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Abstract

This paper is concerned with model selection based on penalized maximized log likelihood

functions. Its main emphasis is on how these penalties might be chosen in small samples to

give good statistical properties. We explore how some of the more successful principles and

practices in hypothesis testing can be used to improve the properties of these model selection

procedures. This leads to choosing the penalties in order to control probabilities of different

models being selected. Various ways this can be achieved using simulation methods are

discussed and a computer algorithm is outlined. Some illustrative Monte Carlo simulations

are also reported.

Keywords: Common models; information criteria; Monte Carlo methods; Neyman-Pearson

lemma; penalty functions.

1 Introduction

Often in econometrics we are forced to use data to make a choice between a number of compet-

ing alternative models. Obvious examples include deciding which regressors (and often lagged

regressors) to include in a linear regression, the appropriate order of an ARMA model, and what

This research was supported by an Australian Research Council grant. This paper was presented at the 1995

World Congress of the Econometrics Society, Tokyo.
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lags to include in a vector autoregressive model. In general, a range of models is considered plau-

sible and a decision is made based on how well each of the models appears to fit the observed

data. Consequently model selection procedures have an important role to play in econometric

modeling.

A number of different approaches to the model selection problem have been considered in

the literature. One approach is the use of a series of pairwise hypotheses tests. While this

approach is very common in practice, it has a number of limitations. In each step one model

has to be chosen as the null hypothesis and, if the power of the test is low, this model is unfairly

favored. On the other hand, if there is a lot of data and the power of the test is very high,

this could disadvantage the null hypothesis model. Typically tests are constructed to make the

probability of a type I error constant over the null hypothesis parameter space. It is not clear this

is a desirable property when non-nested hypotheses are involved. (See King (1983, 1987) and

Granger, King and White (1995).) There are also pre-testing biases that come into play when

a series of tests is employed. (See King and Giles (1984) and Giles and Giles (1993).) Finally,

different investigators working on the same data could easily end up with different selections

purely because they performed their series of tests in different orders or used different levels of

significance.

The classical hypothesis testing approach does help provide a solution to the very special

case of choosing between two simple models. Here the Neyman-Pearson lemma tells us that

the likelihood ratio is the most powerful statistic for discriminating between the two models.

There is of course the question of what critical value should be used. While classical hypothesis

testing suggests controlling the probability of a Type I error, model selection would seem to

require finding a critical value that does not favor one model over the other. The familiar

likelihood ratio statistic is a natural generalization of this approach to two models with unknown

parameters, although again there remains the issue of choosing the critical value. Unfortunately

the generalization to more than two simple models is much less obvious for model selection,

although one might expect it to at least involve likelihood ratio statistics in some way. While

there are well developed principles put forward in the hypothesis testing literature, such as the

use of invariance, fewer guidelines are available for the model selection problem.

Interestingly, probably the most widely used method of model selection is the use of an
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information criterion (IC) based on minus the maximized log-likelihood function plus a penalty

term. Potscher (1991) pointed out that minimizing such an IC amounts to testing each model

against all other models by means of a standard likelihood ratio test and selecting that model

which is accepted against all other models; the critical values being determined by the penalty

function. Not surprisingly there is little agreement about what the form of the penalty function

should be. The aim of this paper is to explore how some of the more successful principles and

practices in hypothesis testing might be used to solve the penalty function dilemma.

In the past, asymptotic arguments have been used to justify various choices of penalty

functions. This may not always be satisfactory in small samples. For example, Grose and King

(1994) have found that in some circumstances the form of the likelihood functions can have a

greater influence than the data in determining which model is chosen. This suggests that a small

sample approach is needed to better control the probabilities of correct selection. In looking

to the hypothesis testing literature for solutions, it is obvious that there are other areas that

can be improved. These include the treatment of nuisance parameters and making good use of

parameter restrictions. For example, much has been written about one-sided hypothesis testing

(for a recent survey, see Wu and King (1994)), but almost nothing has been written on making

good use of such information in the model selection context.

The plan of the paper is as follows. Some of the issues of small sample model selection

procedures are discussed in Section 2 along with a suggested method for determining a new

procedure. Section 3 considers in detail how penalties might be calculated in order to control

probabilities of selection. The penalties may be based on somewhat objective criteria, or more

subjective considerations. An algorithm for calculating penalties based on the above ideas using

Monte Carlo techniques is outlined in Section 4. A Monte Carlo comparison of the small sample

performance of the suggested procedures along with that of AIC and BIC in a simple regression

setting and in choosing the order of an ARMA model are presented in Section 5. The final

section contains some concluding remarks.



2 Small sample issues

In order to explore the relevant model selection issues, we consider first the elementary case of

choosing between two simple models. Let G1 and G2 be probability distributions possessing

densities with respect to a common measure fi denoted g1 and g2 respectively, and let x =

{x1, . xn} denote an observed sample of size n. Here G1 and G2 correspond to two distinct

model choices. The Neyman-Pearson fundamental lemma states that the most powerful test of

G1 against G2 rejects G1 in favor of G2 only if

ln gi(x) — ln g2(x) <p, (1)

where the critical value p is selected so that

PG, (reject G1) = a, (2)

for some prespecified (and typically small) level a. Here PG(E) denotes the probability of event

E under the distribution G. For hypothesis testing, controlling the probability of incorrectly

rejecting the null hypothesis, in this case G1, takes priority over controlling the probability of

incorrectly concluding G1. In fact, the probability of choosing G2 may be very low, as is typically

the case with very small samples. However, this test is still used because it is the best that can

be done among all tests with fixed level a.

From a hypothesis testing point of view this favoring of the null hypothesis may have some

justification. However, from a model selection point of view this does not seem to be desirable,

particularly in this simple problem. Rather, the main objective of a good model selection

procedure should be to make the correct decision as often as possible, without unnecessarily

favoring one model over another. One way to achieve this objective is to choose p so that

or equivalently,

PG2 On 91(X) in 92(X) <p) = PGiOn 91(X) in 92(X) 13)7 (3)

PG2 (choose G2) = PGi(choose G1)• (4)

It is likely that for small sample sizes these probabilities are small, and that their value will

increase with n. In addition, it is likely that the value of p itself will depend on the sample size.
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Indeed it seems valuable to be able to calculate how 'powerful' a given model selection procedure

is for a particular sample size.

We have identified some of the important issues in the specific case of comparing two simple

models. In most model selection problems, however, not only are there more than two distribu-

tions under consideration, but also each distribution is often indexed by an unknown parameter.

For the case where there are more than two models under consideration and none depend on an

unknown parameter vector, we can easily generalize the above. Consider probability distribu-

tions Gi, , Gm, where m> 2, with density functions with respect to some dominating measure

it, denoted gi, ,g, respectively. An obvious generalization of the simple versus simple model

selection procedure is to choose model Gi only if

ln g2(x) — pi > ln gi(x) — pj for all j i. (5)

As only m — 1 critical values, or penalty functions, pi are required, we can set pi = 0 and

determine the m — 1 remaining pi values from the added condition

where

PG1 (choose GO = PG2 (choose G2) = = PGra (choose Gm) (6)

PG (choose Gi) = PG (ln gi(x) — pi > ln gj(x) — pi for all j i). (7)

The difficulty lies in generalizing this notion further to the case where the models depend on

unknown parameters. A natural generalization of the difference of logs of density functions as in

(5) is the log of the likelihood ratio statistic. We begin with some notation and definitions. The

general model selection problem consists of choosing between models , Mm, corresponding

to probability distributions G1[01], , Gm[Oni]. Here Oi E 0, represents an unknown parameter

vector, and typically Oi C 111,qi. Let Li(0i) : Oi a denote the log-likelihood function of model
Mi based on a sample of size n and let Li denote the value of the maximized log-likelihood

function for model Mi. That is,

Li = sup L2(0i). (8)
eiEei

Model selection procedures based on a comparison of log likelihood functions are typically

referred to as IC procedures in the literature. Most IC model selection procedures define a



penalty term for each model, denoted pi, and select the model with the largest value of Li — pi

(or equivalently the smallest —Li-I-pi value). Two well known examples of IC procedures are AIC,

where pi = qi and BIC, where. pi = qj in n. Both AIC and BIC heavily penalize models with a

large number of parameters. This is often advocated by asymptotic arguments and/or appealing

to the principle of parsimony. However, in the case where the models under consideration have

the same number of parameters, both AIC and BIC reduce to a comparison of log-likelihood

values alone as the penalty functions are all equal. As was detailed in Grose and King (1994),

the use of an IC in the simple case of comparing AR(1) versus MA(1) regression disturbances,

the probabilities of correctly choosing each model were far from equal, particularly for smaller

sample sizes. Our goal should be to choose pi, i = 2, ... , m, so as to control the probabilities

of correct selection but in such a way that no one model is favored unknowingly. The principle

issue then is exactly how this can be achieved.

Some econometricians feel uncomfortable using IC based model selection procedures because

they feel it can lead to data mining. This is the problem of having a very large number of

models to choose from and only a limited sample of data to make the choice. Consequently the

probability of the chosen model being the true model can be very small indeed. Deficiencies in

the chosen model typically come to light when the model is used for out of sample forecasting.

Another important issue is how to guard against, or reduce the problems of, data mining. The

hypothesis testing literature suggests that nonsample information, such as knowledge of the

signs of unknown parameters, should be used wherever possible with the aim of increasing the

probability of correct choice.

There is a rich literature on one-sided and multivariate one-sided hypothesis testing but

almost nothing is written on one-sided model selection procedures. Hughes and King (1994)

have derived a multivariate one-sided (or partially one-sided) AIC procedure which involves

smaller penalties for inequality restricted parameters. Their simulation results suggest that

when one-sided information is known, using appropriate inequality constrained estimates in

place of the usual unrestricted estimates typically helps improve the small sample properties of

the IC procedures. However, there is a tendency to penalize too heavily for extra parameters,

hence the need to modify the penalty functions.

It would also be helpful if the number of parameters could be reduced. In most model
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selection problems there are at least some nuisance parameters in the sense that they appear

in each model and are therefore not in dispute. There is now a rich literature (see for example

Kalbfleish and Sprott (1970), Basu (1977), Cox and Reid (1987) and Tunnicliffe Wilson (1989))

on how to deal with these nuisance parameters. The main message is that nuisance parameters

can cause classical maximum likelihood estimators to be biased. Elimination of these nuisance

parameters through invariance or the use of marginal or other modified likelihood functions

does appear to result in improved small sample properties, particularly for asymptotic likelihood

based test procedures such as the likelihood ratio test. It seems obvious that such techniques

should be used to improve IC model selection procedures. There is one study that has taken up

this point. Grose and King (1994) have shown that replacing the classical likelihood function

with the marginal likelihood function, or equivalently the likelihood function of the maximal

invariant statistic, in their case of choosing between AR(1) and MA(1) regression disturbances,

results in better small sample properties.

Another way to guard against data mining would be to have a calculated measure that

reflects the level of confidence in the final selection. This may involve calculating probabilities

of correct selection, or conditional probabilities of correct selection given the choice made. It

would therefore be a bonus if such probabilities could easily be calculated as a part of the model

selection procedure.

On the positive side, the amount of computer power available to econometricians is con-

tinually increasing, and there is probably no reason to doubt that it will continue to increase

in the future. We can therefore ask questions such as 'What procedure would we like to use?'

rather than 'What procedure can we use given our current computing constraints?'. Simulation

methods provide a powerful tool for evaluating complex probabilities should they be required

for any procedure. In addition, simulation methods can be used to evaluate any model selection

procedure in any set of circumstances. Unfortunately, when any set of procedures is compared

empirically in this manner, usually there is no clear cut answer to the question of which is best.

This leads to the critical question of how we should evaluate and compare the small sample

performances of different model selection procedures.
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3 Controlling probabilities of correct selection

In this section we consider small sample based methods for choosing the penalty functions in an

IC model selection procedure so as to control the probabilities of selection. Based on the notation

introduced for the m model selection problem in Section 2, our aim is to provide methods for

determining pi, i = 2, ... , m. One can view these penalties as similar to m-1 critical values which

in hypothesis testing would be determined by probability equations. Hence, if probabilities of

selection are to be controlled, we need m — 1 equations to solve for our m — 1 unknowns. There

are many ways in which these equations could be defined. Some are outlined below.

Our first suggestion involves evaluating probabilities of selecting each of the models at the

same parameter point. This has the advantage that the probabilities must sum to one. Because

of this constraint, m — 1 equations can be found setting m — 1 such probabilities equal to

predetermined values. There is of course the question of which parameter point to use and

what the predetermined probabilities should be. One solution to the former question is to use

the so called 'minimal' or 'common' model. This occurs when the parameters under dispute

in each model are set to a constant (typically zero) and the same model always results. This

latter model is the minimal or common model at which we propose the probabilities of selection

should be controlled. In order to illustrate, consider the simple setting of choosing between m

regression models

Yt = Oixit 'nit)

M2 Yt = 0212t U2t)

uit I N (0, ol)

U2t f`-' I N (0 , a-3) (9)

Mm Yt = Omxmt umt, umt IN(0,orm2 ).

o-i] is a multivariate Normal distribution with a mean whose tth component is Oixit and

covariance matrix clin, where In is the n x n identity matrix. Notice that when all Or = 0.0 and

cr? = = crm2 = cr2, say, the different regression models Mi describe the same data generating

process (DGP). That is, under these conditions, all of models can be considered to be 'true'

simultaneously. Setting /31 = 0, we define the penalties p2, ,Pm according to

PGiv374( choose Mi) = (10)

•
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for i = 1, , m. It may seem that the nuisance parameter o-2 needs to be determined before

these probabilities can be calculated. Fortunately, because the problem of choosing between

M1, , MT?, is invariant to changes in the scale of yt, the probabilities in (10) are invariant

to the value of cr2 and hence can be calculated for any convenient value such as a2 = 1. In

the particular case of m = 2, p2 could be found using Imhof's (1961) algorithm, but this does

not generalize easily to wider classes of models. An obvious alternative is to use Monte Carlo

simulation, which has the advantage of being easily extended for m > 2 in nested problems as

well as many nonnested situations outside of this simple regression setting. What is required

is that all m models contain a common model. That is, there is some point in the parameter

space for each model, Oi = Of, where the different models can be considered to represent the

same D GP.

The other important consideration is what predetermined values should the probabilities of

selection under the common model be set to. In the example (9) above, the choice of 1/m does

seem sensible. This is because at the common model we are essentially indifferent between the

m models. They are either equally correct or equally incorrect, depending on one's viewpoint.

As one of the 13i values moves away from zero, we could expect the probability of choosing the i t h

model to increase (from 1/m) while the probabilities of choosing the jth model (j i) would be

expected to decline. Hence this choice of 1/m (and assuming our expectations are true) always

gives the correct model the highest probability of correct selection which is a highly desirable

property.

The difficulty with this approach comes when some alternative models are nested within

other models. For example, suppose m .= 3, M1 and M2 are as before, but now

M3 : Yt = Oisit 02x2t u3t, u3t IN(0, cr3). (11)

Then yt = uit is still the common model but we may no longer be indifferent between M1, M2

and M3. One might view M3 as "less correct" than M1 and M2 when the common model is

the true model. This problem can be overcome by setting the selection probabilities under the

common model to r/2 for models M1 and M2 and to 1 — r for model M3. It should be up to the

individual user to set r. We suggest a large probability for r in this setting such as r = 0.9. This

comes from considering the case in which the common model is one of the competing models.
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Then one might prefer a larger probability (such as 0.9) of choosing it when true.

Unfortunately the common model approach has a degree of arbitrariness when nested alter-

native models are involved which makes it less than attractive. Also there are settings in which

it is not possible to find a common model.

Another approach is to control probabilities of correct selection at representative fixed points

for each of the competing models. This has an element of the point optimal testing methodology

about it and results in m probabilities while only m — 1 equations are needed to determine the

penalty values P2,. ,Pm. An obvious solution is to find those penalty values such that the

probabilities of correct selection at the chosen parameter points are equal; the latter being

justified by the desire not to favor a particular model. Alternatively, certain models can be

favored explicitly if we choose p2, ,Pm by equating the appropriate predetermined proportions

of the probabilities of correct selection for each model at their chosen representative values.

The question then is how should the representative fixed points be chosen. One approach is

to leave this entirely to the user. One can view the choice of penalty values p2, ,p,„ as the

choice of a particular set of selection probabilities over the entire parameter spaces of each of

the models. Rather than choosing the largely unknown selection probabilities that come with

'brand name' penalties such as AIC or BIC, the user chooses the set of selection probabilities by

setting them at predetermined points. Here an important by-product is the actual probabilities

themselves which gives the user an important measure of the accuracy of the procedure.

Another approach to choosing the representative point Olt is to fix its value at some 'distance'

away from Of corresponding to the common model. For the above regression problem Of = (Of =

0.0, a?' = 1.0). It is well known that under model Mi, with parameter Oi = Of, that the least

squares estimator

oi=Exityt/E4tt=i t=i
has a Normal distribution with mean 0.0 and variance

One suggestion would be to set

(12)

var(f3i) = (E4t)-1. (13)
t=i

= Of + 3Vvar(f3i) (14)
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= Of + 3
t=1

and ar = 1.0, for i = 1, m. The penalty functions are again determined by solving

(15)

PGi[on( choose Mi) = PG.,[0;i( choose Mj) (16)

for p2, ,p„, with pi = 0. In this case 07 was chosen so that the 'distance' between 07 and Of is

3 standard deviations of ji under the distribution G[O]. Three standard deviations was chosen

simply because at that value of 07 it is unlikely that another model would generate data that

would mistakingly appear to have come from G2[07].

For models with high dimensional parameters and in cases that cannot be reduced by invari-

ance or other arguments, there may be many such 07 points at a specified distance away from

Of. One suggestion is to calculate the penalties p2, . . ,Pm, based on the average probability of

correct selection. In regular problems, the maximum likelihood estimator of Oi under model A

has an asymptotic qi—variate Normal distribution with mean vector Of and covariance matrix

equal to the inverse of the Fisher information matrix evaluated at the common model, Jr. In

this case, any points on the ellipsoid

= {0i E Oi : = k2} (17)

are in some (asymptotic) sense equidistant from O. We can then calculate penalties based on

the averaged probabilities of correct selection

PG1[0]( choose Ali)clei. (18)

The value of k can be taken to be any number, however we think something of the order of

k = 2 or k = 3 will be sufficient for discriminating models. Following from (18), we could define

other functions of the probabilities in terms of defining the penalties.

4 Main algorithm

In this section we discuss the algorithm for calculating penalties based on the ideas in Section

3. This algorithm applies to the case when the m models depend on unknown
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parameters 01,...,0m, respectively, as well as the case when no unknown parameters are in-

volved. In particular, we will discuss algorithms for calculating the penalty function based on

fixing probabilities of selection according to the common model approach, when 07 = Of, and

also according to fixing O; E Oi at points not corresponding to a common model.

Our main approach is to use simulation methods for calculating the probabilities of correct

selection. We simulate k = 1, . . . , R data sets Yu, with sample size n from each of the probability

distributions G/[07], for 1 = 1, . . . , m, and calculate the maximized log-likelihoods, Llik, for each

model i = 1, , m under each data set for k = 1, . . . , R. Let

1(0 .-p > _L pi foralljOiandi= 1) (19)

denote the indicator function for the event that model Mi is correctly chosen for data set Yik.

The penalties are found such that the empirical probability of correctly choosing model Mi

R

PGim(choose Mi) = > 1(Liik — pi >j - pj for all j i and i = 1) (20)
k=1

is controlled to the desired value

ci = PGi[on(choose Me). (21)

In the case when a common model is used, all ci = 1. If the penalties are to be constructed

so that the probabilities of correct selection are all equal, then ci = 1/m for all i = 1, , m. In

the case where the user specifies the values of the ci directly, the values are the same throughout

the entire algorithm. In the case when a common model is not used and we are equating

probabilities of correct selection, the common value of ci = c, for i = 1, , m, is calculated

within the algorithm as
771

c = — PGi [on . (22)
i=1

Using either approach, the algorithm stops when for all of the differences di

where

max
i=1,...,m

di = PGiton ci

12

(23)

(24)



for some preselected tolerance level 7.

The general algorithm proceeds as follows:

1. initialise penalty pi = 0 for i = 1, , m and stepsize si = 1.0 for i =

2. generate data Ylk for models 1 = 1, ... ,m and replications k = 1, . , R;

3. calculate the i = 1, ..., m maximised log-likelihood values Lk, for each data set Yuc for

1= 1, , m, and k= 1, .,R;

4. calculate PGi[o], according to (20); Ci according to (22) (if relevant); and di according to

(24), for i = 1, , m;

5. if I di i< 7 then return p2, and stop;

6. define J such that I di 1=1 dj I;

7. if J = 1 then adjust the other i = 2, ... , m penalties according to

psic = pi — sign(d1) * Si

leaving pal' = 0;

8. if .1 1 then adjust pj only according to

p*j = pj sign(dj) * sj;

and leaving p7 = pi for i J;

9. calculate P ì[07], c7 and d7 based on pI for i = 1, m;

10. if adjustment to penalty function is too large, change the stepsize by sj = sj/10;

11. reset pi = p7 and di = d7 for i = 1, , m, and go to 5.

A few comments regarding the above algorithm are in order. First, we set M1 to be the

model with the fewest number of unknown parameters, if possible. In the nested situation this

will result in all nonnegative penalties. Second, the number of Monte Carlo repetitions R affects

the precision of PGi[01, and hence is related to whether or not the convergence criterion can be
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achieved. We recommend convergence be declared if the maximum distance between PG1[0] and

the PGi[91 desired to be less than T = 2/R. In some cases a tighter bound may be possible. Also

note that the data sets Yik generated under each model need only be simulated once in Step 2,

and if 07 = Of, then only Yik need be generated and set Yik = Yu for 1 = 2,... , m. The strategy

for modifying the penalties beginning with Step 6 is an adaptive procedure that changes the

penalty associated with the largest absolute difference I di I. However, since pi is constrained to

be zero, if J di J is the largest of the J di J values, then all of the other penalties are reduced (or

increased) to increase (or reduce) the relative penalty for model Mi. The step sizes are reduced

by a factor of 10 when overcorrecting of the penalties occurs.

5 Monte Carlo simulation results

5.1 Monte Carlo simulations

To test our small sample methods of generating penalties, we used Monte Carlo simulation to

evaluate the probabilities of correct selection for our new IC model selection procedures along

with those of the AIC and BIC procedures. In each of the following examples, a sample size of

n = 30 was used. We first considered a four model (m = 4) nested linear regression problem and

calculated penalties based on setting probabilities of correct selection under a common model.

Each model is of the form

where

and

: Y = Xi/3i U (25)

Xi = {xl]

X2 = [X1 : X2}

X3 = [X1 : X2 : X3]

X4 = : X2 : X3 : X41

x1 is an n x 1 vector of ones

x2 is an n x 1 vector containing a quarterly seasonal dummy variable

. x3 is an n x 1 vector containing a stationary AR(1) series with p = .5

14



x4 is an n x 1 vector containing a stationary AR(1) series plus a linear trend

with zero intercept and slope of .25

The disturbances in U are made up of a vector of independent standard normal random vari-

ables. We used the white noise model Y = U as the common model since when each regression

coefficient is zero, each model reduces to white noise. The penalties were calculated using our

algorithm with R = 2000 replications. Table 1 shows two sets of ci values used to control the

probabilities of correct selection under the common model, while Table 2 displays the corre-

sponding penalty functions, along with the AIC and BIC penalties. Note that the AIC and

BIC penalties are adjusted so that the penalties associated with M1 are all zero. Using the

calculated penalties from Table 2 a Monte Carlo simulation using 1000 repetitions was used to

assess the power of the two model selection procedures along with the AIC and BIC procedures.

The results are presented in Table 3.

A similar study was completed for the case of choosing between white noise, MA(1) and

AR(1) models. White noise again was the common model used to define the penalty functions

based on R = 2000 in this nonnested situation for the two different sets of ci probabilities given

in Table 4. Table 5 presents the corresponding calculated penalties. To study the resulting

probabilities of correct selection using these penalty functions, a Monte Carlo simulation was

completed for a range of MA(1) parameter values, 0 = {.1, .3, .5, .7, .9}, as well as a range of

AR(1) parameter values, p = {.1, .3, .5, .7, .9}. The results using 1000 repetitions are given in

Table 6.

Next we illustrate the calculating of penalties under the alternative model set up. In this

case we again compared white noise, MA(1), and AR(1) models by equating the probabilities

of success. Two different sets of penalties were generated, once with both 0 and p set equal to

207 = 0.3651 and once with both parameters set equal to 307/7/ = 0.5477. These values

correspond to 2 and 3 times the asymptotic standard error of the maximum likelihood parameter

estimates under the assumption that the parameter values are zero. The resulting penalties are

given in Table 7 and the Monte Carlo probabilities of correct selection for a range of 0 and p

values are given in Table 8.
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Table 1: Probabilities of correct selection used to determine penalties in nested regression under

common model of white noise

M1 M2

,
M3 M4 '

01 = 0 02= (0,0)' 03= (0,0,0)' 04= (0,0,0,0)'
..

set 1 0.25 0.25 0.25 0.25

set 2 0.7025 0.1760
,

0.0780 0.0435

Table 2: Penalty functions for nested regression under common model of white noise

P1 P2 P3 , P4

set 1 0.0000 0.1992 0.6174 1.1824

set 2 0.0000 0.8159 1.9999 3.2999

AIC 0.0000 1.0000 2.0000 3.0000

BIC 0.0000 1.7006 3.4012 5.1018

Table 3: Monte Carlo probabilities of correct selection for nested regression using penalties

calculated under white noise common model

Y = Xv3i + U

01 = 0.6

Y = X202 + U

02 = (.67 .25)'

Y = X3(33 .4- U

03 = (.67.257.225)'

Y = X404 + U

04 = (.67.257.2257.05)
-

set 1 0.230 0.248 0.472 0.426

set 2 0.696 0.242 0.312 0.168

AIC 0.710 0.176 0.312 0.204

BIC 0.896
,

0.106 0.186 0.070

Table 4: Probabilities used to determine penalties under white noise vs. MA(1) vs. AR(1)

model selection problem under common model of white noise

white noise MA(1) AR(1)
..

set 1 0.3333 0.3333 0.3333

set 2 0.90 0.05 0.05
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Table 5: Penalty functions for white noise vs. MA(1) vs. AR(1) under common model of white

noise

white noise

P1

MA(1)

P2

AR(1)

P3

set 1

.

0.0000 0.1226 0.1020
..

set 2 0.0000 1.7000 1.5100

AIC 0.0000 1.0000 1.0000

BIC 0.0000 1.7006 1.7006

Table 6: Monte Carlo probabilities of correct selection when selecting between white noise vs.

MA(1) vs. AR(1) using penalties calculated under common model of white noise

white

noise .1 .3

MA(1)

.5 .7 .9 .1 .3

AR(1)

.5 .7 .9

set 1
-
0.343 0.360 0.543 0.772. 0.905 0.976 0.368 0.507 0.697 0.895 0.992

set 2 0.880 0.060 0.239 0.593 0.855 0.969 0.078 0.334 0.646 0.899 0.991

AIC 0.787 0.114 0.389 0.711 0.898 0.974 0.116 0.342 0.647 0.888 0.991

BIC 0.893 0.070 0.273 0.633 0.876 0.972 0.055 0.274 0.594 0.880 0.990

Table 7: Penalty functions for white noise vs. MA(1) vs. AR(1) with probabilities of correct

selection set under alternative models.

white noise

P1

MA(1)

P2

AR(1)

P3

2s.e. 0.0000 0.3908 0.3495
-

3s.e 0.0000 0.8150 0.9440
,
AIC 0.0000 1.0000 1.0000

BIC 0.0000 1.7006 1.7006
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Table 8: Monte Carlo probabilities of correct selection when selecting between white noise vs.

MA(1) vs. AR(1) using penalties calculated under alternative models

white

noise .1 .3

MA(1)

.5 .7 .9 .1 .3

AR(1)

.5 .7 .9

2 s.e.

,

0.563 0.235 0.486 0.729 0.909 0.979 0.256 0.481 0.685 0.883 0.984
,.

3 s.e. 0.760 0.196 0.456 0.748 0.919 0.980 0.091 0.320 0.710 0.849 0.979

AIC 0.801 0.140 0.389 0.703 0.902 0.978 0.109 0.358 0.646 0.873 0.984

BIC 0.908 0.075 0.273 0.621 0.887 0.974 0.059 0.271 0.616 0.864 0.984

The calculated results for the regression problem (Table 3) only show probabilities of correct

selection at one point per model. This can be a little misleading. However they do demonstrate

that probabilities of correct selection can be controlled. Increasing one probability typically

results in other probabilities declining. It is clear to us the first strategy of setting all selection

probabilities under the common model equal in this very nested selection problem is less than

satisfactory.. While higher probabilities of correct selection result for more complex models, this

is achieved at the expense of lower probabilities of correctly choosing the simplest model.

The time series results in Tables 6 and 8 illustrate the tradeoffs that are typically involved

in setting penalties in IC selection procedures. High probabilities of correct selection of the

white noise model come at the expense of lower probabilities of correct selection of the AR(1)

or MA(1) models when the associated parameters are small.

In both cases there is no one set of probabilities of correct selection that is clearly better

than the other probabilities. Which set of penalties should be chosen is really up to the user.

6 Concluding remarks

We have discussed some of the issues involved in model selection, particularly when viewed

in light of our experience in hypothesis testing. The main point of this paper has been to

demonstrate how the user can set the penalties in IC model selection procedures and hence

take control of probabilities of selection. An important by-product of one of the approaches
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is the estimation of some probabilities of correct selection which provide a useful measure of

how reliable the overall procedure is. Taking control of probabilities of correct selection is one

matter, but how that control should be exercised is an issue we are continuing to research. The

present paper has given some tentative suggestions. In the future we hope to be able to present

more convincing strategies, particularly concerning the control of average probabilities.
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