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Abstract

Estimation of attraction models in marketing typically involves the use of the log-

centering transformation.. The resultant estimating equations are then linear in the

parameters. The log-centering transformation also appears in the statistical analysis

of compositional data (CODA). CODA techniques are applied to data on "shares"

in a wide variety of disciplines. This paper uses CODA techniques to rationalize

the stochastic specification of attraction models. It further shows that another

transformation from CODA, the log-ratio transform, can yield simpler estimating

equations. The results are illustrated using an empirical example.
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1. Introduction.

Attraction models for brand or market share analysis in marketing have the advantage

that they automatically bound shares to lie between zero and one and to sum to one over

all M brands in the market. That is they are logically consistent. In estimating attraction

models the traditional approach is to apply a log-centering transform to the share data

and then to apply least squares estimation techniques. Unfortunately, the properties of

the implied error (stochastic) term in this approach are complicated. In this paper we

consider the use of a modeling technique from the statistical literature, compositional

data analysis, to specify the stochastic structure of attraction models.

The plan of the rest of this paper is as follows: Section 2 describes the composi-

tional data approach to modeling share data, applies this approach to the specification

of attraction models, contrasts this with the traditional approach and also discusses the

identification issues that arise in modeling share data. Section 3 contains a brief case

study to illustrate the application of the proposed modeling approach and, finally, section

4 contains some concluding remarks.

2. Model Specification.

2.1. Compositional Data Analysis.

The restriction of shares to the unit simplex has been recognized by researchers in many

fields (see inter alia Aitchison (1986), Fly et al (1996a) and McLaren et al (1995)). In

particular, this restriction causes problems for traditional multivariate statistical meth-

ods which are based upon the Normal distribution. It is, however, possible to develop a

framework for the statistical analysis of data on shares. Such techniques are termed com-
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positional data analysis, hereafter CODA, (Aitchison (1986)). The advantage of CODA

techniques is that they provide a unifying set of distributional assumptions which allow

for the use of traditional multivariate statistical methods.

In the statistical literature a composition consists of M parts. The parts are labels

which identify the components into which a total has been sub-divided (e.g. the parts are

brands and the total is total market volume sales). The components are the numerical

proportions in which the parts appear (i.e. the shares). A composition is defined by

taking the elements of a basis (e.g. individual brand volume sales) and dividing- them

by the size of the basis (e.g. total market volume sales). This operation takes elements

defined as non-negative and constrains them to lie between zero and one and to sum to one

(i.e. to lie on the unit simplex, Sm-1). It should be noted that this unit sum constraint

reduces the dimension, of the space on which the vector of components (shares) is defined

to M — 1. The major obstacle to the statistical analysis of compositional data is that the

restriction to the unit simplex necessarily leads to the lack of an interpretable (covariance)

structure and, as a result, the multivariate Normal distribution is inappropriate.

In order to apply statistical analysis techniques based upon the Normal distribution

a one-to-one transformation is required to map the data on shares to data suitable for

analysis using multivariate Normal based techniques. That is we need to map from the

unit simplex, 5frf-1, to RI4-1 and produce an interpretable (covariance) structure. One

such transformation is the additive log-ratio (ALR) transform:

yi = n (si
—) , i = 1, • • • , M —
sm .

with an associated Jacobian given by jac(y j s) = (Si sm)1 .
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The inverse transformation, Sm-1 to Rm', is the additive logistic transform and

reconstructs the components as:

exP (yi) si = , i= 1,•••,M— 1,
1 ± exP (M.) + • • • + exP (Ym-i)

1
sm =  

1+ exP (y1) -I- • • • ± exP (Ym-i)

= — — • . • — sm—i•

These transformations form the heart of CODA techniques. To model compositional

data we apply the ALR transform to produce log-ratio data and then apply traditional

multivariate statistical techniques (e.g. multivariate regression) to the transformed data.

To return to the composition we simply apply the inverse transform, the additive logistic.

A major benefit of this approach is that it is straightforward to derive the associated

distribution theory (Aitchison (1986) pp. 115-119) for the random variables. In particu-

lar, if the log-ratio vector y has an M — 1 dimension Normal distribution, N(p, E), then

the composition, s, (the vector of shares) will follow an additive logistic normal distrib-

ution, L(p,, E), defined on the unit simplex. The additive logistic normal distribution is

particularly attractive in that, like the Normal distribution, it is capable of capturing the

wide range of covariance structures encountered in observed data. Additionally within

the CODA framework it can be shown that the basis q (e.g. the vector of brand volume

sales) will follow a multivariate log-Normal distribution.

Before discussing the application of CODA techniques to attraction models for brand
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shares three further points need to be made. Firstly, the use of siti as the denominator in

the ALR transform is, at first, unusual in that the parts of the composition are treated

• asymmetrically. It is important, however, to note that reordering the parts and changing

the component used as the denominator in the transform makes no difference to any

statistical procedures. Thus all statistical procedures are invariant to the choice of the

compQnent used as the denominator. Secondly, the ALR is not the only transform that

could be used. In particular, a centered log-ratio transform could be used and, as is

discussed below, this centered version is related to the approach currently undertaken in

the stochastic specification of attraction models. Finally, CODA techniques can also be

used to specify models for the joint modeling of data on shares and the size of the basis

(see Aitchison (1986) p. 220) and can easily be modified to deal with the case of observed

shares which are zero (see Ey et al (1996b)).

2.2. Attraction Models.

A direct application of the CODA approach would involve modeling the log-ratio trans-

formed data, y, in terms of ji, and E. In particular, we may parameterize the mean,

to depend upon a set of (marketing) variables, Z and a set of parameters, 0, according to

a multivariate regression model:

Si

yi = (7) = (Z, 0)±
SM

where u = [ui] is a stochastic term which is distributed as multivariate Normal (0,E).

The advantage of this model is that, within this framework, the shares are distributed

as additive logistic normal and the basis as multivariate log-Normal. The remaining
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issue is the specification of the functional form for the pi(Z, 0). By analogy with the

arguments in Fry et al (1996a), the parameterization chosen should retain any parameter

interpretations from the underlying (marketing) theory and, further, it should retain the

logical consistency argument that shares from the model are restricted to the unit simplex.

Such a parameterization is given

yi 
Si(Z, 0)  \

Sm(Z, 0)) +

where Si(Z, 0) is a specification for the share of brand i which retains the logical con-

sistency requirement. An appropriate choice is given by Kotler's (1984) market share

as share of marketing effort representation - also rationalized in the attraction modeling

literature (see Cooper (1993)) - in which:

Ai(Z, 0) 
Si(Z,O) = 1 A. 

with Ai(Z, 0) > 0 V i, Ei Ai(Z, 0) >0.

The estimating equations from this model specification are given by:

= ln(Ai(Z,O))— ln(Am(Z, 0)) ui.

The exact form of the equations will depend upon whether the marketing variables in Z

enter into the model in a multiplicative competitive interaction (MCI) or a multinoinial

logit (MNL) form or a combination of the two. For example, if all the variables enter

in the MCI form, Ai(Z, 0) = exp(ai) x Ilk Zfik,and, if they all enter in the MNL form,
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Ai(Z,O) =exp(ai) x exP(Ek AkZk).

To illustrate the application of the CODA methodology we will consider two simple

cases. First where p variables enter an attraction model (see Cooper (1993) pp. 285-290)

in the MCI form. In this case the estimating equations are given by:

yj = (ai — am) ± E(oik - 13mk)ln(Zk) ui.
k=1

The second example is where the p variables enter a fully extended attraction model in

an MNL form. In this case the estimating equations are:

yi = (ai — am) ± Ewa -omozk +ui.
k=1

The extension to models which include a mixture of MCI and MNL terms is straight-

forward. It is also simple to show that if the attraction of a brand depends upon its

attraction in the previous period (Cooper and Nakanishi (1988) Ch. 3) the CODA esti-

mating equations are given by:

= ln(Ai(Z, 0))— Ln(Am(Z, 0)) Oln(yi(-1))

It is convenient to compare the CODA approach with that traditionally taken in the

estimation of attraction models as detailed in, inter alia, Cooper and Nakanishi (1988,

Ch. 3 and Ch. 5) and Cooper (1993). To facilitate estimation the data is transformed

using a centered log-ratio transform, = hi (sita), where :s" is the geometric mean of

the M shares. This also yields estimating equations that are linear in the parameters
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and amenable to estimation by least squares methods. However, three problems are

associated with this approach. Firstly, a relatively small problem is that the estimating

equations involve deviations of variables from their (geometric) means. Secondly, there

exists an identification problem in the estimation of the parameters. We deal with this

identification problem in the next sub-section. Thirdly, and perhaps most importantly,

the stochastic properties of the error term in the traditional estimating equations are

complex (see Bultez and Naert (1975), Cooper and Nakanishi (1988), Ghosh et al (1984),

McGuire et al (1977) and Nakanishi and Cooper (1974), (1982)).

The problem with the stochastic specification in the traditional approach stems from

the fact that a stochastic component is typically incorporated in a multiplicative manner in

the functional form for Ai(Z, 0). In particular, a stochastic term is entered multiplicatively

as exp(ei) into the specification yielding an expression for the "attraction of brand i,

(Z, 0) [= exp(ei) x Ai(Z, 0)]. Applying the centered log-ratio transformation in an

MCI formulation yields:

= (ai — + jk On(Zk) — ln (2)) (1n(ei) — ln(E)) ,
k=1

and in "a MNL formulation the estimating form is:

= (ai — EPj (zic — 2) + — -0•
k=1

The properties of the error term in these estimating equations are that the errors are

correlated across equations and, since there are M equations, the appropriate covariance

matrix is not of full rank. This seriously complicates least squares or maximum likelihood
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estimation. This problem is the same as that which confronts researchers in economics

when using Logit or Addilog forms for allocation models (see inter alia Bewley (1982a),

(1982b), (1986) and Chavas and Segerson (1986) and thus appropriate solutions do exist

to estimate these equations by either generalized least squares or maximum likelihood.

This traditional approach seriously complicates the distribution theory. A simpler

approach is to incorporate the stochastic assumptions within the CODA approach. In

particular, we argue, as before, that shares are distributed as additive logistic normal and

then apply an appropriate transformation. This idea can be "grafted onto" the traditional

approach since the centered log-ratio transform can also be used in CODA modeling. This

would allow traditional market modelers to justify a simpler form for the error term in

their estimating equations. In fact, since there is a one-to-one mapping between the

centered log-ratio form and our preferred log-ratio approach, the two CODA approaches

are identical (see Aitchison (1986) and McLaren et al (1995)). Thus the choice of one over

another is purely a matter of convenience. Since, even within the CODA approach, the

rank problem remains when using the centered log-ratio transformation it is our opinion

that the log-ratio transform is preferable. Before discussing an empirical example of the

application of the CODA approach we next discuss the topic of uniquely identifying the

parameters in the underlying attraction model.

2.3. Identification Issues.

The fact that there are identification issues involved in the use of share equations of the

form:

Ai(Z, 0) 
Si(Z, 0) = .

.4
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has long been recognized (Theil (1969)). In particular, if we re-scale by multiplying by

an arbitrary, non-zero, constant, say, exp(q), we find:

exp(q)Ai(Z, 0) Ai(Z, 0) 
Si(Z, 0) = 

Ej
m
=i exP(q)Ai(Z, 0) — Er=i Aj(Z, 0).

As a result, only differences of parameters, or some other normalized parameters can be

uniquely identified. This is recognized in the attraction modeling literature (see Cooper

and Nakanishi (1988, pp108-109) and the following identifying restriction is imposed:

That is the sum of all brand specific constants is zero. Further, since elasticities for the

Z variables (e.g. price elasticities) only depend upon parameter differences, no additional

identifying restrictions are needed. That is, traditionally only parameter differences are

estimated.

The identification problem obviously exists for our CODA based approach. To identify

the model we also impose the "adding up" constraint to the constants. However, in

contrast to the traditional approach, to identify the other parameters in the model (e.g.

the coefficients on price, or ln(price), terms) we argue the following. That is if, say, price

of one brand falls, then its share should increase. Further, the share of the other brands

should either remain unchanged or fall. Overall, since the shares are constrained to the

unit simplex, the net effect of the price change should be zero. Thus it must be the case

that the (price) coefficients also sum to zero across the M brands.

The parameter restrictions discussed above will formally identify the attraction model.
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There are, however, two other sets of parameter restrictions which should also be be

considered when estimating attraction models. These restrictions concern homogeneity

. and symmetry of, say, price effects. Homogeneity implies that if all prices double then

brand shares will remain unchanged. This can be imposed in two ways. Firstly, we can

impose the parameter restriction that the M price coefficients sum to zero within each

equation. However, more common in estimating attraction models is to utilize not "raw"

prices, but prices relative to the market average price in the specification. In this second

approach homogeneity is obviously imposed since if all prices double relative prices remain

unchanged. Symmetry implies that the impact of, say, the price of brand i on the share

of brand j is equal to the impact of the price of brand j on the share of brand i. That

is )3ij = This restriction is one that might either be imposed, not imposed or tested

using an appropriate statistical test (e.g. a likelihood-ratio test).

3. Empirical Example.

In this section we describe the estimation of an attraction model using CODA techniques.

The example uses the dataset from Case A in Broadbent and Fry (1995). The data

comprises 119 observations on category volume sales share, price relative to the category

average for five brands, hereafter brands A to E, two consumer promotions for brand

A, TV advertising for brand A and All Commodity Volume sales. Selected descriptive

statistics can be found in Table 1. The specification chosen for the attraction model was

to specify the effect of relative price in Ai as MCI and the impact of all other variables as

MNL. Other combinations of MCI and MNL effects were tried but were not as effective

in modeling the data.
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Table 1: Descriptive Statistics.

Mean Std. Dev. Minimum Maximum
Share A 0.4610 0.0358 0.3708 0.5263
Share B 0.0751 0.0165 0.0342 0.1363
Share C 0.0596 0.0109 0.0426 0.0911
Share D 0.3232 0.0402 0.2324 0.3972
Share E 0.0810 0.0510 • 0.0239 0.2521

Price A 103.7010 3.4767 99.6630 115.2188
Price"B 103.9228 4.4625 93.7551 123.3333
Price C 102.9650 2.7779 95.9350 113.3333
Price D 88.8994 9.4017 66.6666 105.8693
Price E 97.6942 2.3042 88.4298 105.4852

The model was estimated by taking the log-ratio transform and then estimating a

multivariate regression model. Estimation was carried out by maximum likelihood using

the LSQ command TSP386, Version 4.3A (Hall et al (1995)), which is well suited to

the estimation of multivariate regression models with cross equation constraints. The

parameter estimates and "heteroscedastic consistent" standard errors (see White (1980))

obtained are shown in Table 2. It should be noted that the parameter estimates for brand

E were obtained exploiting the "adding up" constraints discused above.
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Table 2: CODA Estimation Results for Attraction Model.

Variable Brand A Brand B
Equation
Brand C Brand D Brand E*

Constant 5.8280 -10.3059 9.0424 1.4976 -6.0621
(1.7329) (-1.5699) (1.3160) (0.4234) (-0.7602)

ln(Price A) -1.2974 0.9142 0.0941 0.1567 0.1324
(-3.1665) (1.1499) (0.1136) (0.3638) (0.1367)

ln(Price B) 0.1111 -1.8679 -0.3635 -0.1810 2.3012
(0.5692) (-4.6121) (-0.9029) (-0.8668) (5.2189)

ln(Price C) 0.0408 0.8295 -0.6647 0.4079 -0.6134

(0.1817) (1.8625) (-1.4379) (1.7067) (-1.1818)
ln(Price D) 0.2593 1.2004 -0.1003 0.6627 -2.0221

(1.7691) (4.0830) (-0.3314) (4.1337) (-4.3879)
ln(Price E) -0.4482 0.9066 -0.8677 -1.2802 1.6896

(-1.6351) (1.6894) (-1.5462) (-4.4325) (2.9491)

Brand A Promotion 1 0.0022 -0.0024 0.0033 -0.0005 -0.0026

(2.5707) (-1.4280) (1.9115) (-0.6001) (-0.9705)
Brand A Promotion 2 0.0681 -0.0904 0.0659 -0.0546 0.0111

(1.8619) (-1.2580) (0.8798) (-1.4105) (0.2046)
All Commodity Volume 0.0090 0.0089 -0.0064 0.0008 -0.0123

(8.6895) (4.9420) (-3.3720) (0.8039) (-4.8375)

R2 0.9401 0.9404 0.9018 0.9523
d.w. 1.8723 1.8778 1.7697 1.8785

* indicates derived estimates.
Heteroscedastic t-ratios in parentheses.
Maximized log-likelihood 440.675.

0.4625
Autoregressive Coefficient, :

(13.7873)

In the original Broadbent and Fry (1995) paper the interest was centered on a single

equation model for brand A. The attraction model differs from that specification in that

TV advertising and a trend term are found to be insignificant and in that a lagged share

term (an inertia, loyalty or "partial adjustment" effect) has been found important. It is

probable that this lagged term is capturing the "longer and broader" effects discussed by

Broadbent and Fry (1995). As a result the terms in their single equation model concerning
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long term effects are not significant in the attraction model.

Overall, the results from the attraction specification agree with a priori beliefs. Sym-

metry was not imposed as it was felt not to be appropriate for this market. Most of the

coefficients either have the correct sign or are insignificantly different from zero, but with

the wrong sign. The exceptions, however, are the coefficients concerning certain price

terms and the impact of brand A's consumer promotion on brand C's share. The price

terms which do not correspond with our, a priori, beliefs concern brand E and, in partic-

ular, its own price term and cross price with brand D. Additionally, brand D's own price

term has the wrong sign and is significant. To assist in the discussion of these results we

present the estimated elasticities in Table 3. These elasticities are calculated using the

formulae in Cooper (1993, p.286) and evaluating the formulae at the respective means.

Table 3: Estimated Elasticities Evaluated at Means.

Variable Brand A Brand B Brand C Brand D Brand E
Price A -0.8349 0.4336 0.0311 0.0745 0.0714
Price B 0.0939 -1.7125 -0.3195 -0.2704 1.2403
Price C -0.1621 0.5711 0.3642 0.2659 -0.3306
Price D 0.0054 1.2688 0.0151 0.5091 -1.0899
Price E 0.0190 0.0840 -0.4723 -0.8169 0.9107

Brand A Promotion 1 0.0020 -0.0009 0.0025 -0.00001 -0.9018
Brand A Promotion 2 0.0018 -0.0017 0.0012 -0.0009 0.0002
All Commodity Volume 0.6118 1.0623 -0.3204 0.1564 -0.7651

In order to understand these anomalous results we need to consider the market in

more detail than in the original study. Brand A is a "premium" brand from a leading

manufacturer and is the only advertised brand, brands B and C are brands from major

manufacturers, brand D is a composite brand consisting of generic/no-label brands and

brand E is a composite of a number of individual brands from small manufacturers. In

the light of this, it would appear that the results are similar to Case 3 in Cooper (1993,
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p.288). In other words, some of the brands in the market are "niche" brands and some of

the brands appear to be aggressive in their price activity.

4. Conclusions.

This paper has taken a methodology for analyzing data on shares of a total, compositional

data analysis, from the statistical literature and applied it to the stochastic specification of

attraction models in marketing. We find that the suggested specification greatly simplifies

the distributional theory underlying the estimation of attraction models. In particular,

the CODA approach, extended such that the mean is parameterized on the basis of

attraction theory yields a model which bounds shares to the unit simplex, has the same

parameter interpretations as the "traditional" modeling approach and is straightforward

to estimate as a multivariate regression model in the usual statistical packages. We

illustrate the application of the CODA specification using a case study, the results of

which are sensible. Moreover, since the CODA approach has added advantages in that it

can easily be extended to incorporate both the joint modeling of shares and total market

sales (size) and shares observed to be zero, the CODA approach would seem to have

potential for future work with attraction models.
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