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Abstract
The analysis of economic time series assumes specific economic behaviour of a representative
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I. Introduction

Macro-econometric analyses are usually based on aggregate economic time series. Many of these

time series are non-stationary. The problem whether they have unit roots is usually extensively

studied. Evidence is sometimes inconclusive, but it frequently points towards integratedness. By

now, most macro-economists also engaged in empirical work have learnt that time series with unit

roots need special care, and the long-run properties of such models can best be represented by a

cointegration model. There has been an abundance of papers analysing whether specific clusters of

macroeconomic time series are cointegrated.

Such papers frequently fail to spell out the economic and statistical assumptions leading to

cointegration. In many cases however, it is possible to show that if, for any reason, economic agents

are in a situation where activities generate integrated series then those series should be cointegrated.

For example, accepting the life cycle-permanent income hypothesis of consumer behaviour it is

pretty straightforward to demonstrate that if the disposable income and consumption series are

integrated they should be cointegrated for that consumer (see Molana (1991), for example).

However, the derivation concerns the behaviour of an individual consumer, and the heroic

assumption is taken that all consumers behave uniformly, thus the aggregate consumption function

has the same characteristics as that of a single household. Unfortunately, cross sectional analyses

regularly reveal that households do not have a uniform behaviour (see Blundell et al. (1993), for

example) and thus, the representative agent does not exist. And this is just one example of

macroeconomic models derived from microeconomic assumptions and the hypothesis of

homogeneous behaviour. The same representative agent, i.e., homogeneity assumption underpins

almost all aspects of macro modelling from money demand to international trade. However,

economic decisions are made by individual agents, and their behaviour will only be uniform if there

are strong economic and/or social forces ensuring homogeneity. If the liquidity preference of the

households is not uniform there is no valid aggregate money demand function, etc. The lack of this

uniformity may severely hamper any empirical work.'

1 Let us just give one example: In a very argumentative paper about money demand in the UK, Hendry and Ericsson

(1991) strongly argued that real money and income must be cointegrated, and failing to properly set up the

cointegration-error correction model any empirical analysis is flawed. However, when they test if the ratio of real

money and income is cointegrated with the interest rate they cannot reject the no-cointegration null at the usual
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With the emergence of tests for integration and cointegration there have been several studies

analysing the effects of temporal aggregation on the properties of these tests, (e.g., Choi (1992),

Granger (1990), and Granger (1992)). However, there has not been any interest in cross sectional

aggregation, although that is how macroeconomic time series are derived. The reason may be that

the effects of this were extensively studied in the traditional econometric modelling framework.

However, we believe that the consequences of cross sectional aggregation are non-trivial on the

long-run properties of economic time series and relationships. A previous paper studied the effects of

aggregation on the integratedness of time series and on the corresponding tests (Korosi, et al.

(1995)). In this paper we explore the consequences of cross sectional aggregation on cointegration.

There may be several different situations in reality. It may well happen that for some economic

agents the time series in question are cointegrated, but others follow very different behavioural rules

and for them the time series are not cointegrated. Accepting the usual interpretation that

cointegration represents a long-run equilibrium path, a more likely situation may be that all economic

agents behave in a way which generates cointegrated time series, thus their characteristics are

qualitatively uniform, but the details of the behaviour of the actual parameters, are not. There may be

random differences among the parameters, or there may be distinct, clearly distinguishable

behavioural patterns. In this paper we study the consequences of such inhomogeneities.

The plan of this paper is as follows. An introduction of cointegration and a discussion of some

popular tests for the hypothesis of cointegration can be found in Section 2. The experiment is

outlined and the behaviour of the aggregate series generated is discussed in Section 3. Section 4

contains the results of the Monte Carlo study and Section 5 concludes.

significance levels. They still maintain the hypothesis of cointegration, without much empirical evidence. However,

the lack of cointegration may well be the consequence of their use of aggregate time series in a situation where the

behaviour of economic agents-e.g., households and firms-is different on the financial markets.
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2. Models and Methods

2.1 Cointegration - definition

We begin with some definitions and properties which are specific versions of those found in Korosi,

et al. (1995).

Definition 1. Two time series x, and y, are cointegrated if:

- Both series are I(1);

- a linear combination zt = Yt - fix, is 1(0) for some O.

In this case, the cointegrating vector is (1, -0).

Property 1. If xi, and yi, are cointegrated as in definition 1, with cointegrating vector (1, PO for i =

1,...,n individuals, and Di # 13i for any i and j, then the aggregate time series ; = xi, and
i=1

yt =  are not cointegrated. This is important since all individuals in the population are

cointegrated, the aggregate series is not cointegrated.

In an applied setting, bivariate cointegration analysis may be conducted in two ways. The first, and

more simple method is by the construction of the Dickey-Fuller (DF) and Augmented Dickey-Fuller

(ADF) varieties of tests. The other method is to analyse the data as a Vector Autoregression (VAR)

with just two variables and then check the rank of the long run effects matrix.

2.2 The test statistics

The tests under scrutiny are the Dickey-Fuller (DF) type tests, the Johansen and Juselius (1990)

maximal eigenvalue statistic and two variants of Shin (1994), C and CI.

(a) Dickey-Fuller Test

Step 1: For two 1(1) variables, x, and y„ use the OLS residuals from a regression of y, on a

constant and xt, zt.
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Step 2: Form the regression Az, = pz,_, + u, and estimate p by OLS and form the t-ratio.

Step 3: Compare the t-ratio with the tabulated critical values in Table 1 of MacKinnon

(1991). The null hypothesis is that p=0, or that the OLS residuals contain a unit root. Therefore }10 =

Y and X are not cointegrated and Ha = Y and X are cointegrated.

(b) Augmented Dickey Fuller Test

Repeat Step 1 for the DF test, but include lagged first differences of the residuals of the first step in

the autoregression.

Another variant of the DF type test is to include a time trend in the cointegrating regression in step 1.

MacKinnon (1991) states that the distribution of the DF test statistic depends on the constant in the

regression when there is no time trend. The test is invariant to the constant when the time trend is

included, however it then depends on the coefficient of the time trend.

(e) Johansen and Juselius (1990) Xmar Test

This test is implemented using the Johansen procedure for estimating a vector autoregression and

testing the rank of the long-run impact matrix. The null hypothesis is that the two I(1) variables are

not cointegrated, the alternative is that the variables are cointegrated.

Step 1: Arrange the two 1(1) variables X1 and )7,, into a vector X, = (x, , ye)'.

Step 2: Estimate the differenced VAR by maximum likelihood under the null and alternative

hypotheses, following Johansen and Juselius (1990). The process is as follows: Begin by

transforming the model

X, = Hixt,+fl2X_2+...+flkXl_k+go ± J.L1t +C
into differences, noting that a deterministic trend is included since the DGP in the simulation study

contains a trend.
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AXt Fl AKt-1 F2A/Y1-2 +•••+rk-146X1-k+1 11)(1--k 110 + 1111. E

=

n=-(I-11l-...-nk)

This is a first difference VAR model, except for the term IIX,_k . We are interested in the rank of the

coefficient matrix H, since this will contain information about any long run relationship between the

variables in X. Since we know that the both variables in Xt are I(1), the rank will not be equal to two,

hence we want to know whether the rank is zero, or greater than zero. If the rank equals zero, the

two variables are I(1), but are not cointegrated. If the rank is one, then there is a unique

cointegrating vector between the two variables. The aim of the Johansen and Juselius test is to find

the statistical significance of the rank of H. The rank of a matrix is the number of non-zero roots of

the characteristic polynomial In - = 0 . The null hypothesis is

Ho: Rank(II) =0, or that all of the roots are zero;

and is tested against the alternative hypothesis

Ha: Rank(II) >0, or that at least one of the roots are greater than zero.

We do not know the true long run impact matrix II, so it is estimated by maximum likelihood. The

eigenvalues > X2 are calculated and then the larger of the two, XI is substituted into the test

statistic:

Q,. =-21n(Q;r =01r =1). —Th2(1—ii) and has a non standard distribution. In this

case, p=2 variables and r=O under Ho. Therefore one should look in the p-r=2 row of table 2 in

Osterwald-Lenum (1992). Values in the upper tail of the distribution are evidence against the null.

(d) Shin (1994)

This test is different from the others because the null hypothesis is that of cointegration, whilst the

alternative is that the variables are not cointegrated. Consider the two I(1) series xt and yt, and

estimate the three following models:

= Pat + (1)

(2)

y, =a, +8,t + Ptx, +u (3)

Now let at, iigt, iitt denote the OLS residuals from (1), (2) and (3) respectively. Now generate St, Stu

and Stt as the partial sums of the OLS residuals from (1), (2) and (3). The test statistics for

cointegration are:
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T S2
CI = T-21, (4)

s2(1)

• S2
CI = T-2 L-1-1 - (5)

t=1 4(1)

• S2 
CI, —T  2_,  (6)

s(l)

where s2( 44(4;2( /) are consistent semi-parametric estimators of the long-run variance of the

regression error. The estimator chosen for this study was derived from Andrews (1991) using the

Quadratic Spectral (QS) kernel with Automatic (data driven) Bandwidth Selection (See Appendix 1).

This estimator was chosen because it has some optimality properties concerning efficiency and its

rate of convergence.

The OLS estimator of the cointegrating vector (in this case scalar) f is super-consistent, but

inefficient. An efficient estimator includes lags of the differenced xt series as follows.

y, =5x, +
j=-K

yt =a + 13 1.1xt + fe gjtlxt-j

Y , =Z1, +gtt +5,x,

(8)

(9)

The test statistics are constructed in the same way as CI,

T :572

C=T-21, t (10)
t=1
T 3;2

C =T 
▪ (1

-21721 l)
0

t=1 '311
T 2"s-

tt  
= T-2Et=i 3.,12 (1 ) (12)

with the partial sum terms and the estimates of the long-run error variance calculated from the OLS

estimates of (7), (8) and (9).

Shin (1994) shows that the limiting distributions of C and CI are equivalent and he tabulates the

lower tail for several values. The hypothesis of cointegration should be rejected for 'large' values,

that is, the test rejects cointegration at the a significance level if the test statistic C > Ci-a-
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It is instructive to consider the qualitative differences between the three types of tests, DF, Johansen,

and Shin. The DF tests have a null of no cointegration and accept the null if the OLS residuals from

the cointegrating regression follow a random walk. The Johansen type tests examine the long run

impact matrix of the error correction model. In essence, this test is looking for a long run equilibrium

relationship between the two (or more) variables. The Shin tests are different in that the null is

cointegration and the alternative is no cointegration. The residual from the cointegrating regression is

assumed to have two stochastic components. One is a random walk, and the other is an independent,

contemporaneous innovation. The combined disturbance is stationary if the variance of the random

walk innovation is zero. Hence the null of cointegration is equivalently expressed by having zero

variance in the random walk component. If variance is constant across time, then the variance

estimates using any subset of the sample should be approximately equal. If variance is increasing

over time, as would be the case if the residual were 1(1), then the variance of a small subset

beginning at the first observation would be smaller than the variance of a longer subset which also

begins at the first observation.

3. The Simulation Study

The behaviour of the cointegration test statistics is analysed under eight different scenarios for two

pairs of aggregate time series which are designed to be cointegrated at the individual level. The

design of the experiment is as follows. Firstly, six time series of length T are generated for N

independent individuals.

yfii) & IMA(0,0)

A;)& IMA(0,1)

y3i - /MA(1,0)
y4i - /MA(1,1)

y(t) = 11+8 (1.1 CO
—> g(t) =11.+E(2(t)+08(t —1) i = 1„ N

---> Ay (t) = 1st + 3i (t) t = 1„T

Ay( t) =

Note that 4k) iidN(0,1) Vi, j, k

The drift parameter g is set equal to one for all i and all series, the MA(1) parameter 0 is set equal to

0.8 for all i and all series. These series are then aggregated into four series as follows.

y(1) 

i=1 i=1

1-(1) —V 
7
17 -Cr v(1)
4i '

i=1 i=1

x(2) = •V+ 
,,(2)

1 3i 

i=1 i=1

,e(2) R
•""2 — Zia FiY4i + Zai2i

i=1 i=1
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pi is the heterogeneity parameter and nine possible scenarios for the heterogeneity are considered.

Case A: 13i = 0+ sy i ; where 7 i — iidN(0,1).

a. s=0.1 00=0 d. s=1130=0

b. s=0.1 130=1 e. s=1130=1

c. s=0.1 130=10 f. s=1 [30=10

Case B: Pi =0; 13; = 1, i =2, ... ,N.

Case C: 131 = 10; Pi = 1, i =2, ... ,N.

Case D: 13i = 1, i = 1, ... ,N.

Case A is where all individuals are cointegrated with different cointegrating vectors. The vectors are

random with a mean of 130 and a standard deviation of s.

Cases B and C represent cases where all individuals except for one are cointegrated with the same

vector (1, -1). In case B, the outlier is not cointegrated while in case C, the outlier is cointegrated

with a much larger value in the cointegrating vector (1, -1/10).

Note that Case D is the comparison case, where the two series are cointegrated.

The cointegration analysis is then conducted for the pairs 4)&42) and 41)& 42) . The cointegrating

relationships between the individual components of the aggregate time series under the different

cases are as follows. Two 1(1) time series, xt and yt, are cointegrated if a linear combination of them,

y, —bx, = lc , is a stationary 1(0) process for some b. For the i'th individual, the contribution to the

aggregate series is as follows.

X11)(i)= hi +Yli", X12)(0= Pihi +Y(1 )

Theoretically, the only aggregate series which is cointegrated is Case D.

Experiments were conducted for sample sizes 25, 50, 100, 250 and 500. The number of individuals

(N) was 20 in all experiments. We had 1000 replications for all experiments.
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4. Discussion of Results

The results are tabulated in Appendix 4. There are several important observations to be made, firstly,

consider the behaviour of the test statistics one by one, and then compare the performance of the

tests across datasets. The Dickey-Fuller type tests, which appear to have good power (for Case D,

where the alternative is true), when the sample size increases to one hundred or more. It is also clear

that including a time trend in the cointegrating regression reduces power. The null is not true for

cases Aa-M, B and C. The asymptotic behaviour of the OLS slope estimator in the cointegrating

regression is important to the properties of the tests based on the residuals. Appendix 2 demonstrates

that the OLS slope estimate converges asymptotically to 1/5 , where 5 is the mean of the individual

Pi's. The Pi's in cases Aa and Ad have a mean close to zero (for finite n) , so appears not to

converge. Appendix 3 shows that the divergence rate of the OLS residual from the cointegrating

regression depends on the degree of relative heterogeneity across individuals. The tests are expected

to find no cointegration more often when the divergence rate is highest. The order of relative

heterogeneity of the coefficients is as follows.

Most Heterogeneous Aa

Least Heterogeneous

Ad

Ae

Ab and Af

Ac

The outlier in case C is larger than in case B, hence we expect to find no cointegration more often in

case C than case B. The DF test results reflect the ordering as cases Aa and Ad found cointegration

least frequently, however as the sample size increases, they often find in favour of cointegration.

Compare the results in all of the sample sizes with Case D (no heterogeneity). The test cannot tell

the difference at all between D and Ab, not surprising as the mean coefficient values are equal and

the standard deviation in Ab is only 0.1. Ac is also similar. Note also that the augmented versions

found in favour of no cointegration in small samples for all of the cases, including Case D.

For the Johansen type tests results tell a similar story to those of the DF-type tests when the degree

of relative heterogeneity is small (Cases Aa-Ac). Johansen does perform much better when there is
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more heterogeneity, Ad and Ae. When T=500, the tests are still oversized but at least they choose

the right outcome most of the time. In smaller samples, Johansen finds in favour of no cointegration,

but has the same finding for Case D. In B and C, where there is just one outlying individual with a

different coefficient, Johansen performs favourably when the outlier is quite a long way from the

other individuals (Case C).

The Shin test is difficult to compare since the null and alternative are reversed. The null is that the

two aggregate time series are cointegrated. It is of little surprise that the null is not rejected for small

sample sizes for any of the cases except the de-meaned versions (CL, and C4,) on cases Aa and Ad

(expecting Aa and Ad to reject the most). As the sample size increases, something curious happens,

as cases Aa and Ad do not reject as often as the others. On the basis of the results for Case D, where

the null is true, it appears the de-trended version based on an efficient estimator of the cointegrating

regression is most appropriate (C_tau in the tables). At the 5% level, the Shin test appears to have

reasonable power (except for case Ac) only when the sample size increases to 500.

To sum up, it can be said that the issue at hand seems to be whether or not the test can detect

heterogeneity amongst the noise in the data. In the cases where the degree of heterogeneity is low,

the noise obscures the differences between individuals. Recall that the heterogeneity can be detected

from the regression of aggregate time series and not from observations of each individuals'

cointegrating vectors. It is not entirely surprising that the tests do not perform very well in these

sample sizes, although the divergence rate (of the OLS residual) suggests that all of the tests will be

consistent.

As the outcomes for Case D indicate, for small samples the power of both the Engle-Granger type

tests and the Johansen type tests is rather small, but for the usual medium sized samples they seem to

be surprisingly powerful. Overparametrization of the VAR model exerts an obvious toll on the

power of the Johansen type tests.

In most practical situations the errors of the cointegrating equation are serially correlated. For

correctly specified VAR models the Johansen test is not sensitive to autocorrelated errors. Similarly,

the Shin test shows little sensitivity to serial correlation. The Engle-Granger type tests and Johansen

11



type test based on incorrectly specified VAR models are much more influenced by error

autocorrelation.

Sample size is certainly a major factor influencing the outcome of the tests. The Shin test has a very

low power against almost all cases in small or medium sized samples. Clearly, the choice of the test

statistic matters, but (in our cases)the correct Cl form only becomes powerful for 250 or more

observations in most cases. The other tests, where the null is no cointegration, have incorrect sizes

for almost all cases, and at most situations larger samples will actually make rejection more likely,

i.e., in more cases the conclusion will be that the aggregate time series are cointegrated.

As already seen, different assumptions about heterogeneity lead to clearly differing outcomes. First,

comparing Cases B (which assumes that the time series are cointegrated with the same vector for all

but one agents, for whom they are not cointegrated) and C (which assumes that the time series are

cointegrated with the same vector for all but one agents, for whom they are cointegrated with a

significantly different vector) the situation seems to be very different, especially for larger samples.

There is a curious dichotomy in large samples: the Shin tests are much more likely to reject the null

of cointegration for Case B and the other tests the null of no cointegration for the same Case B than

for Case C. This contradiction is difficult to interpret. (Similar tendencies are also apparent in some

other cases, e.g., Ae and At). The Engle-Granger and Johansen type tests conclude much more

frequently that Case B is cointegrated which is curious, because they clearly are not, as one

component is not cointegrated. It is less difficult to accept that the Shin-type tests will not reject

cointegration in most instances for Case C; after all there at least all components are cointegrated.

All other cases represent stochastic homogeneity, the difference among the behaviour of the agents is

random. However, Aa and Ad are very peculiar cases, because here the behaviour varies around the

lack of cointegration. The time series of all agents will be cointegrated with probability 1, but the

expected value of their cointegrating vectors indicates no cointegration. Case Aa represents a much

smaller variation around the no cointegration situation. This difference in the variability of the

cointegrating vectors (i.e., behaviours) makes a clear difference between the two cases: the null is be

rejected much more frequently for Case Aa than for Case Ad. The distributions of the estimated

cointegration coefficients in those cases where tests indicated cointegration is necessarily bimodal:

they are symmetrical around zero, however, zero is a clear case of no cointegration. However, the no

cointegration area around zero is almost negligible for case Ad. For medium or larger samples, if one
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chooses categories for histogram in the way that zero is in the middle of a class it will look like a

usual unimodal distribution. Thus, if we have a situation where cointegration emerges by chance

only, but the behaviour of the individual agents is rather heterogeneous we are unlikely to find any

indication of the theoretical no cointegration. The no cointegration region around zero is much larger

for Case Aa and the distribution of the estimated cointegration coefficients is much wider. The

frequency distribution is much more visibly bimodal in this more homogeneous case. However,

Figures 1 to 3 demonstrate that the no cointegration region around zero quickly diminishes with

increasing sample size.

In those cases, where cointegration is the conclusion in more than 10% of the experiments, the

average of the estimated 13s for these cases is reasonably close to the mean of the theoretical

distribution for medium and larger samples, however, its variance is usually much larger than the

theoretical one. Distributions are non-normal, but symmetrical in most cases, Case Ae being the

strange exception for which many distributions are skewed. Figures 4 and 5 compare the frequency

distributions of Cases Ab and Ae for sample size 250: The only difference between the two

experiments is that the behaviour of the individuals is much more heterogeneous in Case Ae than in

Case Ab. (The variance of the random component of the coefficient is ten times larger.) While the

distribution of the estimated cointegration coefficient for those instances where DF test rejected the

no cointegration null has an almost perfect normal distribution, the larger heterogeneity of the

behaviours of Case Ae results in severely skewed distribution.

5. Conclusion

The results from the Monte Carlo study contained in this paper raise important questions regarding

the use of aggregated time series in applied econometrics. Many econometric models are based on

the idea of a homogeneous population, for example, the representative economic agent. The theory

behind cointegration itself precludes two aggregate time series from being cointegrated if they are

composed of individuals whose individual series are cointegrated with different cointegrating

vectors. The residuals from a linear combination of the two aggregate series will always be I(1),

however cointegrating relationships are often found between economic time series for which

homogeneity is unlikely. Aggregate consumption and aggregate income is one such candidate as

individuals would be expected to have different preferences for current and future consumption.
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The Monte Carlo results presented in this paper suggest that tests for cointegrating relationships are

unable to reject cointegration unless the degree of heterogeneity across individuals is large relative to

the noise inherent in the data generating processes. As a practical issue, most economic data is not

available at the disaggregated level and so an assumption of homogeneous individuals must be

maintained. The divergence rate of the residual from the cointegrating relationship depends on the

degree of relative heterogeneity across individuals, where less heterogeneity implies a slow

divergence rate. The researcher is probably interested in long-run equilibrium behaviour in a model

and so a slow divergence rate may appear to be no divergence at all. The point is that one should be

cautious when testing for cointegration wherever there is a possibility of heterogeneity. Testing for

the assumption of homogeneity is difficult given the lack of disaggregated data in the first place,

hence the applied researcher ought to consider the likely degree of heterogeneity based on theoretical

foundations.

The consequences of non-homogeneity of the behaviour of economic agents is far from being

uniform. They partly depend on the true patterns of behaviour, and partly on the statistical

information, on the length of the available time series. But in almost all situations the lack of

homogeneity will seriously hamper statistical inference; the tests regularly used for detecting

cointegration will not be reliable tools. Depending on the actual situation, they will fail to lead to

correct inference in many cases. One positive result though is that if the individual cointegration

vectors only differ in a random error component the estimated cointegrating vector will not be far

away from the mean behaviour.
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Appendix 1 - Consistent Semi-parametric estimation of the long-run error variance

in the Shin (1994) test.

If the 1(1) variables xt and y, are cointegrated then permanent changes to x will have a permanent

impact on y. The estimation of the variance of the long run error variance is problematic, especially

in the presence of heteroscedasticity and/or autocorrelation, which is quite possible if there is a delay

in the transmission of shocks from one variable to the other. We used the Heteroscedastic and/or

Autocorrelation Consistent (HAC) covariance estimation method of Andrews (1991). As long as the

residuals are not too heteroscedastic or autocorrelated, the resulting estimator will be consistent.

Intuitively, the estimator takes a weighted average of the autocovariances, with the weights

diminishing as the autocovariances become more distant in time. The weighting scheme is critical to

the convergence rate of the estimator, and we chose the Quadratic Spectral kernel for its optimality

properties.

The formula for the variance in (1) is as follows:

T T-1
s2 (1 = T-11k2 2 k it- • T-1

t=1 j=1 T t= j+1

so that k(.) is a function of how far apart the observations in each term are (j), and a Bandwidth

parameter. The bandwidth parameter ST was chosen automatically for the QS kernel and has the

following formula.

ST = 1.3221(642e;

4 20 642)- 4

(1—p)

where S is the OLS estimator of the disturbance regressed on its own lag.

The Quadratic Spectral kernel which forms the weights is given as follows:

25 sin(61rx15) 
cos(6xx15))k(x)= 127c 2 x2 

67rx/5
The resulting estimator of the long-run error variance will be optimal in terms of asymptotic mean-

squared-error (Andrews (1991)) of the class of kernels which generate positive variances.
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Appendix 2 - Asymptotic Properties of the OLS estimator in the presence of

heterogeneity.

It is known that the OLS estimator of the slope estimate in the model yt=xt'13 + Et is superconsistent.

The behaviour of the test statistics above depend on the asymptotic properties of the cointegrating

regressions. The theory of aggregating cointegrated variables suggests that there is no unique 0 such

that yt - 00 - 0)4 is 1(0). It is instructive to examine whether the OLS estimator in the cointegrating

regressions for the DGP's in the Monte Carlo study are converging to anything meaningful. If so,

what is the relationship between the variance of the residual over time, the variance of the DGP and

the degree of heterogeneity (as measured by the variance of what is essentially a random coefficient).

Theorem: Let

where

Yt =1,Y3i(t)+1,6„0,i=, i=i
Xt = Ii3iy3„)+1,62i0)1=i i=,

Ahit = 11+ uit ;

uit iic1(0,02u)Vi,t

cut = ao

e2it = a0 +1)2it

HO,

(A2.1)

(A2.2)

Then the OLS slope estimate in the regression of )7, on xt and a constant, converges in probability to

the inverse of the sample average of heterogeneous individual coefficients. ie,

1 —
= ; p = n13i

i=1

Proof of the Theorem:

Rewrite xi and )7, as follows. Firstly define

lt li(t) P 2: _ 02i(:)

i=1 i=1

which can be viewed as iid innovations. Therefore,
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= a on ± ± +Du
i=1 j=1

n t n t

(A2.4)xt = CCon + i.tntTS + 51, +
i=1 j=i i=1 j=1

i=1

Now draw attention to the terms involving uji. Let

(A2.5)

i=1 j=1 j=1

where St has the interpretation of the partial sum of some iid innovations with zero mean. Let r = t/T

so that t = [Tr] is the integer part of Tr.

7,-Y2 d
L.)[ Tr] -7 .u

D
u(r) (A2.6)

where Bu(r) is a Brownian motion with zero mean and variance equal to rnsa .

Also define

which implies

i=1 J.1 j=1

rr-Y2 d
LiE Tr] -7

(A2.7)

(A2.8)

This Brownian Motion has zero mean and variance equal to ma:a/23 and ail =/2-11,03i 4)2
i=1

captures the degree of heterogeneity. Note that if all of the pi are equal, then the distribution is
degenerate.

Given (3), (5) and (7), we can rewrite x, and y, as follows:

Yt = aon+ !Int + +1)1,

= aon+ iint5 +13-S,+-t +1)2t

The OLS estimator in the cointegrating regression of yt on a constant and x, is

19

(A2.9)

•



,

ii

T T T
=  
IX ty t —7-1(Ixtilyt)

T T
Ixt2_T-1 yxt)2

(A2.10)

Therefore we need to examine the asymptotic behaviour of each term on the right hand side of (10).

Firstly, consider the sums.

T T 1/ T I/ T

Iyt = Taon+linIt+T72I(T72St)+Ivu

t=1 t=1 t=1 t=1

= TOCon + fin
(T2 +12  

+ 7v2(T-1E(f/2St))+ T T-21) it
t=1 t=i

.-. 7-2E yt = rlocon+ [In

t=1 
,---,--, 

(1+7-1)
+Ttir2St))+7-1(rituit)

t=1 t=1

T

2
--->0 1/4____..„_a

—>p/2

---..L—i I/3.0dr
.lo

T

T-2Ey, —1---' > lin/2

t=1

By similar reasoning,

T

T-21Xt 1-1—> gn-0/2

1=1
Now, looking at the squares and cross products:

T T

E4 = 0(7'3) Ixtyt = 0(T3)
t=1 t=1

T ' T... T_3v
1 
x2 = 1

k

. t. . 

i,)

 \2 ... r3E xt yt = 1 oinv 5
L r q l"LP

3 ‘ I

Therefore we return to the OLS estimator:

7-3Ixtyt — r2Ix 

__ 

t T zIdit

T T 

]

T

6 =  t=1 t=1 t=1 

T-3Ext2_( T-2yxt
T T

t=1 t=1 )2

I —P--->0

(A2.11)

(A2.12)

(A2.13), (A2.14)

(A2.15)

Now substitute the limiting quantities in (11), (12), (13) and (14) into (15), and

o ---L—' >1 (A2.16)

13
Q.E.D.
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Appendix 3. Divergence rate of the Variance of the Residual.

Consider residual in the linear combination of the following:

then

and so

where

1
et = y, —Ts.;

e =a n(1----)+D ----D —St o p lt p 2: p 1

T-Y2e, (---2—>iiju(r)

1 —
N(0,7720' 2u r-rs2 ))
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(A3.1)

(A3.2)

(A3.3)

(A3.4)

Thus the variance of the residual term is exploding at a rate which is proportional to the product of

the variance of the uit's (the data) and the sample coefficient of variation of the Pi's (the degree of

heterogeneity). On inspection, the variance of the normalised residual will collapse if and only if all of

the f3i's are equal, that is Case D in our data generating processes, which is the only one which is

formally cointegrated. Note also that the variance is proportional to the number of individuals which

comprise the series'. In the context of testing for cointegration in the presence of heterogeneous

individuals, the normalised residuals have a zero mean across all time, but exploding variance. The

rate at which the variance explodes is crucial because the tests must be able to detect the increasing

variance in a finite sample. We expect tests for cointegration using data generated under Case Ac to

accept cointegration most often because the coefficient of variation will be close to 0.0001 since Po =

10 and s = 0.1. By similar argument, we expect cases Aa and Ad to reject cointegration most often

since po = o (so that 5 will be close to zero).

21

„



Appendix 4. Simulation Results

T = 25: Number of replications which reject the null hypothesis at 1%

Dataset 1
Aa Ab Ac Ad Ae Af B C D

DF-no trend 30 813 827 99 276 805 754 126 812
ADF-no trend 0 79 65 7 10 65 67 5 83
DF - with trend 76 453 674 107 206 647 416 191 465
ADF - with trend 3 10 38 6 9 30 8 8 11
Johansen (k=2) 183 181 182 85 90 181 171 72 186
Johansen (k=3) 106 110 112 74 77 122 97 84 119
Johansen (k=5) 254 301 295 276 306 296 279 287 303
Cl 5 2 0 12 1 0 1 0 0
C/ mu 431 0 0 76 0 0 0 2 0
CI tau 40 21 6 33 31 5 16 29 16
C 23 0 0 3 0 0 0 1 0
C mu 93 0 0 25 0 0 0 1 0
C tau 1 0 0 0 0 0 0 0 0

Dataset 2
Aa Ab Ac Ad Ae Af B C D

DF - no trend 0 54 48 1 7 42 45 5 56
ADF - no trend 0 13 13 1 5 16 14 1 13
DF - with trend 0 12 20 0 4 16 7 3 11
ADF - with trend 0 0 3 1 2 4 4 2 0
Johansen (k=2) 298 287 294 177 170 295 262 171 288
Johansen (k=3) 65 65 83 79 73 79 71 78 69
Johansen (k=5) 307 308 336 334 344 346 308 372 321
Cl 6 0 0 29 4 0 0 21 0
C/ mu 390 0 0 195 25 0 0 91 0
CI tau 168 7 2 124 58 2 9 93 5
C 3 0 0 4 0 0 0 7 0
C mu 114 0 0 44 1 0 0 10 0
C tau 34 1 1 14 9 0 0 11 1
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Appendix 4. Simulation Results

T = 25: Number of replications which reject the null hypothesis at 5%

Dataset 1
Aa Ab Ac Ad Ae Af B C D

DF-no trend 112 963 970 278 578 963 936 324 964
ADF-no trend 0 266 268 30 78 238 217 46 278
DF - with trend 236 780 901 306 475 890 726 435 791
ADF - with trend 14 59 136 23 30 111 53 40 57
Johansen (k=2) 447 419 431 221 246 415 401 208 435
Johansen (k=3) 283 305 328 205 243 319 287 233 317
Johansen (k=5) 481 492 518 507 508 506 483 504 493
CI 11 39 67 78 79 79 75 51 26
C/ mu 972 0 0 248 0 0 0 5 0
CI tau 349 178 61 303 276 67 222 254 177
C 81 0 0 13 0 0 0 1 0
C_mu 184 0 0 70 0 0 0 2 0
C tau 15 2 4 6 0 3 0 1 1

DF - no trend
ADF - no trend
DF - with trend
ADF - with trend
Johansen (k=2)
Johansen (k=3)
Johansen (k=5)
CI
CI mu
CI tau

Dataset 2
Aa Ab Ac Ad Ae Af B C D
8 254 270 24 54 256 229 29 278
0 91 81 17 22 63 84 18 89
16 79 123 16 31 117 74 19 88
2 17 35 6 6 35 15 6 16
579 550 611 393 428 608 525 394 554
212 214 234 202 204 226 216 218 212
535 531 549 538 576 555 527 598 526
27 16 21 82 33 26 16 65 12
891 0 1 419 47 1 1 153 0
521 148 102 407 316 108 171 365 146
5 0 0 8 0 0 0 12 0

C mu 271 0 0 86 4 0 0 25 0
C tau 83 7 4 38 26 6 4 29 7
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Appendix 4. Simulation Results

T = 50: Number of replications which reject the null hypothesis at 1%

Dataset 1
Aa Ab Ac Ad Ae Af B C D

DF - no trend 483 1000 999 258 526 999 998 209 1000
ADF-no trend 19 529 568 21 38 482 392 18 579
DF - with trend 144 989 999 254 523 998 968 388 992
ADF - with trend 3 124 365 7 22 305 73 13 135
Johansen (k=2) 681 673 712 77 127 651 572 77 707
Johansen (k=3) 253 313 317 50 76 285 234 58 345
Johansen (k=5) 112 111 129 60 73 130 83 59 122
Cl 0 11 3 10 12 5 42 1 2
C/ mu 733 0 0 55 0 0 0 2 0
CI tau 32 71 5 31 81 16 104 55 56
C 61 0 0 5 0 0 0 1 0
C mu 93 0 0 69 1 0 0 1 0
C tau 2 0 0 3 4 0 3 4 0

Dataset 2
Aa Ab Ac Ad Ae Af B C D

DF - no trend 55 603 656 9 26 565 438 3 653
ADF - no trend 3 135 164 4 7 132 85 3 164
DF - with trend 1 234 373 2 9 308 155 6 267
ADF - with trend 0 32 80 1 2 54 17 0 31
Johansen (k=2) 670 698 750 119 149 691 568 163 728
Johansen (k=3) 78 80 95 28 22 85 73 32 92
Johansen (k=5) 61 67 91 50 43 74 68 51 76
CI 0 0 0 21 2 0 0 11 0
C/ mu 313 0 0 163 27 0 0 88 0
CI tau 148 8 5 128 28 9 16 85 10
C 0 0 0 9 2 0 0 4 0
C mu 119 0 0 62 10 0 0 13 0
C tau 78 0 0 37 4 0 0 17 1
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Appendix 4. Simulation Results

T = 50: Number of replications which reject the null hypothesis at 5%

DF - no trend
ADF - no trend
DF - with trend
ADF - with trend
Johansen (k=2)
Johansen (k=3)
Johansen (k=5)
CI
CI mu
CI tau

C mu
C tau

DF - no trend
ADF - no trend
DF - with trend
ADF - with trend
Johansen (k=2)
Johansen (k=3)
Johansen (k=5)
CI
CI mu
CI tau

C_mu
C tau

Aa Ab
612 1000
72 829
329 1000
20 372
925 918
597 621
319 334
9 89
986 1
387 284
137 0
186 0
61 20

Aa Ab
185 936
20 443
11 674

161
887 900
269 283
215 258
3 49
937 0
491 134
5 0
460 0
151 23

Dataset 1
Ac Ad
1000 453
859 60
999 475
695 36
913 251
661 162
367 194
576 121
0 181
49 329
0 18
0 145
9 41

Ae
763
132
734
86
345
203
216
158
0
396
0
1
66

Dataset 2
Ac Ad Ae
947 47 120
481 24 48
805 21 72
284 20 24
928 308 385
294 90 106
261 154 148
186 61 28
0 306 43
69 413 259
0 18 3
0 127 15
11 85 41

25

Af B
999 1000 423 1000
797 715 78 877
999 999 626 1000
629 279 70 395
882 847 231 929
613 541 174 652
343 302 189 352
572 201 62 43
0 6 5 0
99 379 352 265
0 0 2 0
0 0 3 0
18 40 57 11

Af B
905 826 25 952
415 304 18 494
747 525 35 704
239 112 14 177
898 819 377 929
270 227 105 302
253 211 168 280
201 73 55 27
0 0 159 0
107 190 342 114
0 0 14 0
0 0 40 0
17 32 56 26



Appendix 4. Simulation Results

T = 100: Number of replications which reject the null hypothesis at 1%

DF - no trend
ADF - no trend
DF - with trend
ADF - with trend
Johansen (k=2)
Johansen (k=3)
Johansen (k=5)
CI
CI mu
CI tau

C mu
C_tau

DF - no trend
ADF - no trend
DF - with trend
ADF - with trend
Johansen (k=2)
Johansen (k=3)
Johansen (k=5)
CI
Cl_mu
CI tau

C mu
C_tau

Aa
820
420
247
4
992
887
365
18
809
55
72
66
9

Aa
561
163
4
1
986
418
171
3
503
121
9
254
65

Dataset I
Ab Ac Ad
1000 1000 361
990 1000 18
1000 1000 392
849 985 11
1000 1000 91
926 977 42
465 566 23
63 140 12
0 0 34
178 13 54
0 0 17
0 0 148
17 0 7

Ae
684
73
717
50
204
74
34
15
0
161
0
0
22

Dataset 2
Ab Ac Ad Ae
999 999 6 51
766 907 5
981 999 8
464 695 5
995 1000 157
498 615 13
230 350 20
19 4 23
0 0 143
44 7 88
0 0 5
0 0 62
5 0 35

26

8
60
5
247
18
18
3
21
23
3
5
6

Af B
1000 1000 267 1000
967 816 23 997
1000 1000 547 1000
920 561 16 915
999 970 102 1000
878 714 43 972
388 246 38 573
191 253 1 9
1 0 2 0
94 359 52 118
0 0 1 0
0 0 3 0
30 83 6 3

Af B
995 942 2 1000
660 390 4 901
981 840 16 996
485 194 3 582
995 933 159 1000
422 245 18 610
200 101 31 301
18 7 13 3
0 0 101 0
51 75 62 14
0 0 15 0
0 0 34 0
8 11 20 3



Appendix 4. Simulation Results

T = 100: Number of replications which reject the null hypothesis at 5%

DF - no trend
ADF - no trend
DF - with trend
ADF - with trend
Johansen (k=2)
Johansen (k=3)
Johansen (k=5)
CI
CI mu
CI tau

C mu
C tau

DF - no trend
ADF - no trend
DF - with trend
ADF - with trend
Johansen (k=2)
Johansen (k=3)
Johansen (k=5)
CI
CI mu
CI tau

C mu
C tau

Aa
853
569
457
32
1000
978
698
214
973
393
262
156
132

Aa
685
342
24
9
998
741
449
100
925
428
134
742
196

Dataset 1
Ab Ac Ad Ae
1000 1000 565 832
999 1000 96 188
1000 1000 604 878
981 1000 66 172
1000 1000 262 421
997 1000 137 214
767 869 97 114
205 1000 142 176
13 2 122 2
472 52 331 503
0 0 40 0
2 0 257 2
71 25 107 200

Ab
1000
964
1000
811
1000
820
512
156
0
210
0
0
105

Ac
1000
991
1000
962
1000
891
656
939
0
63
0
0
30

Dataset 2
Ad Ae
48 172
35 59
41 166
23 40
363 470
58 81
81 94
64 30
275 43
360 241
17 5
126 20
124 68

27

Af B
1000 1000 501
994 952 91
1000 1000 746
991 825 89
1000 992 260
982 919 148
683 518 132
997 457 44
39 116 5
245 634 417
0 0 1
9 8 3
91 247 145

Af
1000
907
999
802
998
746
470
785
0
206
0
0
87

1000
1000
1000
994
1000
999
859
45
1
384
0
1
28

994 28 1000
712 21 992
966 68 1000
493 27 908
988 374 1000
548 72 901
299 95 630
229 62 39
0 154 0
313 315 123
0 20 0
0 77 0
158 104 54



Appendix 4. Simulation Results

T = 250: Number of replications which reject the null hypothesis at 1%

Dataset I
Aa Ab Ac Ad Ae Af B C D

DF - no trend 963 1000 1000 428 725 1000 1000 321 1000
ADF-no trend 868 1000 1000 27 87 999 973 17 1000
DF - with trend 409 1000 1000 465 818 1000 1000 632 1000
ADF - with trend 6 1000 1000 19 91 999 956 27 1000
Johansen (k=2) 1000 1000 1000 136 286 1000 1000 108 1000
Johansen (k=3) 999 1000 1000 45 105 998 967 37 1000
Johansen (k=5) 895 986 1000 23 28 917 585 25 1000
CI 563 407 1000 11 13 984 529 0 10
C/ mu 792 88 0 20 1 163 181 1 0
CI tau 95 513 17 52 198 524 752 69 160
C 78 0 0 17 1 0 0 0 0
C_mu 46 18 0 190 3 86 10 3 0
C tau 7 243 9 9 78 391 492 30 8

Dataset 2
Aa Ab Ac Ad Ae Af B C D

DF - no trend 876 1000 1000 14 91 1000 995 4 1000
ADF - no trend 743 997 1000 3 9 974 772 4 1000
DF - with trend 28 1000 1000 9 107 1000 989 24 1000
ADF - with trend 2 995 1000 5 8 962 707 7 1000
Johansen (k=2) 1000 1000 1000 167 286 1000 991 167 1000
Johansen (k=3) 952 989 1000 11 18 938 697 10 1000
Johansen (k=5) 698 869 999 18 21 700 309 15' 999
Cl 299 209 992 23 3 652 134 8 5
C/ mu 490 0 0 136 26 0 0 84 0
CI tau 92 274 19 103 25 314 327 56 28
C 262 0 0 17 5 0 0 25 0
C mu 424 • 0 0 76 9 0 0 42 0
C tau 61 191 6 48 12 213 216 30 22
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Appendix 4. Simulation Results

T = 250: Number of replications which reject the null hypothesis at 5%

DF - no trend
ADF - no trend
DF - with trend
ADF - with trend
Johansen (k=2)
Johansen (k=3)
Johansen (k=5)
CI
CI mu
CI tau

C mu
C tau

DF - no trend
ADF - no trend
DF - with trend
ADF - with trend
Johansen (k=2)
Johansen (k=3)
Johansen (k=5)
CI
CI mu
CI tau

C mu
C tau

Aa
969
893
615
36
1000
1000
964
775
954
442
447
112
187

Aa
895
808
85
15
1000
981
879
642
824
408
595
744
250

Dataset 1
Ab Ac Ad
1000 1000 609
1000 1000 107
1000 1000 656
1000 1000 85
1000 1000 310
1000 1000 165
997 1000 116
565 1000 142
267 2 66
749 63 333
0 0 35
179 0 318
443 42 184

Dataset 2
Ab Ac Ad
1000 1000 75
1000 1000 25
1000 1000 43
999 1000 23
1000 1000 377
998 1000 58
961 1000 76
419 1000 63
108 1 233
539 80 389
0 0 34
36 0 146
422 48 205

29

Ae
862
194
911
216
494
257
145
200
11
552
1
9
338

Ae
240
63
233
51
516
90
85
35
39
241
7
18
120

Af B
1000 1000 534
1000 993 81
1000 1000 777
1000 986 116
1000 1000 285
1000 991 142
978 803 109
1000 690 59
432 592 7
726 913 414
0 0 3
324 290 6
586 720 262

Af
1000
996
1000
995
1000
987
864
978
130
566
0
41
457

1000
1000
1000
1000
1000
1000
1000
41
1
451
0
1
48

1000 32 1000
927 27 1000
998 99 1000
869 31 1000
997 360 1000
870 66 1000
561 69 1000
458 50 44
49 153 0
646 289 149
0 36 0
9 74 0
525 147 113



Appendix 4. Simulation Results

T = 500: Number of replications which reject the null hypothesis at 1%

DF - no trend
ADF - no trend
DF - with trend
ADF - with trend
Johansen (k=2)
Johansen (k=3)
Johansen (k=5)
CI
CI mu
CI tau

C mu
C tau

DF - no trend
ADF - no trend
DF - with trend
ADF - with trend
Johansen (k=2)
Johansen (k=3)
Johansen (k=5)
CI
CI mu
CI tau

C mu
C tau

Aa
982
943
565
24
1000
999
960
867
848
211
168
61
24

Ab
1000
1000
1000
1000
1000
1000
997
632
431
839
0
315
649

Ac
1000
1000
1000
1000
1000
1000
1000
1000
0
31
0
0
29

Dataset 1
Ad
468
38
485
25
134
50
22
7
19
63
35
230
31

Ae
760
88
839
111
297
110
40
30
0
257
1
2
147

Dataset 2
Aa Ab Ac Ad Ae
954 1000 1000 20 109
881 999 1000 5 15
157 1000 1000 11 141
9 1000 1000 2 13
1000 1000 1000 184 288
991 1000 1000 12 20
891 984 1000 11 13
640 491 1000 16 4
484 92 0 110 21
112 584 32 98 30
549 0 0 17 3
445 44 0 69 14
83 531 21 46 16

30

Af B
1000 1000 313 1000
998 983 35 1000
1000 1000 674 1000
998 978 40 1000
1000 1000 118 1000
999 973 38 1000
959 706 19 1000
999 702 1 9
558 540 1 0
853 926 68 206
0 0 0 0
498 188 3 0
798 800 36 11

Af B
1000 999 11 1000
991 854 5 1000
1000 996 27 1000
990 828 6 1000
1000 996 160 1000
991 806 9 1000
877 434 17 1000
858 254 13 11
49 1 118 0
622 539 74 30
0 0 24 0
22 0 59 0
564 473 43 22



Appendix 4. Simulation Results

T = 500: Number of replications which reject the null hypothesis at 5%

DF - no trend
ADF - no trend
DF - with trend
ADF - with trend
Johansen (k=2)
Johansen (k=3)
Johansen (k=5)
CI
CI mu
CI tau

C mu
C tau

DF - no trend
ADF - no trend
DF - with trend
ADF - with trend
Johansen (k=2)
Johansen (k=3)
Johansen (k=5)
CI
CI mu
CI tau

C mu
C tau

Dataset 1
Aa Ab Ac Ad Ae
984 1000 1000 670 894
955 1000 1000 116 225
743 1000 1000 685 925
74 1000 1000 87 234
1000 1000 1000 327 503
1000 1000 1000 156 241
983 999 1000 93 113
913 766 1000 100 216
972 662 8 53 7
555 946 109 394 619
609 2 0 78 1
127 582 2 340 6
256 819 83 256 491

Dataset 2
Aa Ab Ac Ad Ae
963 1000 1000 81 254
909 1000 1000 38 64
278 1000 1000 51 277
46 1000 1000 15 51
1000 1000 1000 390 523
998 1000 1000 60 93
960 996 1000 72 77
819 670 1000 67 43
814 461 6 203 38
410 798 99 363 280
766 0 0 34 9
782 394 2 143 25
312 753 80 250 194

31

Af B
1000 1000 530 1000
1000 997 107 1000
1000 1000 827 1000
1000 993 133 1000
1000 1000 315 1000
999 994 136 1000
988 854 85 1000
1000 823 50 49
779 864 2 0
948 986 417 516
9 0 0 0
741 661 5 0
917 938 325 61

Af B
1000 1000 33 1000
997 942 27 1000
1000 999 107 1000
997 931 32 1000
1000 999 372 1000
997 924 64 1000
956 658 72 1000
967 573 78 56
467 216 182 0
829 824 308 136
0 0 41 0
397 152 111 1
784 795 201 116



Appendix 5. Distributions of the OLS slope estimator in selected cases

Figure I: Frequency distribution of the 13 0 is values when the DF test rejects Ho.

Case Aa, dataset 1, 5%, sample size: 500
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Figure 2: Frequency distribution of the 13 0 Ls values when the DF test rejects Ho.

Case Aa, dataset 1, 5%, sample size: 250
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Figure 3: Frequency distribution of the f3ou values when the DF test rejects Ho.

Case Aa, dataset 1, 5%, sample size: 100
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Figure 4: Frequency distribution of the 11 oLs values when the DF test rejects Ho.

Case Ab, dataset 1, 5%, sample size: 250
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Figure 5: Frequency distribution of the 11 °Ls values when the DF test rejects Ho.
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