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Summary

A Bayesian approach is presented for nonparametric estimation of an additive
regression model with autocorrelated errors. Each of the potentially nonlinear
components is modelled as a regression spline using many knots, while the errors
are modelled by a high order stationary autoregressive process parameterised
in terms of its autocorrelations. The distribution of significant knots and partial
autocorrelations is accounted for using subset selection. Our approach also allows
the selection of a suitable transformation of the dependent variable. All aspects
of the model are estimated simultaneously using Markov chain Monte Carlo.
It is shown empirically that the proposed approach works well on a number of
simulated and real examples.

KEY WORDS: Autoregressive model; Bayesian analysis; Data transforma-
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1 Introduction

When a regression model is fitted to time series data the errors are likely to be autocorre-
lated, such as in the problems tackled by Engle, Granger, Rice and Weiss (1986) and Harvey
Koopman (1993). Few approaches are currently available for estimating a regression model
nonparametrically when the errors are autocorrelated, despite the fact that failure to take
account of the autocorrelation can result in poor function estimates; see Section 4.1 and
Altman (1990) for simulation evidence. Those authors that allow for autocorrelation in the
errors usually only deal with univariate nonparametric regression with time as the indepen-
dent variable; e.g. Altman (1990), Chu and Marron (1991) and Hart (1991, 1994). These

estimators do not generalise to the case where the independent variable is not in time order.

This paper presents a comprehensive Bayesian approach for semiparametrically estimat-
ing an additive regression model when the errors are autocorrelated. Each potentially nonlin-
ear component is modelled as a regression spline with many knots and the errors are modelled
as a stationary autoregression parameterised by its partial autocorrelations. The distribu-
tion of significant knots in the regression spline and significant partial autocorrelations is
accounted for by subset selection. The Bayesian analysis also allows a suitable transforma-
tion to be chosen for the dependent variable. The entire model is estimated simultaneously

using Markov chain Monte Carlo.

- To the best of our knowledge, even those papers that deal with nonparametric regression

when the errors are correlated do not consider issues such as selecting the appropriate model
for the errors and the transformation of the dependent variable. Furthermore, the approach
in this paper can be made robust to outliers and can accommodate missing values of the
dependent variable as in Barnett, Kohn and Sheather (1996a). It can also be extended to

bivariate surface estimation, as is demonstrated in Smith and Kohn (1996b).

This paper links two lines of research. The first is by Smith and Kohn (1996a) who com-
bine regression splines with Bayesian subset selection to nonparametrically estimate an ad-

ditive regression model with independent errors. They show that in the univariate case their




approach acts as a variable bandwidth smoother and compares favourably with modern ker-
nel weighted local linear smoothing. The second line of resealjch is by Barnett et. al. (1996a)
who propose a Bayesian approach for robustly estimating an autoregressive model, simul-
taneously choosing the order of the model and estimating its parameters and any missing
observations. We note that the work of Smith and Kohn (1996a) is motivated by the Bayesian
subset selection paper of George and McCulloch (1993), while Barnett et. al. (1996a) refine
and extend the work of McCulloch and Tsay (1994).

The paper is organised as follows. Section 2 describes the model and the prior assumptions
and Section 3 discusses estimation and the Markov chain sampler. Section 4 studies in detail
the performance of the nonparametric estimator in the univariate case and compares it to
previous estimators. Section 5 considers multiple regression examples and Appendix 1 shows

how to implement the sampler.

2 Model and prior assumptions

2.1 Autoregressive model for the errors

Suppose
yt?f(mt)'l'ut’ t=17"-’na (21)

where y; is the dependent variable, f(z;) is an unknown regression function of the independent

variable z;, and u; is a stationary autocorrelated error sequence. The errors are modelled by

the zero mean stationary autoregressive process of maximal order s,
up = Oup_y + -+ + Osue—s + et

where e; is independent N(0,02). There is little loss of generality in this assumption as
most Gaussian stationary processes can be approximated by an autoregressive process of
sufficiently high order. Moreover, it is straightforward to adapt the methods of the present
paper to handle autoregressive-moving-average errors as in Barnett, Kohn and Sheather

(1996b).




Let 1; be the ith partial autocorrelation of u¢, so that —1 < ¢; < 1 fori =1,...,s
and 9; = 0 for ¢ > s. We note that the partial autocorrelations 11,...,1s are a one-
to-one transformation of 6,...,0,. As in Monahan (1984) and Barnett et. al. (1996a) it
is convenient to enforce stationarity by re-parameterising u; in terms of ¥ = (¢1,...,s).
When z; is time it is important to enforce stationarity of u; so as not to confound the model
for the errors with the nonparametric estimate of the function. For example, a random walk

on the errors, u; = us_1 + €, acts as first order spline smoother.

As in Barnett et. al. (1996a), the following prior assumptions are made on ¢2 and .

Al. logo? has a flat prior on the line, so that p(0?) o 1/02. This is a commonly used prior

for o2.

. Let ; be a binary variable determining the status of ;. If k; = 0 then 1); is identically
zero; if k; = 1 then 1); is uniformly distributed on (—1,1). We assume that, a priori,
the 1; are independent of each other. This ensures that the u; are both stationary
and parsimoniously parameterised and that the prior distribution of #|x; = 1 is non-

informative. We also assume that 1; is a priori independent of o2

The maximal order s of the autoregression and the probabilities p(x; = 1),i =1,...,s,
are prescribed by the user. In all our examples we take a descending prior on the
order, where p(k; = 1) = 0.5,p(k2 = 1) = 0.4,p(k3 = 1) = 0.3,p(k4 = 1) = 0.2, and
p(k; = 1) = 0.1 for i = 5,...,s. However, the results prove reasonably insensitive to

the exact specification of p(k; = 1).

2.2 Regression splines

The nonlinear regression function is assumed to be smooth and modelled (approximated) by

the regression spline

m
bo + b1z + baz? + b3z® + 3 biya(z — £:)3 (2.2)

1=1




where Z1,...,Zm are m knots placed along the domain of the independent variable z, such
that min(z;) < , < &2 < +++ < Fn < maxe(z:) and z4 = max(0,z). When f(z) is observed
with noise, the two most important problems in approximating f(z) by (2.2) are how many
knots to use and where to place them. If too few knots are used, or they are badly placed,
then important features of the curve may be missed. If too many knots are used then the
estimate of f will have high local variance. Smith and Kohn (1996a) solve this problem in the
independent error case by introducing many knots from which significant knots are selected.
We show how to extend their approach to the autocorrelated error case by rewriting (2.1) as

a linear model.

Let r =m+3, 8= (bo,-..,b)" bea vector of regression coefficients, y = (y1,...,ys)’ be

a vector of observations on the dependent variable, x = (z1,... ,Tn)', and let 1 beanx1

vector of ones. Let x7 and (x—1%;)3 be the n x 1 vectors with ith elements o and (z; — Z;)3
respectively, and define the n x (r + 1) design matrix X = {1,x, x2,x3, (x — 1:'1':1)?,_, ceuy(x—
1%,,)3}. By replacing f(z) by (2.2), equation (2.1) can be expressed as the linear regression

model

y=XB+u, (2.3)

where u = (u1,...,u,)" is the vector of autoregressive errors. In this linear model context,
selecting significant knots is equivalent to selecting significant variables in the linear regression

model (2.3).

Let var(u) = 0?Qy, be the variance matrix of u. To carry out subset selection on the
columns of X, it is convenient to define the binary variables v;,7 = 0,...,r, determining
which columns of X are in the regression. Let v; = 0 if b; is identically zero and let v; = 1
otherwise. Put v = (7o,---,7-)’ and let 3, and X, be the sub-vector of 8 and the sub-matrix
of X, respectively, corresponding to the nonzero elements of . Given 02,1, and k, we place

the following prior on v and f.

A3. The «; are independent a priori with p(y; = 1) = 1/2, while the conditional prior for




Bylo®, 1% ~ N (0,ea®(X595' X)) .

The prior for ¥ means that we have no prior information on which columns of X to
include. We usually take ¢ = 100 as it works well in practice and makes the ‘prior for By
almost diffuse relative to the information in the likelihood. We have checked using simulation
on many examples that estimates based on this prior are relatively insensitive to values of
c in the range 10 < ¢ < 2000. The prior for B, is similar to Zellner’s (1986) g-prior when
Qy =1

2.3 Data transformation

For a linear regression model with independent errors, Box and Cox (1964) show how to use
a power transformation of the dependent variable to obtain an additive model with errors
that are Gaussian and have a constant variance. Because our approach assumes an additive
regression model with stationary errors, we make the choice of an appropriate transformation
part of the Bayesian analysis. We consider a family of transformations T (y) indexed by A € A
such that T (y) is monotonically increasing in y for each A € A. An example is the family of
power transformations Ty (y) = y* for A > 0, Th(y) = log(y) for A =0, and Ti\(y) = —y* for
A<0.

Taking a transformation of y can make both the location and scale of T (y) different for
each A. Therefore, in a linear regression'model Box and Cox (1964) advocate making the
prior for B and ¢ depend on A\. We take a different approach. Instead of working directly
with T (y) we follow Smith and Kohn (1995) and work with the normalised transformation
yx = ay + by\Ti(y). For each A, the scalars ay and by are chosen as follows. Let y(;) and
Y(i),» be the ith ordered values of y; and y;» = ax + bxT\(yi). The scalars a) and by are
chosen so that y(n/2) = Y(n/2),» 30d Y(3n/4) = Y(n/4) = Y(3n/4),A — Y(n/4),x- This means that the
median and interquartile range of the y; » are approximately the same for all A € A. Such a

choice of a) and b, is motivated by, but is a little different to, the transformation approach




of Emerson and Stoto (1983).

Because the centre and the scale of the y; ) are the same for all A we make the following

assumption.
A4. The parameters o2, k,1,7, and 8 are a priori independent of A.

We also limit the set of possible transformations A to be discrete and small because it
is necessary to integrate out )\ in some steps of the Markov chain Monte Carlo sampler in

Section 3.

3 Sampling scheme and parameter estimation

3.1 Sampling scheme

The complexity of the Bayesian model means that it is necessary to use Markov chain Monte
Carlo sampling to estimate the regression function and the autoregressive parameters. We
refer the reader to Gelfand and Smith (1990) and Tierney (1994) for the application of
Markov chain Monte Carlo sampling in statistics. To describe the sampling scheme it is
convenient to use the notation a|3 to mean that « is generated conditional on 8. Some steps
of the sampler generate from the exact conditional distribution which we write as p(c|B).
Other steps generate from an approximation to the conditional distribution combined with a
Metropolis-Hastings step (see Tierney, 1994). We write the approximation to the conditional

distribution as g(a|B).

The sampling scheme is first presented and each of its steps is then briefly described.

Implementation details are given in Appendiﬁ: 1. Let ¥ = (¢¥1,.--,%s), & = (K1,...,Ks), and

Y= (705 5Yr)-

Sampling Scheme: Starting with some initial values k0, 0 B0l 410 and Al the sam-

pling scheme iteratively generates the parameters using the following conditioning: (1) Bylks ¥y 7s Ay s

7
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The sampling scheme is invariant to the posterior distribution p(8,~, %, k, Aly) as each
part either generates directly from a conditional distribution or uses a Metropolis-Hastings
step. It can be readily checked that the sampling scheme is also irreducible and aperiodic.

Therefore, by Tierney (1994) the sampler converges to the correct posterior distribution.

The error variance o2

is integrated out of the sampling scheme. In Step (i), 8, is
generated from its conditional distribution p(8,|%,%,v,A,y) which is multivariate ¢. In
Step (ii), ¥; and k; are generated as a block. The binary indicator «; is generated first from
P(Kilkjiy Yj£i, 7, B, A, y) using numerical integration to determine the conditional probability
that x; = 1. The partial autocorrelation 1); is then generated using a normal approximation
to its conditional distribution; we use the approximation

q(¥i) x D(Ys+1y--->YnlY1y-- -, Ys, K, 90,7, B, A) which is t—distributed in 1;. The generation
of v; is completed using a Metropolis-Hastings step. It is necessary to generate 1; and k;
simultaneously as generating them one at a time produces a reducible sampling scheme which
does not converge. In Step (iii), the binomial density p(vi|v;xi, &, %, y) is obtained explicitly,
by evaluating the probability that 4; = 0 and 1 up to a scale factor and then normalising.
The transformation parameter A is generated from its multinomial conditional probability

as for each A € A, the conditional probability of A can be evaluated up to a scale factor and

then normalised.

The family of transformations A is taken discrete and small to make it easy to integrate
A out when generating 7; and also to generate A. It is necessary to integrate A out when

generating 7 as the sampler which conditions v on A converges too slowly to be practical.

In general, the sampler is first run for a warmup period at the end of which it is as-
sumed that it has converged to the posterior distribution p(8,7, &, %, Aly). It is then run

for a further period called the sampling period whose output is used for estimation. Let

B k) k] aplk] ARl g =1... , K, be the iterates of 8,7, k,%, A during the sampling pe-

riod.




3.2 Estimation

Estimation is done in two stages. The parameter A is first estimated as the mode of an
estimate of p(Aly); let Ays be this estimate of the mode. In the second stage the unknown
regression function and the autoregressive parameters are estimated conditional on M. This
two stage approach is used by Box and Cox (1964, 1982) who advocate estimating the re-
gression on a given scale (that is by conditioning on the estimate of A) rather than averaging

over the distribution of A.

The modal estimate A, is obtained as follows. The Markov chain sampler in Section 3.1

is run to obtain the iterates kI, y¥, klF] k] Al k= 1... K. Based on these iterates the

probability p(A|y) is estimated by

K
)‘ly - z }‘Iﬂ[k]a 'Y[k]a":[k]aw[k])y)

The estimate Ay is the maximum of $(\|y) for A € A.

The Markov chain Monte Carlo sampler is run again, this time conditioning on A, and
not executing Step (iv) of the sampling scheme. New iterates ﬂ[k], 'y[k], n[k], 1,0['“] are obtained.
The following estimates of E(B|y), E(¢|y), and E(kily) = p(k; = 1|y) are used to estimate

the regression function and the autoregressive parameters;

B BBy, k), k), pr,9),

x| -
[\/Jw

x
1l
—

1p[kl

x| =
M=

¥

x
Il
—

-~

Ki

k .
—1l¢[¢1’ _[7¢];’AM,y), Z=1,...,S,

x
1]
—

x|~
[V]x

The estimates 3 and & are called mixture estimates as they are based on the conditional
distributions of 8 and x. The estimate 1) is called an empirical estimate as it is based on the
raw iterates 1%, The regression function is estimated by plugging £ into (2.2). The estimate

6 of the autoregressive parameter 6 is obtained from P.




4 Univariate nonparametric regression

4.1 Independent variable not time

In this section we show by simulation that taking account of the autocorrelation in the errors
can give substantially more accurate nonparametric estimates than those obtained if the
autocorrelation is ignored. Previous simulation studies by Diggle and Hutchinson (1989) and
Altman (1990) deal only with the univariate case where time is the independent variable.
They show that if the errors are treated as independent then any autocorrelation in the
errors is incorporated into the nonparametric estimate of the regression function and can
result in a very rough estimate. What is insufficiently discussed in the. literature is that,
even if the independent variable is not time, modelling the autocorrelation in the errors
gives more efficient nonparametric estimates as it reduces the effective error variance. This
is illustrated by the following example. Consider the model (2.1) with u; the first order
stationary Gaussian autoregressive process u; = ¢u¢—1 + e;, with e; independent N (0,0?)

and ¢ known. Then, var(u;) = 02/(1 — ¢?). Equation (2.1) can be written as

Yt = dye—1 + f(z¢) — &f (T4-1) + e

which is an additive regression with error variance equal to o?. This shows that ignoring the
structure in the errors increases the error variance by a factor of 1/(1 — ¢2) which is large for

¢ close to 1.

This gain in efficiency is illustrated by simulation. One hundred observations were gen-

erated from the model (2.1) for each of the three functions
fi(z) = 2z—1, fo(x) =sin(107z), and f3(z) = {¢(z;0.15,0.05)+¢(z;0.6,0.2)}/4; (4.1)

¢(z; p,0) is the Gauésian density, with mean g and standard deviation o, evaluated at . The
independent variable z; was generated uniformly on (0,1), and the errors u; were generated
from the second order autoregression u; = 0.9u;—; — 0.9u;—o + e;, with e; ~ N(0, 0.52).

This was replicated one hundred times, and for each function and each replication three

10




nonparametric Bayesian estimators of the regression function were computed. The first
estimator fits a second order autoregression to the errors with x; and x fixed at 1 and s = 2.
That is, the error structure is assumed to be known except for the values of the parameters
61,02, and 2. The second estimator fits an autoregression of order s = 6 to the errors
and selects the significant partial autocorrelations. The third estimator treats the errors as

independent.

For all three estimators the knots are selected to follow the density of the independent
variable, with one knot every fifth observation of the ranked predictor. Extensive simulations
by the authors, some of which appear in Smith and Kohn (1996a), indicate that such a

scattering of potential knot sites is more than adequate to capture all but the most oscillatory

function. Each replicate for each function and each estimate consisted of 500 iterations with

the first 100 iterations discarded to ensure convergence.

The numerical criterion we use for judging the quality of an estimate f (z) of an unknown
function f(z) is the integrated squared error (ISE)-the integral of {f(z) — f(z)}? over the
domain of f(z). We approximate this integral by taking a grid of 400 equally spaced points
z; =1/400,7 = 1,...,400, and compute the ISE as

1 400 A
ISE=—3 {f(z) - f(z)}*.

400 =

Figure 1 presents the boxplots of log, (ISE) for the three estimators and shows the substantial
loss in efficiency when the autocorrelation in the errors is ignored. This is because the
standard deviation of u; is 2.6 times the standard deviation of e;. The plots also show that
- the second estimator, which does not assume that the order of the autoregression is known,

performs almost as well as the first estimator which assumes that the order is known.

To visually assess the performance of the full estimator (that is, where the autoregressive
order is also estimated), we sorted the ISE scores from highest to lowest. We selected
the 10th, 51st, and 90th highest scores as examples of poor, median and good fits for each
of the three functions. These estimates, the actual function and the corresponding data

are plotted in Figure 2. Also plotted is the nonparametric estimate which assumes that

11




the errors are independent. The plots confirm that when autocorrelation in the errors is
ignored the function estimates are very poor, whereas the estimate that takes account of the

autocorrelation performs well.

To ensure that 100 iterations suffice to ensure convergence, the output of a number of
individual runs was studied. Convergence, as measured by the value of the iterates of the
posterior density p(y!¥], sl¥], [k, gl¥l|y) consistently occurred within two dozen iterations,
with the same estimates of the function obtained using a number of different starting values.
In addition, the plots in Figure 2 show thé high quality of the fits obtained for the second
estimator. If the schemes had not converged to the correct joint posterior distribution these
plots would either be highly biased (when important knots are omitted) or have a high

variance (when redundant knots are retained).

4.2 Time as the independent variable

Much of the literature on nonparametric regression with autocorrelated errors deals ex-
clusively with the univariate case with time as the independent variable, e.g. Diggle and
Hutchinson (1989), Altman (1990), Hart (1991, 1994), and Kohn, Ansley, and Wong (1994).
We therefore study by simulation the performance of the Bayesian regression spline esti-
mator for this case. For comparison, we also look at the smoothing spline estimators in
Kohn, Ansley and Wong (1992) and the kernel approach by Hart (1994). Kohn, Ansley,
and Wong (1992) estimate the smoothing parameter and the autoregressive parameters by
two methods, marginal likelihood and generalised cross-validation. Hart (1994) estimates the
bandwidth by what he calls time series cross validation. We refer the reader to Kohn, Ansley

and Wong (1992), and Hart (1994) for a description of their methods.

One hundred observations were generated from the model (2.1) using the following three
functions: the first function is fi(z) = 32z%(1 — z)? which is used by Hart (1991) in his

simulations; the other two functions fo(z) and f3(z) are described in (4.1). The independent

variable was set to be z; = ¢/100,¢ = 1,...,100. The error u; is the first order autoregression

12




us = 0.5u;_; + e;, with e; independent N(0,02). For each function, o takes three values
corresponding to the standard deviation of e; being one eighth, one quarter, and one half
the range of the function. These three values for the standard deviation of e; represent low,

medium, and high noise examples.

One hundred replications were run for the four estimators, the three functions and the
three noise levels and the performance of the estimators compared using ISE. To ensure
a fair comparison all four estimators had the order of the autocorrelation fixed to the true
value, so that in the Bayesian case k; = 1 and k; = 0 for ¢ > 1. Figure 3 presents boxplots
of log(ISE) and shows that the Bayesian regression spline estimator compares favourably to
the other estimators over all three functions and all three noise levels. It ‘breaks down’ (that
is, confuses the function estimate with the autoregressive process) far less frequently than

the other three estimators.

In particular, the regression spline estimator performs much better for the function f3.
This function has differing curvature over the domain of z and requires an estimator with a
degree of ‘local adaptability’, such as a variable bandwidth smoother. The smoothing spline
and the kernel based estimators are single bandwidth smoothers and therefore are not locally
adaptive in nature and perform poorly. This is illustrated in Figure 4 which plots, for each
estimator, the function estimate corresponding to the 51st worst value of the ISE together
with the corresponding data set. The plots are for the low noise case. The plot shows that the
regression spline produces a relatively unbiased and smooth estimate for the entire function,
despite the fact that the curvature is much greater on the left side than the right side of the

domain of z. The estimate of 6; is 0.646, close to the true value of 6; = 0.5.

The smoothing spline estimate using generalised cross-validation uses the same band-
width throughout. This value is too small for the function on the right hand side of the =
domain and results in under-smoothing of the function. The estimate of 6, is poor, with
91 = —0.076, because much of the autocorrelation process is identified as function curvature

and incorporated into the function estimate. The smoothing spline estimate using marginal

likelihood grossly over-smoothes as it incorporates the entire shape of the curve into the

13




autocorrelation process with the estimate §; = 0.942. Hart’s estimate tends to interpolate

the data by taking too small a bandwidth. The estimate of #; is a non-stationary -3.45,
while the bandwidth estimate is 0.1, which is the minimum allowed. This simulation un-
derscores the need for both the autocorrelation process and the underlying function to be
considered simultaneously. If one is incorrectly identified then the other is also likely to be

poorly estimated.

4.3 Smoothing issues

In some sense, the choice of ¢ = 100 in the prior for 8, found at assumption A3 is arbitrary.
However, we would like to stress that in the nonparametric application examined in this
paper, it is not interpretable as a traditional smoothing parameter analogous to that of
smoothing splines or kernel smoothers. For example, notice that ¢ = 100 was an appropriate
value for the four very different functional forms found in the simulations of sections 4.1 and

4.2. Tt is also appropriate for the two multivariate data examples examined later in section 5.

To demonstrate the high degree of insensitivity of the procedure to even quite large
alterations in the value of ¢ we conducted a small simulation experiment. Again, ISE was
used as a performance measure and the design was the same as used in Section 4.1 with
AR(2) errors where the order is known a priori. The functions fi, f2 and f3, three levels of
0,1/8,1/4 and 1/2 and three levels of ¢, ¢ = 100,500, and 1000 were considered. As before,
a regression spline as described in Section 4.1 was fit. The results are plotted in Figure 5
which present the log,(ISE) averaged over 50 replications for each of the functions, for the

three levels of ¢ and the three levels of o.

The plots illustrate that the performance of the regression spline is relatively insensitive

for a range of values of c. This is true regardless of function type and signal to noise ratio.




4.4 Related Work

Engle et. al. (1986) and Harvey and Koopman (1993) are two of the very few papers that
discuss nonparametric regression when the errors are autocorrelated, but the independent
variable is not in time order. Both papers only consider a first order autoregressive process
for the errors, but do not estimate the autoregressive parameter simultaneously with the
unknown function. The results in Section 4.1 show that, in general, substantially better

function estimates are obtained if the estimation is simultaneous.

To make the computation tractable, Engle et. al. (1986) use a discretised version of spline
smoothing by dividing the range of the independent variable into subintervals and assume
the regression function is constant in each subinterval. They do not obtain a data driven

subdivision of the range of the independent variable.

Harvey and Koopman (1993) use regression splines to estimate the unknown function
assuming that the errors are independent. The autoregressive parameter is then estimated
from the residuals. Harvey and Koopman do not have a data driven approach for determining

the position of the knots of the regression spline.

Chib and Greenberg (1994) use the Gibbs sampler to provide a Bayesian analysis of a

regression model with autoregressive-moving-average errors. They do not carry out model

selection for either the regression variables or the autoregressive moving average parameters.

5 Additive semiparametric regression

5.1 Introduction

Consider the following additive regression model with independent variables z and z,

ye = f(z0) + 9(z) + e (5.1)




When the errors u; are independent, the backfitting algorithm described by Hastie and Tib-
shirani (1990, p. 90) is a popular approach for estimating f and g. Starting from some initial
estimate of g, the backfitting algorithm iteratively estimates f given g and then g given f un-
til convergence is achieved. Any univariate smoothers can be used to carry out the iteration.
Hastie and Tibshirani (1990, p. 122) show that the backfitting algorithm converges for a class
of smoothers including spline smoothers; no proof is yet available for kernel based smoothers

or supersmoother which is used by the ACE algorithm of Breiman and Friedman (1985).

However, at present no backfitting algorithm exists for an additive model with auto-

correlated errors and the following example suggests that it will be difficult to obtain one.

Consider (5.1) with u; generated by the first order autoregression u; = ¢us—; + e, with ¢

known. Equation (5.1) is equivalent to

Yt — Pye—1 = (1) + 9(z) — ¢f (ze-1) — bg(2t-1) + €. (5.2)

Let v; = 241, wy = zi—1, f1(x) = f(z), and g1(z) = g(2). Then (5.2) can be written as

Yo — dyr—1 = f(ze) + g(2t) — ¢f1(ve) — dg1(we) +ee. (5.3)

By treating f, g, f1 and g; as four separate functions the backfitting algorithm can be applied
to (5.3) to give estimators of f and g. However, in empirical work using smoothing splines
we have found this approach often gives poor estimators of f and g as the constraints f = f;
and g = g, are not enforced. Moreover, it seems difficult to enforce the constraints. A second
shortcoming of using backfitting, even in the independent error case, is that it seems difficult
to obtain high quality estimates of the smoothing parameters involved. Usually the estimates
of the smoothing parameters are chosen as functions of the independent variables, but not
the dependent variable and hence cannot adequately take account of any curvature in the

unknown functions.

By contrast, it is straightforward to extend the regression spline approach to handle
an additive nonparametric regression model. Each nonlinear component is modelled as a
regression spline, but where only a single global intercept is included in the model. This

gives rise to a linear regression model in which the knots are chosen by subset selection in
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the same manner as in the univariate case.

5.2 Electricity consumption data

As an illustrative example we apply the methodology to the residential electricity data in
Harris and Liu (1993). The data consists of 264 consecutive observations of monthly electric-
ity consumption (y) and the following four independent variables: number of heating degree
days (z), number of cooling degree days (z2), average real electricity price (z3) and real
disposable income (z4). Plots of the variables are given by Harris and Liu, along with a

detailed explanation of the data. '

We model the data as the additive nonparametric regression
yer = a+ D(t) + fi(zu) + fa(z2e) + fa(zse) + fa(zar) + e (5.4)

Here, « is the intercept and D(t) is a trend. Each of the functions D(t), fi(z1t),-- -, fa(zat)
is modelled as a regression spline with zero intercept and with a potential knot site every
fifteenth observation of the ranked independent variable. Fewer potential knot sites are used
for each function in the multivariate case than in the univariate case to prevent the matrix
X Q0 !X, becoming singular or nearly singular. Nevertheless, the number of knots used

appears more than sufficient to capture any potential nonlinearity in the functions.

To allow for seasonality, the errors u; are modelled as an autoregression with maximum
order s = 20; the descending prior for the indicator variables k; is given in Section 2.1.
Alternatively, to capture the seasonality, the errors u; could be modelled as a multiplicative
autoregressive model containing both seasonal and non-seasonal terms as in Barnett et. al.

(1996a).

To obtain additivity of the regression function and normality of the intrinsic errors e, a
normalised power transformation of the dependent variable is used as outlined in Section 2.3;

ie. ya = ay + byTa(y) with Th(y) = y>* and with A restricted to the nine values A =

{-2,-1.5,-1,-0.5,0,0.5,1,1.5,2}. Inclusion of a trend term was suggested by looking at
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the residuals of the nonparametric fit of the model at (5.4) with the trend term omitted; see
also Figure 7(b) for a plot of the original data.

The Bayesian approach was applied with a warmup period of 200 iterations and a further
100 iterations were used to estimate the posterior distribution of A\. The posterior probability
of A = 0 was 0.99 so the normalised logarithmic transformation was selected. Using this
transformation of the dependent variable, the sampler was then run for a further 400 iterations

to estimate the regression function and the autoregressive parameters.

Estimates of p(k; = 1|y) and E(6;]y) are given in Table 1 and suggest that u; is a twelfth
order autoregression, which is consistent with monthly data. The estimate of the intercept
& = 0.4209 while the estimates of f1,..., fs are plotted in Figures 6(a)-6(d). These suggest
log(y) is linear in heating degree days and cooling degree days, but nonlinear in real electricity
price and real disposable income. They also suggest that the two environmental predictors
explain more of the variability in the dependent variable than the financial variables because
f1 and f, both have a greater range than either f3 or f4. The estimate of the time trend
D(t) is plotted in Figure 7(a) and is consistent with the plot of the dependent variable in
Figure 7(b).

To explain the scatter plots in Figures 6(a)-6(d) and 7(a) we need some additional no-
tation. For t = 1,...,n, let & = u; — E(uguy,...,us—1), 0°Ry = var(&) and ¢ = &/VR:.
Then (; is independent N(0,02) and {; = e; for t > s + 1. Let £, and R; be the estimates of
& and R; based on the estimate of 1. If the fitted model is correct then ft = ét/ \/f?t is ap-
proximately N(0,0?) and independent. The scatter plot in Figure 6(a) is fi(z1e) +; against
z1¢ and suggests that the effect of z;; on log(y;) is captured correctly. The scatter plots
in Figures 6(b)-6(d) and Figure 7(a) are interpreted similarly and suggest that the effects
of zo¢, T3¢, T4¢ and the time trend are also estimated correctly. Figure 6(e) is a plot of the
sample autocorrelations of {; and Figure 6(f) is a normal probability plot of (;. These plots

indicate that (; is independent and normal and thus validate the regression assumptions.

Figure 7(b) is a time plot of the dependent variable and the Bayesian fit showing that




the fitted values exp{(§, 5 — a;)/bs} track the data well on the original scale. Figure 7(c)

plots the logarithm of the posterior density log p('y[k], ikl klk] gkl )\[klly), (up to an additive

constant), for the first 200 iterations and suggests that the sampler converges quickly.

5.3 Toothpaste data

As a second example we consider the toothpaste data previously analysed by Wichern and
Jones (1977). This data includes the market share and price of both Crest and Colgate over
276 consecutive weeks during the years 1958-1963. During that period the American Dental
Association (ADA) publicly endorsed Crest between weeks 135 and 136. This intervention
is modelled by the dummy variable X; = 1 if ¢ > 135 and X; = 0 otherwise. We model
the market share of Crest in terms of X; and P, = price of Colgate /price of Crest at time
t. Because the market share of Crest is a fraction in the interval (0,1) we transform the
dependent variable to help ensure that the regression assumption are satisfied. Nine candidate
transformations Th(y),A = 1,...,9, are considered and listed in Table 2 together with the
normalisation constants a) and by which ensure that the median and the interquartile range

are similar for each transformation. Thus the model we attempt to estimate is
yea = a1(l — X;) + a2 Xy + f(B) +ue,

with y; » the transformed market share of Crest, and a; and a» are the pre-endorsement and
the post-endorsement intercepts. The errors u; are modelled as a stationary autoregressive
process of maximum order s = 8. The function f(F;) is modelled as a regression spline
without intercept and with potential knot sites placed every fifteenth value of the ranked

independent variable P;.

The sampling scheme in Section 3.1 was run for a warmup period of 100 iterations with
a further 100 iterations used to estimate )\ and a final 400 iterations to estimate oy, ag, f, K
and 6. Sequence plots of the parameter values and posterior probability indicate that the
sampling scheme converged within a handful of iterations in the same way as occurred with

the fit to the residential electricity data. Table 2 presents the estimate of the marginal

19




posterior distribution of A and shows that the mode occurs for T(y:) = ®~%(y?!), where
®(-) is the standard normal cdf. The rest of the estimates were calculated conditional on A

as outlined in Section 3.2.

The estimate of E(xly) is p(x = 1ly) = (1,1,0.886,0.361,0.149,0.041,0.014,0.104), sug-

gesting that either an AR(3) or an AR(4) model for the errors is adequate. The estimates of
a; and oy are (&, 42) = (0.3063,0.5113), while the estimate of 6 is

6 = (0.2722,0.2133,0.1655,0.0524, 0.0233, 0.0030, —0.0013, 0.0006).

Figure 8(a) is a plot of the estimated curve f(P,) together with the added residual scatter
plot ¢, + f(P,), where (; is defined in Section 5.2. From this plot, we conclude that g is
roughly linear in P, and that P, is a relatively insignificant determinant of the market share

of Crest.

The Figure 8(b) is a time plot of the fitted values [®{(g, 5 — a;) /as}!° and the actual
observations on the original scale. The fitted values appear to track the data well and capture
the discontinuity of the intervention, suggesting that the model provides a good fit to the
data. Figure 9(a) is a plot of the autocorrelations of ¢; and Figure 9(b) is a normal probability
plot of ;. These plots suggest that the errors u; are stationary and normally distributed and

follow a fourth order autoregressive process.

6 Summary

A Bayesian approach is proposed for nonparametric regression with autocorrelated errors.
This approach compares favourably with other nonparametric approaches in the univariate
case with time as the independent variable. More importantly, the procedure works well
when the independent variable is not time and is also capable of handling a more general
additive nonparametric regression model. It seems difficult to do so with other approaches to
nonparametric regression. Furthermore, it should be straightforward to adapt the Bayesian

approach to handle nonparametric regression with other correlated error structures.
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Appendix Implementation of the sampler

This appendix outlines how to implement the sampling scheme in Section 3.1. Let

- Cc - - - -
SN = 95— Tt Xy (X051 X)X

C - - -
By = m(xi,ad,lx.,) LX105 Y,

let ¢, be the number of elements of §,, and let J) be the absolute value of the determinant

of the Jacobian matrix for the transformation y — yx. From the assumptions in Section 2,(
PY1Bys 7,1, 0%, Np(By 19,7, 02)p(0?) o (2) ~(F a2 (o) =t and/2=teman 2 X QUL X |12 7,

xexp { ~55lS(1, ) + Tz By = B X005 X8, - B} (A)

Generating £,

P(By, 21y, 7,1, X) < P(Y|By 75 %, 0%, Np(By |9, 7, 0%)p(0?).
Integrating o2 out of (A.1) and (A.2) using an inverse gamma integral,

(By — By) X505 X, (By — By)

c ~ }—(n+q7)/2

p(ﬁ7|ya7a¢”\) (S8 v{S('y"l»b, /\) + 1+C

That is, the conditional distribution of 3, is multivariate ¢ with degrees of freedom n, which
is centred at ﬁ., and has scale matrix (X;Q;lX.,)‘lcS('y, %, A)/n(l + ¢); for n large, this

conditional distribution is effectively multivariate normal.

Generating 1; and k; These variables are generated as a block with o? integrated out.

Note that
P(Wis Kily, By, Yo Pizir A) o (Wi, Kilu, i) -
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We sketch out the necessary steps to generate 1;, k;; the details are in Barnett et. al. (1996a).

p(Wi, ki = 1,02 u, i) o< plulth, ki = 1,0%)p(ilk; = 1)p(o?)

1 n _ _
o 5pls = 1(E®) R exp(—' Q5 u/2).

Integrating 0% out using an inverse gamma integral,
1 - —1 \—
p(iy i = 1u, i) o 5p(ki = 1)y V2 (4 u)~/2

The binary variable ; is generated first without conditioning on ;. To integrate out v; we

proceed as follows. Let & and R; be defined as in Section 5.2. Then,

n
uQlu=> &/Re,
t=1

the & are independent and, for ¢t > s, §& = up — G1ug—1... — Osu;—s and R; = 1. Barnett
et. al. (1996a) show that, for t > s, & is linear in ; so it is possible to write Y7 . & =
A(; — B)2 + C, with A, B and C independent of 9;, A and C positive, and all three terms
computed as in Barnett et. al. (1995). Let D(;) = ¢y ¢2/C. Then D << 1 as its

numerator is the sum of s terms whereas its denominator is the sum of n — s terms. Thus,
(W' w) ™2 = C2{1 + Ay — B)?/CY ™ = O™ exp{—nA(y: — B)*/2C}.

Let g(sh;) = ||~ /> {D+1+A(3;—B)?/C}/*(C[nA)/*¢(¢s; B, C/nA) ", where ¢(z, 1, 0?)

is the normal density evaluated at z with mean p and variance o?. Then,

1
p(si = 1 Y5z o gplsi = 1) [ o), B,C/mA)ds. (A3

The integral in (A.3) is readily evaluated by approximating log g(3:) by a quadratic in each
of the intervals B + (j — 1)(C/nA)}2/2, B + j(C/nA)Y/?/2, j = —7,...,8. Similarly,

(i = Olu, hjzs) o p(si = 0)|Qy|"V2{D + 1+ A(y; — B)?/C} /2, (A4)

with (A.4) evaluated at 1; = 0. The conditional probability of x; is obtained by normalising
(A.3) and (A.4). Once k; is generated, ¢; = 0 if k; = 0. If ; = 1, we generate ; from
q(v¥;) = ¢(¢i, B,c/nA) and use a Metropolis-Hastings step. .
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Generating -;

p(’Yia ,B’y, 02, A‘ya Yi#is d") 1S p(yIIB’Ya Y5 ¢, 027 A)p(ﬁ'yl'l,b, 77 az)p(az)p()‘)p(wl) . (AS)

Integrating 3, out of (A.1) and (A.5) using a normal integral, then integrating o2 out using

an inverse gamma integral, and finally summing over A € A, we obtain

P(wlys Yizir®) < 3 Jap(N) (1 + €)"4/28 (v, 9, A) /2 (A.6)
A€EA

The conditional density of v; is obtained by evaluating (A.6) for 4; = 0 and 1, and normalising.

Generating A

P\, 7, %) o p(yly %, Mp(A) o< S(1, %, 2) ™2 Dp(N) (A.7)
The posterior probability of A is obtained by evaluating (A.7) for all A € A and normalising.

We conclude by showing how to efficiently compute y}Q; Iy,\,yﬁ\ﬂ;/; 1X»,,X,’YQ,Z 'X,, and
|Q2|. As in Monahan (1984), for t =1,...,s,

€ =u —Oupmy — - —Ope—qug and Ry={(1—¢f)---(1— P}t (A.8)

Let M be a lower triangular matrix with ones on the diagonal; for t = 1,...,s, My;_; =
-0 ,7=1,...,t =1;fort > s, Myy—j = —0,5=1,...,s,and M j =0 for j >s. Thus M
is a lower triangular band matrix with bandwidth at most s. From (A.8) and the definition
of {; and Ry, Mu = §, MQyuM' = R, where R is a diagonal matrix with ¢th diagonal element
Ry. Let j = Myy, X = MX,; then, 4} vs = #'R714, 0405 X, = #R7IX, X101 X, =
X'R'X, and |Qy| = [T, R '
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Figure 1: Boxplots of log(ISE) for each of the three test functions and the three estimators.
The left, middle and right panels correspond to fi, fo and f3. In each panel the boxplot on
the left corresponds to the estimator which assumes that the order of the autoregression is

known to be 2, the middle boxplot corresponds to the estimator which does not assume that

the order of the é.utoregression is known, and the right boxplot corresponds to the estimator

which takes the errors to be independent.
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R 0; 3 ; 0; 1 i 0; 1| Ry
1 0.398 0.011 || 11 0.158 | 16 | 0.055
0.992 | -0.094 -0.131 || 12 0.544 | 17 | 0.047
0.232 | 0.003 0.206 || 13 | 0.171 | -0.024 || 18 | 0.055
0.202 | -0.058 -0.126 || 14 | 0.071 | -0.002 || 19 | 0.053 | O

0.117 | 0.062 0.013 || 15| 0.059 | 0.002 | 20 | 0.082 | -0.009

Table 1: Estimates of p(k; = 1|y) (%;) and ¢ for the residential electricity data.

Tx(y) ax b p(Aly)
d~1(y%1) -0.4061 | 0.5809 | 0.5016
&—1(y0%) -0.0039 | 0.4656 | 0.2363
&—1(y%%) 0.2498 | 0.3814 | 0.1097
o~1(y075) 0.3756 | 0.3348 | 0.0655
d1(y) 0.4544 | 0.3033 | 0.0444
®~1(y!?) 0.5510 | 0.2618 | 0.0253
d~1(y?) 0.6095 | 0.2345 | 0.0170
log(%) 0.4434 | 0.1763 | 0.0001
log(— log(1 —y)) | 0.5007 | 0.2014 | 0

olo|lvloalalnlw |- ]|>

Table 2: Candidate transformations T)(y), normalising constants a) and by, and the pos-
terior probability estimate of each transformation p(MA|y) for the toothpaste data. @ is the

cumulative distribution function of the standard normal.
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Figure 2: Plots of f1, f2 and f3 (dotted line) together with estimate based on unknown order

of the autoregression (solid line) and independent errors (dashed line). For each function, the

left, middle and the right panels correspond to the 10th, 51st and 90th worst fits as judged
by ISE.
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Figure 3: Boxplots of log(ISE) for each of the three test functions, three different noise
levels and four different estimators. The bottom three panels correspond to low noise, the
middle three to medium noise, and the top three to high noise. In each panel, the estimators
from left to right are: regression spline, smoothing spline using generalised cross-validation,

smoothing spline using marginal likelihood and Hart’s estimate.
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Figure 4: Plot of the estimate of f3 corresponding to the median fit as judged by ISE
together with the corresponding data set. The independent variable is in time order, the
errors are a first order autoregression, and the noise level is low. Panels (a)-(d) correspond
respectively to the regression spline estimate, the smoothing spline estimate using generalised

cross-validation, smoothing spline estimate using marginal likelihood and Hart’s estimate.
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Figure 5: log,(ISE) (vertical axes) for each of the three functions averaged over 50 replica-

tions. In each panel the bold line represents the results when ¢ = 100, the dotted line ¢ = 500

and the dashed line ¢ = 1000. The horizontal axis is o divided by the range of the function
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Figure 6: Parts (a)-(d). Plots of the function estimates fi(z1e)y- s fa(z4t) (solid line) to-

gether with the added residual scatter plots f (z1¢) + (}, ceey f (z4t) + ft. (e) Autocorrelations

of ¢;. (f) Normal probability plot of (.
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Figure 7: (a) Plot of the trend estimate D(t) (solid line) together with the added residual plot

D(t) + ¢;. (b) Residential electricity consumption over time (scatter plot) together with the
fitted values (solid line). (c) Trace of the log posterior density log p('y[k], xlFl gkl A[k) 1/;[k]]y)

(up to an additive constant) for the first 200 iterations of the sampler.
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Figure 8: (a) Plot of f(P;) (solid line) and the added residual scatter plot f(P,) against P;.
(b) Crest market share (scatter plot) and the fitted values on the original scale (plotted as a

solid line) from the model estimate.
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Figure 9: Crest data. (a) plot of the sample autocorrelation function of ;. (b) Normal

probability plot of ¢;.







