
Case C: Bi=10;Bi=1,
Case D: Bi=1,

Case A is where all individuals are cointegrated with different cointegrating vectors. The vectors are

random with a mean of B, and a standard deviation of s.

Cases B and C represent cases where all individuals except for one are cointegrated with the same
vector (1, -1). In case B, the outlier is not cointegrated while in case C, the outlier is cointegrated

with a much larger value in the cointegrating vector (1, -1/10).

Note that Case D is the comparison case, where the two series are cointegrated.

The cointegration analysis is then conducted for the pairs x” & x®and x{"& x{’ . The cointegrating
relationships between the individual components of the aggregate time series under the different
cases are as follows. Two I(1) time series, x; and y;, are cointegrated if a linear combination of them,
y, —bx, =u,, is a stationary I(0) process for some b. For the i’th individual, the contribution to the

aggregate series is as follows.

1), 1 2)/s 2
x{ )(t)=y3i+yl(i)' x{ )(l)=Biy3i+y§i)

Theoretically, the only aggregate series which is cointegrated is Case D.

Experiments were conducted for sample sizes 25, 50, 100, 250 and 500. The number of individuals

(N) was 20 in all experiments. We had 1000 replications for all experiments.




4. Discussion of Results

The results are tabulated in Appendix 4. There are several important observations to be made, firstly,
consider the behaviour of the test statistics one by one, and then compare the performance of the
tests across datasets. The Dickey-Fuller type tests, which appear to have good power (for Case D,
where the alternative is true), when the sample size increases to one hundred or more. It is also clear
that including a time trend in the cointegrating regression reduces power. The null is not true for
cases Aa-Af, B and C. The asymptotic behaviour of the OLS slope estimator in the cointegrating
regression is important to the properties of the tests based on the residuals. Appendix 2 demonstrates

that the OLS slope estimate converges asymptotically to 1/ B, where B is the mean of the individual

Bi’s. The B/’s in cases Aa and Ad have a mean close to zero (for finite n), so appears not to
converge. Appendix 3 shows that the divergence rate of the OLS residual from the cointegrating
regression depends on the degree of relative heterogeneity across individuals. The tests are expected
to find no cointegration more often when the divergence rate is highest. The order of relative

heterogeneity of the coefficients is as follows.

Most Heterogeneous

\

Least Heterogeneous

The outlier in case C is larger than in case B, hence we expect to find no cointegration more often in
case C than case B. The DF test results reflect the ordering as cases Aa and Ad found cointegration
least frequently, however as the sample size increases, they often find in favour of cointegration.
Compare the results in all of the sample sizes with Case D (no heterogeneity). The test cannot tell
the difference at all between D and Ab, not surprising as the mean coefficient values are equal and
the standard deviation in Ab is only 0.1. Ac is also similar. Note also that the augmented versions

found in favour of no cointegration in small samples for all of the cases, including Case D.

For the Johansen type tests results tell a similar story to those of the DF-type tests when the degree

of relative heterogeneity is small (Cases Aa-Ac). Johansen does perform much better when there is

10




more heterogeneity, Ad and Ae. When T=500, the tests are still oversized but at least they choose
the right outcome most of the time. In smaller samples, Johansen finds in favour of no cointegration,
but has the same finding for Case D. In B and C, where there is just one outlying individual with a
different coefficient, Johansen performs favourably when the outlier is quite a long way from the
other individuals (Case C).

The Shin test is difficult to compare since the null and alternative are reversed. The null is that the

two aggregate time series are cointegrated. It is of little surprise that the null is not rejected for small
sample sizes for any of the cases except the de-meaned versions (C, and CI,) on cases Aa and Ad
(expecting Aa and Ad to reject the most). As the sample size increases, something curious happens,
as cases Aa and Ad do not reject as often as the others. On the basis of the results for Case D, where
the null is true, it appears the de-trended version based on an efficient estimator of the cointegrating
regression is most appropriate (C_tau in the tables). At the 5% level, the Shin test appears to have

reasonable power (except for case Ac) only when the sample size increases to 500.

To sum up, it can be said that the issue at hand seems to be whether or not the test can detect
heterogeneity amongst the noise in the data. In the cases where the degree of heterogeneity is low,
the noise obscures the differences between individuals. Recall that the heterogeneity can be detected
from the regression of aggregate time series and not from observations of each individuals’
cointegrating vectors. It is not entirely surprising that the tests do not perform very well in these
sample sizes, although the divergence rate (of the OLS residual) suggests that all of the tests will be

consistent.

As the outcomes for Case D indicate, for small samples the power of both the Engle-Granger type
tests and the Johansen type tests is rather small, but for the usual medium sized samples they seem to
be surprisingly powerful. Overparametrization of the VAR model exerts an obvious toll on the

power of the Johansen type tests.

In most practical situations the errors of the cointegrating equation are serially correlated. For
correctly specified VAR models the Johansen test is not sensitive to autocorrelated errors. Similarly,

the Shin test shows little sensitivity to serial correlation. The Engle-Granger type tests and Johansen




type test based on incorrectly specified VAR models are much more influenced by error

autocorrelation.

Sample size is certainly a major factor influencing the outcome of the tests. The Shin test has a very
low power against almost all cases in small or medium sized samples. Clearly, the choice of the test
statistic matters, but (in our cases)the correct CI form only becomes powerful for 250 or more
observations in most cases. The other tests, where the null is no cointegration, have incorrect sizes
for almost all cases, and at most situations larger samples will actually make rejection more likely,

i.e., in more cases the conclusion will be that the aggregate time series are cointegrated.

As already seen, different assumptions about heterogeneity lead to clearly differing outcomes. First,
comparing Cases B (which assumes that the time series are cointegrated with the same vector for all
but one agents, for whom they are not cointegrated) and C (which assumes that the time series are
cointegrated with the same vector for all but one agents, for whom they are cointegrated with a
significantly different vector) the situation seems to be very different, especially for larger samples.
There is a curious dichotomy in large samples: the Shin tests are much more likely to reject the null
of cointegration for Case B and the other tests the null of no cointegration for the same Case B than
for Case C. This contradiction is difficult to interpret. (Similar tendencies are also apparent in some
other cases, e.g., Ae and Af). The Engle-Granger and Johansen type tests conclude much more

frequently that Case B is cointegrated which is curious, because they clearly are not, as one

component is not cointegrated. It is less difficult to accept that the Shin-type tests will not reject

cointegration in most instances for Case C; after all there at least all components are cointegrated.

All other cases represent stochastic homogeneity, the difference among the behaviour of the agents is
random. However, Aa and Ad are very peculiar cases, because here the behaviour varies around the
lack of cointegration. The time series of all agents will be cointegrated with probability 1, but the
expected value of their cointegrating vectors indicates no cointegration. Case Aa represents a much
smaller variation around the no cointegration situation. This difference in the variability of the
cointegrating vectors (i.e., behaviours) makes a clear difference between the two cases: the null is be
rejected much more frequently for Case Aa than for Case Ad. The distributions of the estimated
cointegration coefficients in those cases where tests indicated cointegration is necessarily bimodal:
they are symmetrical around zero, however, zero is a clear case of no cointegration. However, the no

cointegration area around zero is almost negligible for case Ad. For medium or larger samples, if one

12




chooses categories for histogram in the way that zero is in the middle of a class it will look like a
usual unimodal distribution. Thus, if we have a situation where cointegration emerges by chance
only, but the behaviour of the individual agents is rather heterogeneous we are unlikely to find any
indication of the theoretical no cointegration. The no cointegration region around zero is much larger
for Case Aa and the distribution of the estimated cointegration coefficients is much wider. The
frequency distribution is much more visibly bimodal in this more homogeneous case. However,
Figures 1 to 3 demonstrate that the no cointegration region around zero quickly diminishes with

increasing sample size.

In those cases, where cointegration is the conclusion in more than 10% of the experiments, the
average of the estimated Bs for these cases is reasonably close to the mean of the theoretical
distribution for medium and larger samples, however, its variance is usually much larger than the

theoretical one. Distributions are non-normal, but symmetrical in most cases, Case Ae being the

strange exception for which many distributions are skewed. Figures 4 and 5 cdmpare the frequency

distributions of Cases Ab and Ae for sample size 250: The only difference between the two
experiments is that the behaviour of the individuals is much more heterogeneous in Case Ae than in
Case Ab. (The variance of the random component of the coefficient is ten times larger.) While the
distribution of the estimated cointegration coefficient for those instances where DF test rejected the
no cointegration null has an almost perfect normal distribution, the larger heterogeneity of the

behaviours of Case Ae results in severely skewed distribution.

5. Conclusion

The results from the Monte Carlo study contained in this paper raise important questions regarding
the use of aggregated time series in applied econometrics. Many econometric models are based on
the idea of a homogeneous population, for example, the representative economic agent. The theory
behind cointegration itself precludes two aggregate time series from being cointegrated if they are
composed of individuals whose individual series are cointegrated with different cointegrating
vectors. The residuals from a linear combination of the two aggregate series will always be I(1),
however cointegrating relationships are often found between economic time series for which
homogeneity is unlikely. Aggregate consumption and aggregate income is one such candidate as

individuals would be expected to have different preferences for current and future consumption.




The Monte Carlo results presented in this paper suggest that tests for cointegrating relationships are
unable to reject cointegration unless the degree of heterogeneity across individuals is large relative to
the noise inherent in the data generating processes. As a practical issue, most economic data is not
available at the disaggregated level and so an assumption of homogeneous individuals must be
maintained. The divergence rate of the residual from the cointegrating relationship depends on the
degree of relative heterogeneity across individuals, where less heterogeneity implies a slow
divergence rate. The researcher is probably interested in long-run equilibrium behaviour in a model
and so a slow divergence rate may appear to be no divergence at all. The point is that one should be

cautious when testing for cointegration wherever there is a possibility of heterogeneity. Testing for

the assumption of homogeneity is difficult given the lack of disaggregated data in the first place,

hence the applied researcher ought to consider the likely degree of heterogeneity based on theoretical

foundations.

The consequences of non-homogeneity of the behaviour of economic agents is far from being
uniform. They partly depend on the true patterns of behaviour, and partly on the statistical
information, on the length of the available time series. But in almost all situations the lack of
homogeneity will seriously hamper statistical inference; the tests regularly used for detecting
cointegration will not be reliable tools. Depending on the actual situation, they will fail to lead to
correct inference in many cases. One positive result though is that if the individual cointegration
vectors only differ in a random error component the estimated cointegrating vector will not be far

away from the mean behaviour.
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Appendix 1 - Consistent Semi-parametric estimation of the long-run error variance

in the Shin (1994) test.

If the I(1) variables x; and y, are cointegrated then permanent changes to x will have a permanent
impact on y. The estimation of the variance of the long run error variance is problematic, especially
in the presence of heteroscedasticity and/or autocorrelation, which is quite possible if there is a delay
in the transmission of shocks from one variable to the other. We used the Heteroscedastic and/or
Autocorrelation Consistent (HAC) covariance estimation method of Andrews (1991). As long as the
residuals are not foo heteroscedastic or autocorrelated, the resulting estimator will be consistent.
Intuitively, the estimator takes a weighted average of the autocovariances, with the weights
diminishing as the autocovariances become more distant in time. The weighting scheme is critical to
the convergence rate of the estimator, and we chose the Quadratic Spectral kemel for its optimality

properties.

The formula for the variance in (1) is as follows:

sz(l)=rli“f+2§{k(§i)'r] Zr',ﬁ,ﬁ,-,}
t=1 T

Jj=1 t1=j+1

so that k(.) is a function of how far apart the observations in each term are (j), and a Bandwidth
parameter. The bandwidth parameter St was chosen automatically for the QS kemnel and has the

following formula.
8, =13221GQ)TY";

4(2)=—28"
=55

where p is the OLS estimator of the disturbance regressed on its own lag.

The Quadratic Spectral kernel which forms the weights is given as follows:

(x)= 25 (sin(énx/S)
T 12mx2\ 6mx/5

-co(onss)|

The resulting estimator of the long-run error variance will be optimal in terms of asymptotic mean-

squared-error (Andrews (1991)) of the class of kernels which generate positive variances.




Appendix 2 - Asymptotic Properties of the OLS estimator in the presence of

heterogeneity.

It is known that the OLS estimator of the slope estimate in the model y=x,’B + &, is superconsistent.
The behaviour of the test statistics above depend on the asymptotic properties of the cointegrating
regressions. The theory of aggregating cointegrated variables suggests that there is no unique 6 such
that y: - 6o - Ox, is I(0). It is instructive to examine whether the OLS estimator in the cointegrating
regressions for the DGP’s in the Monte Carlo study are converging to anything meaningful. If so,
what is the relationship between the variance of the residual over time, the variance of the DGP and

the degree of heterogeneity (as measured by the variance of what is essentially a random coefficient).

Theorem: Let

Y= 2 Yyt Zeli(t)
i=1 i=1

X = ZBiy3i(z) + 2821'(1)
i=1 i=1

Ay3,-, =p+ Uyy

u, ~iid(0,0 2 Vit

€y =g +Vy;

Eoir = 0o +Vy;;

v, ~ iid(O,cf,)
Then the OLS slope estimate in the regression of y; on x; and a constant, converges in probability to
the inverse of the sample average of heterogeneous individual coefficients. ie,

; B=n_liﬁi

i=1

Proof of the Theorem:

Rewrite x; and y, as follows. Firstly define

Yy, = 201:‘(1) Vo = zuzi(r)
i=1 i=1

which can be viewed as iid innovations. Therefore,




oLon+ |J.nt+22 40,

i=1 j—

X, = on+untB+BZZ +i2(ﬁ;‘§)ug’+°2r (A2.4)
B=n-lZBi

Now draw attention to the terms involving u;. Let

n
U=
i=1
n 14 t

22 = 2=,

i=1 j=1 =1

(A2.5)

where S; has the interpretation of the partial sum of some iid innovations with zero mean. Let r = #/T

so that t = [Tr] is the integer part of Tr.

-1 '
T35 —4 B,(r) (A2.6)

where B,(r) is a Brownian motion with zero mean and variance equal to mcﬁ .

Also define
> (B: =B

(Bi - B)u,, =

i=1
which implies

T8 — B,(r) (A2.8)
This Brownian Motion has zero mean and variance equal to rmoc oﬁ and ¢ Z(B B)
captures the degree of heterogeneity. Note that if all of the B; are equal, then the distribution is

degenerate.

Given (3), (5) and (7), we can rewrite x, and y, as follows:

Y, =0n+unt+S§, +v,,

— LT A29
x, =0on+ untB +BS, +8, +v,, ( )

The OLS estimator in the cointegrating regression of y, on a constant and x, is




A

t=1

=

t=1

(A2.10)

Therefore we need to examine the asymptotic behaviour of each term on the right hand side of (10).

Firstly, consider the sums.

T T

T _ T
Ny = Ta0n+un2t+T%Z(T %S,)+2u,,
=1 =1

=1 t=1

=Togn+ w{Tz; Tj+ T%(T"1 i(T%S, )) + T(T“ivuj

t=1 =1

% 1 1+7" Y| -1 S »A f——
T2y, =T apn+pn — 4T Ty (178, ||+ 77| T30, | (A2.11)
J \ J R e P ——

=1 -0 . =1 =1
—un/2

—L2 50

~
—4 I B, (r)dr
0

= T'ZET: y, —2—un/2
t=1
By similar reasoning,
T’zix, —25unf /2
t=1
Now, looking at the squares and cross products:
T

fo = 0(T3) ,z:‘x,y, = 0(T3)

=1

T : ’ ; 1 (A2.13), (A2.14)
“TY 32 =) AT7Y %y, =(un)’B
=1

=1 3
Therefore we return to the OLS estimator:

T'32T: Xy, — [T'z ixt ](T'ZET: y,)
t=1 t=1

é = t=1
T T 2
7"32:x,2 -—(T'zzx,J
t=1 =1

Now substitute the limiting quantities in (11), (12), (13) and (14) into (15), and

(A2.15)

6—2 (A2.16)




Appendix 3. Divergence rate of the Variance of the Residual.

Consider residual in the linear combination of the following:

1
€ =) —=X

e =0y I—F +v,, —=V,, —

5 S

t

1
B

T7 e, —— Ei B,(r)

22
B (r)~ N[O,moﬁ(%—gn (A3.4)

Thus the variance of the residual term is exploding at a rate which is proportional to the product of
the variance of the u;’s (the data) and the sample coefficient of variation of the B;’s (the degree of
heterogeneity). On inspection, the variance of the normalised residual will collapse if and only if all of
the B’s are equal, that is Case D in our data generating processes, which is the only one which is
formally cointegrated. Note also that the variance is proportional to the number of individuals which
comprise the series’. In the context of testing for cointegration in the presence of heterogeneous
individuals, the normalised residuals have a zero mean across all time, but exploding variance. The
rate at which the variance explodes is crucial because the tests must be able to detect the increasing
variance in a finite sample. We expect tests for cointegration using data generated under Case Ac to
accept cointegration most often because the coefficient of variation will be close to 0.0001 since Bo=

10 and s = 0.1. By similar argument, we expect cases Aa and Ad to reject cointegration most often

since o = 0 (so that E will be close to zero).




Appendix 4. Simulation Results

T = 25: Number of replications which reject the null hypothesis at 1%

Dataset 1

Aa Ab Ac Ad Ae Af
DF - no trend 30 813 827 99 276 805
ADF - no trend 0 79 65 7 10 65
DF - with trend 76 453 674 107 206 647
ADF - with trend 3 10 38 6 9 30
Johansen (k=2) 183 181 182 85 90 181
Johansen (k=3) 106 110 112 74 71 122
Johansen (k=5) 254 301 295 276 306 296
CcI 5 2 12
CI_mu 431 0 76
CI_tau 40 21 33
() 23 3
C_mu 93 25
C_tau 1 0

Dataset 2
Ac Ad
DF - no trend 48
~ ADF - no trend 13
DF - with trend 20
ADF - with trend 3
Johansen (k=2) 294
Johansen (k=3) 83
Johansen (k=5) 336
CcI
CI_mu
CI tau
C
C_mu
C_tau




Appendix 4. Simulation Results

T = 25: Number of replications which reject the null hypothesis at 5%

Dataset 1

Aa Ab Ac Ad Ae Af
DF - no trend 112 963 970 278 578 963
ADF - no trend 0 266 268 30 78 238
DF - with trend 236 780 901 306 475 890
ADF - with trend 14 59 136 23 30 111
Johansen (k=2) 447 419 431 221 246 415
Johansen (k=3) 283 305 328 205 243 319
Johansen (k=5) 481 492 518 507 508 506
CcI 11 39 67 78 79 79
CI_mu 972 0 0 248 0 0
CI _tau 349 178 61 303 276 67
C 81 0 0 13 0 0
C_mu : 184 0 0 70 0 0
C_tau 15 2 4 6 0 3

Dataset 2

Ab Ac Ad Af
DF - no trend 24
ADF - no trend 91 81 17 63
DF - with trend 79 16
ADF - with trend 17 35 6 35
Johansen (k=2) 393
Johansen (k=3) 202
Johansen (k=5) 538
CcI 82
Cl_mu 419
CI _tau 407
C 8
C_mu 86
C_tau 38




Appendix 4. Simulation Results

T = 50: Number of replications which reject the null hypothesis at 1%

Dataset 1
Aa Ab Ac Ad Ae Af

DF - no trend 483 1000 999 258 526 999
ADF - no trend 19 529 568 21 38 482
DF - with trend 144 989 999 254 523 998
ADF - with trend 3 124 365 7 22 305
Johansen (k=2) 681 673 712 77 127 651
Johansen (k=3) 253 313 317 50 76

Johansen (k=5) 112 111 129 60 73

CI 0 11 10 12

CI_mu 733 0 55 0

CI_tau 32 71 31 81

C 61 0 5 0

C_mu 93 0 69 1

C_tau 2 0 3 4

Dataset 2
Ab Ad
DF - no trend
ADF - no trend
DF - with trend
ADF - with trend
Johansen (k=2)
Johansen (k=3)
Johansen (k=5)
CI
CI_mu
CI_tau
C
C_mu
C_tau




Appendix 4. Simulation Results

T = 50: Number of replications which reject the null hypothesis at 5%

Dataset 1

Aa Ab Ac Ad Ae Af
DF - no trend 612 1000 1000 453 763 999
ADF - no trend 72 829 859 60 132 797
DF - with trend 329 1000 999 475 734 999
ADF - with trend 20 372 695 36 86 629
Johansen (k=2) 925 918 913 251 345 882
Johansen (k=3) 597 621 661 162 203 613
Johansen (k=5) 319 334 367 194 216 343
cr 9 89 576 121 158 572
CI_mu 986 1 0 181 0 0
CI_tau 387 284 49 329 396 99
C 137 0 0 18 0 0
C_mu 186 0 0 145 1 0
C_tau 61 20 9 41 66 18

Dataset 2
Ab Ad Af
DF - no trend 47
ADF - no trend 443 24
DF - with trend 21
ADF - with trend 20
Johansen (k=2) 308
Johansen (k=3) 90
Johansen (k=5) 154
CI 61
CI_mu 306
CI tau 413
C 18
C_mu 127
C_tau 85




Appendix 4. Simulation Results

T =100: Number of replications which reject the null hypothesis at 1%

Dataset 1

Aa Ab Ac Ad Ae Af B
DF - no trend 820 1000 1000 361 684 1000 1000
ADF - no trend 420 990 1000 18 73 967 816
DF - with trend 247 1000 1000 392 717 1000 1000
ADF - with trend 4 849 985 11 50 920 561
Johansen (k=2) 992 1000 1000 91 204 999 970
Johansen (k=3) 887 926 977 42 74 878 714
Johansen (k=5) 365 465 566 23 34 388 246
CcI 18 63 140 12 15 191 253
CI_mu 809 0 0 34 0 1 0
CI_tau 55 13 54 161 94 359
C 72 0 0 17 0 0 0
C_mu 66 0 0 148 0 0 0
C_tau 9 17 0 7 22 30

Dataset 2

Ab Ac Ad Af
DF - no trend 999 6 995
ADF - no trend 907 5 660
DF - with trend 999 8 981
ADF - with trend 695 5 485
Johansen (k=2) 1000 995
Johansen (k=3) 615 422
Johansen (k=5) 350 200
CI 18
Cl_mu 0
CI_tau 51
C 0
C_mu 0
C_tau 8




Appendix 4. Simulation Results

T = 100: Number of replications which reject the null hypothesis at 5%

Dataset 1

Aa Ab Ac Ad Ae Af
DF - no trend 853 1000 1000 565 832 1000
ADF - no trend 569 999 1000 96 188 994
DF - with trend 457 1000 1000 604 878 1000
ADF - with trend 32 981 1000 66 172 991
Johansen (k=2) 1000 1000 1000 262 421 1000
Johansen (k=3) 978 997 1000 137 214 982
Johansen (k=5) 698 767 869 97 114 683
CI 214 205 1000 142 176 997
CI_mu 973 13 2 122 2 39
CI_tau 393 472 52 331 503 245
C 262 0 0 40 0 0
C_mu 156 2 0 257 2 9
C_tau 132 71 25 107 91

Dataset 2
Ab Ad Af
DF - no trend 48
ADF - no trend 35
DF - with trend 41
ADF - with trend 23
Johansen (k=2) 363
Johansen (k=3) 58
Johansen (k=5) 81
CcI 64
CI_mu 275
CI _tau 360
C 17
C_mu 126
C_tau 124




Appendix 4. Simulation Results

T = 250: Number of replications which reject the null hypothesis at 1%

Dataset 1

Aa Ab Ac Ad Ae Af
DF - no trend 963 1000 1000 428 725 1000
ADF - no trend 868 1000 1000 27 87 999
DF - with trend 409 1000 1000 465 818 1000
ADF - with trend 6 1000 1000 19 91 999
Johansen (k=2) 1000 1000 1000 136 286 1000
Johansen (k=3) 999 1000 1000 45 105 998
Johansen (k=35) 895 986 1000 23 28 917
CcI 563 407 1000 11 13 984
CI_mu ) 792 88 0 20 1 163
CI_tau 95 513 17 52 524
C 78 0 17 1 0
C_mu 46 18 190 3 86
C_tau 7 9 78 391

Dataset 2
Ad Af

DF - no trend 14
ADF - no trend 3
DF - with trend 9
ADF - with trend 5
Johansen (k=2)
Johansen (k=3) 11
Johansen (k=5)
(/4
Cl_mu
CI _tau
C
C_mu
C_tau




Appendix 4. Simulation Results

T = 250: Number of replications which reject the null hypothesis at 5%

Dataset 1 _
Aa Ab Ac Ad Ae Af

DF - no trend 969 1000 1000 609 862 1000
ADF - no trend 893 1000 1000 107 194 1000
DF - with trend 615 1000 1000 656 911 1000
ADF - with trend 36 1000 1000 85 216 1000
Johansen (k=2) 1000 1000 1000 310 494 1000
Johansen (k=3) 1000 1000 1000 165 257 1000
Johansen (k=5) 964 997 1000 116 145 978
CI 775 565 1000 142 200 1000
CI_mu 954 267 2 66 11 432
CI_tau 442 749 63 333 552 726
o 447 0 0 35 1 0
C_mu 179 0 318 9 324
C_tau 443 42 184 338 586

Dataset 2
Ab Ad Ae Af

DF - no trend 75 240
ADF - no trend 25 63
DF - with trend 43 233
ADF - with trend 23 51
Johansen (k=2) 377 516
Johansen (k=3) 58 90
Johansen (k=5) 76 85
CI 63 35
Cl_mu 233 39
CI _tau 389 241
C 34 7
C_mu 146 18
C_tau 205 120




Appendix 4. Simulation Results

T = 500: Number of replications which reject the null hypothesis at 1%

Dataset 1
Aa Ab Ac Ad Ae Af

DF - no trend 982 1000 1000 468 760 1000
ADF - no trend 943 1000 1000 38 88 998
DF - with trend 565 1000 1000 485 839 1000
ADF - with trend 24 1000 1000 25 111 998
Johansen (k=2) 1000 1000 1000 134 297 1000
Johansen (k=3) 999 1000 1000 50 110 999
Johansen (k=5) 960 997 1000 22 40 959
CI 867 632 1000 7 30 999
CI_mu 848 431 0 19 0 558
CI _tau 211 839 31 63 257 853
C 168 0 0 35 1 0
C_mu 61 315 0 230 2 498
C_tau 24 649 29 31 798

Dataset 2

Aa Ab Ac Ad Af
DF - no trend 1000 20
ADF - no trend 1000 5
DF - with trend 1000 11
ADF - with trend 1000 2
Johansen (k=2) 1000 184
Johansen (k=3) 1000 12
Johansen (k=5) 1000 11
CI 1000 16
CI_mu 0
CI_tau 32
C 0 17
C_mu 0 69
C_tau 21




Appendix 4. Simulation Results

T = 500: Number of replications which reject the null hypothesis at 5%

Dataset 1
Aa Ab Ac Ad Ae Af

DF - no trend 984 1000 1000 670 894 1000
ADF - no trend 955 1000 1000 116 225 1000
DF -withtrend 743 1000 1000 685 925 1000
ADF - with trend 74 1000 1000 87 234 1000
Johansen (k=2) 1000 1000 1000 327 503 1000
Johansen (k=3) 1000 1000 1000 156 241 999
Johansen (k=5) 983 999 1000 93 113 988
CI 913 766 1000 100 216 1000
CI_mu 972 662 8 53 7 779
CI_tau 555 946 109 394 619 948
C 609 2 0 78 1 9
C_mu 127 582 2 340 6 741
C_tau 256 819 83 256 491 917

Dataset 2

Ab Ac Ad Ae Af
DF - no trend 1000 81 254
ADF - no trend 1000 38 64
DF - with trend 1000 51 277
ADF - with trend 1000 15 51
Johansen (k=2) 1000 390 523
Johansen (k=3) 1000 60 93
Johansen (k=5) 1000 72 77
CI 1000 67 43
CI_mu 6 203 38
CI_tau 99 363
C 0 34 9
C_mu 2 143 25
C_tau 80 250




Appendix 5. Distributions of the OLS slope estimator in selected cases

Figure 1: Frequency distribution of the E’ow values when the DF test rejects Hy.

Case Aa, dataset 1, 5%, sample size: 500

Figure 2: Frequency distribution of the 601.9 values when the DF test rejects H).

Case Aa, dataset 1, 5%, sample size: 250




Figure 3: Frequency distribution of the ﬁow values when the DF test rejects H,.

Case Aa, dataset 1, 5%, sample size: 100

Figure 4: Frequency distribution of the Boz_s values when the DF test rejects H,.

Case Ab, dataset 1, 5%, sample size: 250
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Figure 5: Frequency distribution of the [30,_5 values when the DF test rejects H.

Case Ae, dataset 1, 5%, sample size: 250







