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1. Introduction

Amidst a recent upsurge of empirical work focusing on the convergence hypothesis
(see, for example amongst others, Bernard and Jones [1996)], Galor [1996]), Nonneman
and Vanhoudt [1996], Quah [1996] and Sala-i-Martin [1996]) a robust affirmation of the
general validity of the neoclassical growth model emerges. (See the seminal works of
Barro [1991] and Mankiw et al. [1992] for example.) Roughly speaking, controlling for
such factors as savings and population growth rates, the convergence hypothesis (more
precisely, the S-conditional convergence in the terminology of Sala-i-Martin [1992])
asserts that economies with low initial per capita income tend to grow faster than those
with high initial income. The finding of the convergence in these studies is generally
taken to be consistent with a prediction of the neoclassical model. Conventionally,
the empirical work related to this model has been cast in the cross section regression
approach.

The single cross section regressiori implies, however, a too low growth rate and a
too large share of capital. The essential feature inducing such a result is due to non-
discriminate incorporation of country specific differences in the production function.
To ameliorate the inadequacy of the single cross section method, two strategies are
used: one consists of augmenting the structural model by broadening the nature
of capital with human capital, in addition to physical capital, and perhaps with
technological capital as well (Noneman and Vanhoudt [1996]); and, the other is to
treat the convergence hypothesis from a dynamic panel data perspective. Islam [1995]
and Nerlove [1996] advocate and implement the latter strategy.

In the usual cross section regression, the country specific technology shift term
is assumed to be uncorrelated with savings and population growth — an unavoidable
econometric necessity given the framework. The panel data approach, on the other
hand, allows control for this country specific technology shift with the explicit
introduction of country specific effects.

2. The theoretical model

To derive the analytical form of the model used in this analysis, we start from the
standard neoclassical formulation.with exogenous population growth, fixed savings
and labour-augmenting technological progress of rates n, s and g, respectively, and

a Cobb-Douglas production function. We then have y, = Agl_a)kf" , Where y; is the




per capita output, k; the capital intensity and A, is any Harrod-neutral technology
that affects the productivity. In the Solow model, savings equals gross investment.
The change in per capita capital stock is the same as the gross investment less the
depreciation. This yields the model '
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where § denotes the constant depreciation rate of the capital stock. In the steady
state, the output per effective labour is constant so that neglecting the product term
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model and taking the logarithms results in the
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model. Though equation (1) proves that the rate of convergence to equilibrium in not
strictly constant, this can be approximated by a partial adjustment model, logy: —
logy:—1 = (1 — v)(log y; — logyt—1), which in turn produces a form manageable with
econometric tools, and which has been used in several recent studies:
a(l -

ol -7) [log s — log(n + g + 6)] + (1 — v)log As + vlog ys—1 . 3)

logy: = T

The rate of convergence to the equilibrium level here is inversely proportional to 7. If
~ is smaller than 1 there is such convergence, with convergence speed increasing as vy
decreases. It is obvious that the convergence depends on s, 6, n, g and A;. In this
analysis we adopt the approach used by Islam [1995], Nerlove [1996] and others: we
allowed s and n to vary over time and across countries.

3. The econometric model, estimation methods and the data set

Model (3) yields the following econometric formulation:

Yit = VYit—1 + To B+ pi +uie, t=1,...,T, i=1,...,N,




where y;; stands for the GDP per capita for country i in year ¢, z;; = [log(savings),
log(population growth rate + rate of technical progress + depreciation rate)], u; rep-
resents the individual, country specific effects, u;: is a white noise and therefore the
composite disturbance terms v;; = p; +u;: have a nonscalar covariance matrix 0, (see
more about this model in Sevestre and Trognon [1995], for example).

The “usual” assumptions about this model are that: the u;’s are serially
uncorrelated, have zero mean, scalar variance o2, and are uncorrealted with individual
effects p; and the starting values yip; the p;’s have zero mean and af, variance,
and the' exogenous variables are non-stochastic and uncorrelated with either the
u;s’s or the p;’s. The two main approaches to get N consistent estimators for the
unknown parameters v and 8 of this model are to use either IV or GMM estimation
techniques. Once an instrument set Z has been defined, one has three choices of
consistent Generalised IV (GIV) estimators (Bowden and Turkington [1984]) B =
(X'Pi,X) ' X'Piy: (i) Pé; = Z(2'Q,2)7 Z, (ii) Py, =Q;1Z(2'Q,2)712Q51,
and (iii) PS, = Q5/22(2'2)"1295"/* of which only (i) is appropriate if lagged
values of the endogenous variable as are used as instruments. -

Many authors choose to work with equation (4) in first differences, as this removes
the troublesome individual effects. However, the model still cannot be consistently
estimated by OLS because of the short time series assumed. Also, if the original
disturbances are “well-behaved”, the transformed ones will follow a classical MA(4)
process.

The Balestra-Nerlove [1966] (BN(4)) type estimator for the differenced model
has AX_; as instruments for yy;;—;. Sevestre and Trognon [1992] (ST) suggest the
same instrument, but using it with methods (ii) and (iii) above. Anderson and Hsiao
[1982] (AH) suggest Ay;:—2 and Arellano [1988] (AR) yit—2 as appropriate instruments.
Once the number of instruments exceeds the number of explanatory variables, a
GIV becomes appropriate. Therefore one can consider augmented AH and AR IV
estimators (AH* and AR™) which additionally include AX_; as instruments. Finally,
assuming that the time series run from ¢ = 0 to T, Arellano and Bond [1991] (AB)
point out that in the case of ¢ = 2, y;p is an appropriate instrument for Ay;;—;.
Moreover, in the following period y;p remains a valid instrument, but so is y;;, and
the triangular expansion continues in subsequent time periods. If the x variables are
strictly exogenous, the augmented AB IV set also includes the full time series of these

(AB+).

The model can also be consiétently estimated in levels, for example the Balestra
and Nerlove [1966] (BN(L)) estimator uses lagged values of the exogenous variables
as instruments. This approach is expanded by Hausman and Taylor [1981] (HT)
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to include time means and deviations from such of lagged values of the exogenous
variables. Along similar lines to the AB™ estimator, the Amemiya and MaCurdy
[1986] (AM) estimator considers both the full time series of the exogenous variables
and deviations from time means of the lagged values of the exogenous variables as
instruments. Arellano and Bover [1993] (ABov) propose a unifying framework for
many of the preceding estimators. The particular estimator we consider has an
instrument set akin to that of AB*, although ABov only transforms the first T — 1
equations (by any (T — 1) x T matrix of rank T — 1, for example the first T'— 1 rows of
the first difference operator). Therefore for the final time equation, only the strictly
exogenous variables are valid instruments. '

Harris and Matyds [1996a] proposed another estimator based upon the ideas of
Wansbeek and Bekker [1996] (WB). Now the full string of observations on y and
transformations of this are valid instruments, given that the transformation matrix A;
conforms to certain restrictions to ensure consistency and to remove the individual
effects. Such restrictions impose a particular structure on A; such that its rows
sum to zero, as do each of its lowest quasi-diagonal elements. Applying GLS to
this transformed model yields an estimator which has a variance dependent upon
A; (which is unspecified apart from the restrictions). An “efficient” WB estimator
is finally obtained by numerically minimising the trace of the estimator’s variance-
covariance matrix with respect to A; subject to the appropriate restrictions (the trace
is minimised as one is primarly concerned with the parameter vector’s variance).

Utilising more orthogonality conditions, Ahn and Schmidt [1995] suggest a GMM
estimator based upon certain nonlinear conditions implied by the “usual assumptions”.
Moreover,.Crépon et al. [1996] identify even more such conditions. Although efficient
GMM estimation involves using all such conditions, as noted by Harris and Matyds
[1996a], to invert the covariance matrix of the empirical moment conditions (the
weighting matrix réquired for GMM estimation) some conditions may have to be
dropped. Thus, two GMM-type estimators are considered, one which uses all of the
possible moment conditions and the identity matrix as weighting matrix (GMM(I)),
and one which uses numerically the maximum number of such conditions, with the
empirical covariance matrix as a weighting matrix (GMM(W)).

Following White [1980], for those estimators that require the use of the term
Z'QZ, where Q is the unspecified covariance matrix of the residuals, it is possible to
get a consistent estimator for this as o

N
Bag = (% S ZIARATZ:).
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The resulting estimators are called “hat” estimators in the Tables summing up the
empirical results. We also calculated the Within estimator which is consistent only
when N and T go to infinity, but despite this is very popular amongst practitioners
and also has a finite sample bias known to the order N=1T~3/2. (For the data set we
are using made up of 22 OECD countries and T' = 41, when working with yearly data,
and T = 9 when using five-yearly data, this means a relatively small bias in practical
terms, see Kiviet [1995].)

Some estimators, such as the Arrelano-Bond and the Arellano-Bover estimators
are numerically difficult to estimate as T increases since the number of columns in
the matrix of instruments increases substantially, causing a serious multicollinearity
problem. Similarly, the different variants of the WB estimator could not be calculated
for the yearly data set since the objective function would have to be minimised over
more than 1000 parameters.

The data set for this study was downloaded from the Penn World Tables 5.6. It
contains data for 22 OECD countries for. the period 1950-1990. We use yearly data to
estimate our model (T = 41) then transform it to quinquennium data using levels at
the end of each five year period (T' = 9) to get similar data to that which Islam [1995]
(same countries for the period 1960-1985) and Nerlove [1996] (same countries same
period as Islam) used. (The main reason in these two studies for not using the yearly

data was the difficulty in coding the above estimators for large T'.) Summary results of

these two previous panel data studies are presented in Table 1. It is interesting to note
that using the same estimation methods (OLS, Within) the two studies get slightly
different results, although in both cases the Within produces the smallest parameter
estimate while the OLS the largest.

Table 1:
Estimates for v in previous panel data studies

Islam [1995] Nerlove [1996]
Data span: 1960-1985 1960-1985

Est. methods:

OLS: 0.92 OLS: 0.88
Min. distance: 0.71 Cond. ML: 0.82
Within: 0.62 o Within: 0.76




4. Estimation results

We know from the theory that if 7 is less than one, the countries with low initial
GDP per capita values are growing faster than those with high values which supports
the theory of growth convergence. It can be seen from the results that all estimated

coefficients for the parameter of interest v are smaller than one. This suggests that

there is growth convergence between the OECD countries. We know from econometric
theory (Sevestre and Trognon [1985] and Kiviet [1995]) that in large samples the OLS
overestimates the true v while the Within estimator underestimates it. Given that the
Within estimator is consistent (and T = 9 and especially T = 41 can be considered
quite large in panel data) and that we can approximate the bias of the OLS estimator
for known values of the parameters, we can be quite confident that the true parameter
value lies close to the (0.904 — 0.869) intervallum for the 5-yearly data and close to
the narrower (0.976 — 0.964) intervallum for the yearly data. If we take into account
the estimated standard errors of 4, many parameter estimates provided by the other
estimators fall into this range. The bad news is, however, that several estimators,
which theoretically are supposed to have quite good properties, produce parameter
estimates complétely out of range, with highly unrealistic implied convergence rates.

To understand this we have to be reminded that all estimators rely on several
assumptions. The most important ones here are that the z’s are supposed to be
exogenous (no correlation between the z’s and the individual and/or white noise terms
in (4)), the individual effects and the white noise terms in (4) are also assumed to be
uncorrelated and the white noise disturbance terms should not be autocorrelated.
When the model is misspecified some of these assumptions are violated which has
serious consequences on all the calculated estimators. There are, however, estimators
which are less affected by some types of misspecification (they are more robust), while
others are more fragile in this respect (see Harris and Mdtyds [1996b]). The estimators
producing the unrealistic parameter estimates are exactly those which are the most
affected by the lack of exogeneity of the z’s. This is likely to happen when the model is
underspecified, that is one or several important explanatory variables are missing from
the model which results in this type of endogeneity of the z’s. One obvious candidate
to include into the model as an additional explanatory variable is the human capital.
But, as it can be seen in Islam [1995], this does not give a complete answer to the

problem and rises additional questions.

The bottom line here is that we can be quite confident that there is a likely growth
convergence between the OECD contries of a rate about 2% — 4%, but we also have
to realise that the derived econometric model should be refined if we want to conduct




further analysis in this area. This is another typical example of the case when although
economic theory does not provide a completely specified and satisfactory econometric
model, this model can still be used—with caution—for economic analysis.

5. Conclusion

Using the neoclassical Solow model, in this paper we derived and estimated a dynamic
panel data model to analyse the eventual convergence of the growth rate of 22
OECD countries. By using over thirty different methods to estimate the model and
comparing the results we could conclude that, although the Solow model is likely to
be underspecified from an econometric viewpoint, there is strong evidence to suggest
that the GDP per capita difference between the less developed and the more developed
OECD countries is probably going to be halved in about 20 to 30 years.
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Table 2: ‘
Estimation results for the differenced model

5-yearly data

yearly data

Est. meth.

~

24

SE(7)

S.C%

~

v

SE(¥)

OLS
GLS

AR
ARt
AR* hat
STa
STb
STa hat
STb hat
AB

AB hat
AB*
BN(4)
BN(#) hat
AH
AHT
AHT hat

0.773
0.869
0.909
0.843
0.831
0.769
0.747
0.669
0.628
0.864
0.873
0.827
0.506
0.473
0.905
0.881
0.869

0.034
0.014
0.017
0.016
0.001
0.025
- 0.025
0.004
0.004
0.014
0.001
0.012
0.101
0.008
0.024
0.056
0.005

5.16
2.81
1.01
3.42
3.70
5.24
5.83
8.05
9.30
2.93
2.7
3.80
13.63
14.97
2.00
2.53
2.81

0.544
0.967
0.964
0.945
0.909
0.865
0.705
N/A
N/A
N/A
N/A
N/A
0.205

0.206

0.841
0.688
0.575

0.024
0.003
0.007
0.007
0.003
0.009
0.012
N/A

N/A

N/A

N/A

N/A

0.056
0.002
0.028
0.139
0.008

The technical change was set to 0.05 and the depreciation to 0.2 per five years;

S.C. %: ‘Speed of Convergence, % per year




Table 3:
Estimation results for the model in levels

5-yearly  data yearly data
Est. meth. 7 SE(7) S.C% v SE(7)
OLS - 0.904 0.009 2.01 0.976 0.002

FGLS 0.896 0.010 2.20 0.973 0.002
Within 0.869 0.012 2.81 0.964 0.003
BN(D)g 0.812 0.027 4.18 0.897 0.010
BN(D)p 0.799 0.026 4.50 0.902 0.010
BN(L)¢ 0.765 0.032 5.37 0.899 0.011
HTa 0.828 0.023 3.77 0.918 0.009
HTb 0.827 0.022 3.80 0.908 0.009
HTc 0.815 0.026 4.08 0.909 0.011
AMa 0.892 0.012 '2.29 0.968 0.003
AMb 0.892 0.012 2.29 0.969 0.003 -
AMc 0.895 0.012 = 221 0.970 0.003

WB 0.869 0.019 2.34 N/A N/A
WB+ 0.867 = 0.015 2.64 N/A N/A
WB  hat 0.872 0.017 2.73 N/A N/A
WB* hat 0.881 0.014 2.54 N/A N/A
GMM(I) 0.105 0.012 45.08 N/A N/A
GMM(W) 0.274 0.044 25.89 N/A N/A

The technical change was set to 0.05 and the depreciation to 0.2 per five years;

S.C. %: Speed of Convergence, % per year







