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Abstract

The problem considered in this paper is how to find reliable prediction intervals with

simple exponential smoothing and trend corrected exponential smoothing. Methods

for constructing prediction intervals based on linear approximation and bootstrapping

are proposed. A Monte Carlo simulation study, in which the proposed methods are

compared, indicates that the most reliable intervals can be obtained with a parametric

form of the bootstrap method. An application of the method to predicting Malaysian

GNP per capita is considered.

Key Words

Forecasting, exponential smoothing, prediction intervals, bootstrap method

1



1. INTRODUCTION

The success of the exponential smoothing methods (Brown, 1959; Holt 1967,

Winters, 1960) for short term forecasting in business has tended to hide the fact that

their implementation in computer business systems is done without proper regard for

their statistical foundations. Consider inventory applications, for example. Prediction

error variances of total demand over a delivery lead time, generated for safety stock

determination, are typically based on the assumption of independent and identically

distributed demands. Being incompatible with the intertemporal dependencies

implicit in the exponential smoothing methods, this assumption gives rise to quite

sizeable errors (Johnston & Harrison ,1986; Harvey and Snyder,1990). Prediction

variances turn out to be too small, a problem leading to poor customer service levels

in the inventory context.

Appropriate methods for the determination of prediction error variances may have

largely been ignored in practice because of the relative complexity of analytical

approaches to the problem. If this is the case, bootstrap methods (Efron, 1979;

Horowitz, 1995) offer a relatively simple alternative now that cheap high powered

computers have become commonly available . Bootstrap methods have been

successfully applied in a time series context to autoregressive processes (McCullough,

1994). The time is now ripe to consider them in the context of the exponential

smoothing methods with a focus on the determination of prediction intervals.

2. MODELS AND MAXIMUM LIKELIHOOD ESTIMATION

2.1 Invariant State Space Model

The general framework used here for the exponential smoothing methods is taken

from Snyder (1985). y„ the value of a time series in period t, is shaped by forces
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from the past, reflected in a k-vector of state variables x,_1, and forces from the

present represented by a random disturbance e,. The relationship, in more specific

terms, is given by the measurement equation

y, = h'xi_i +e,, (2.1)

h being a fixed k-vector. The evolution of the state variables over time is governed by

the first-order recurrence relationship

x, = Fx,_, + ae„ (2.2)

F being a fixed kxk transition matrix and a a fixed k-vector of so-called smoothing

parameters. The e, are NID(0,a 2) random disturbances, independent of the so-called

seed state vector x0. F, h, a are all potentially functions of an unknown parameter p-

vector 0.

Example 1: Local Level Model

When the state at the beginning of period t is represented by a single number

a,_1, called the local level, the measurement equation becomes

(2.3)

Changes in the underlying level are governed by

a = a +ae (2.4)/ /-1 / •

Here 0 = a .

I
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Example 2: Local Trend Model

The local level in example 1 can be supplemented with a local growth rate,

denoted at the beginning of period t by b,_, . The measurement equation then

becomes

y, =a,_1 +b,_, +e,, (2.5)

the changes in the state variables governed by the level and rate equations:

a, =a, 1 +b, +a le, (2.6)

b, =b, 1 + a 2e, (2.7)

Here 0 = (a, a2) .

2.2 Exponential Smoothing and the Decomposition of the Likelihood

Function

The point predictions in the study are obtained from the above models fitted to time

series data using maximum likelihood methods. We show, using the theory of

conditional probability, that the likelihood function can be written quite simply in

terms of the one-step ahead prediction errors. We then demonstrate that minimising

the sum of squared one-step ahead prediction errors also yields the maximum

likelihood estimates.

To obtain an expression for the likelihood function, begin by considering the situation

at the beginning of a typical period t. In these circumstances the old series values

yl, y2,- • • , y,_1 will be known from past observations of the process. y„ however, still

being unknown at this point of time, is uncertain. The following argument is built on

the inductive hypothesis that given trial values of the seed vector xo and the

parameter vector 0, the state vector x,_1 may be treated as fixed and known.

Equation (2.1) then implies that y, I yl,• • • , y,_1,x0,0,a has the same distribution as e,.

Using (1)(•) as a generic symbol for a probability density function, and recognising
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that the Jacobian of the transformation between y,iyi • • ,y,_, , xo ,0,a and e, is unity,

the associated density is

(I) (Yt Y1 ,• • • ,y ,x0,0,cr ) = (27t0- 2 1112 exp(—e,2 /2a 2 . (2.8)

Moving to the end of period t, y, is observed. A fixed value for the error, the one-

step prediction error, is calculated with

e, =y, — x,_, . (2.9)

Then a fixed value of x, can be computed with equation (2.2), thus confirming the

use of the inductive hypothesis about the fixed nature of x,_1. Together, these steps at

the end of period t, define the most general linear form of exponential smoothing -

see Box & Jenkins, 1976. Some important special cases are considered in the

following two examples.

Example 3 (Simple Exponential Smoothing)

For the local level model (Example 1) the general form of exponential

smoothing reduces to

e, =y, —a,_1

al = al-1 +ocet

(2.10)

(2.11)

This corresponds to the case of simple exponential smoothing (Brown, 1959).

Note that at is now conditioned on the sample yi, and the seed ao. In

contrast to the model in Example 1 where it was random, at is now fixed and

known.

Example 4 (Trend Corrected Exponential Smoothing)

For the local trend model (Example 2) we obtain

= .Y1 at-1 -111-1

at = at--1+k-1+cc let

b, = b,_1 +a, 2e,

(2.12)

(2.13)
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This is conventional trend corrected exponential smoothing (Holt, 1957).

Again it should be noted that being conditioned on yi, y2,...,y, and the seeds ao

and bo, both a, and b, are fixed. This should be contrasted with their

counterparts in the local trend model (Example 2), where both a, and b, were

random.

The joint density of a sample of size n governed by the dynamic model (2.1) - (2.2),

conditional on x050 and c , is denoted by (13,(y15y2,• • • y„lx050,a) . By the theory of

conditional probability, it can be written in the recursive form

(1)(3/15y2,—..YnIx05050-)=4)(Ynijii5Y25—Yx05°,04015Y2,—Yxo50,a) (2.14)

and resolved into the product of conditional densities
11

4)(Y1,Y25—Y„ix05050')= 1-10.YtiYi5Y25—Y/A5x0,05a). (2.15)
1=1

More specifically
(n

(101,Y25—Ynix050,a) = (27ra 2 r2 ex_ pEe,2 2a2
/.1

(2.16)

If the time series were stationary, the seed state vector xo would have a well-defined

density. This could then be used in conjunction with (2.11) to obtain the

unconditional joint density sts(y15y25- • • y„I0,a) . The time series are non stationary in

the cases of simple and trend corrected exponential smoothing. In these

circumstances, because the distribution of xo does not exist, the unconditional density

of the sample cannot be obtained.

The density (2.12) effectively summarises all that can be known about the sample

generated by a non-stationary stochastic process and the definition of likelihood must

be based upon it. The likelihood, a function of xo together with the parameters 0 and

a 5 is defined as:
ii

4x0, 05a I yl,y2, • • • y„ = (27ra 2 ) 
-n 

ex[_ e,2/2a2)
/2

1=1

(2.17)
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The rationale for the inclusion of xo is that it summarises the effects of the past. Yet

the past provides no information on xo To the extent that past forces have shaped the

sample, any information about the past must be gleaned from the sample alone. It

therefore makes sense to estimate xo from the sample, hence the need to include xo

in the definition of the likelihood function.

The likelihood (2.17) looks remarkably like the prediction error decomposition of the

likelihood function associated with Kalman filtering (Schweppe,1965; Harvey, 1991).

It differs, however, in that the one-step prediction errors used in (2.17) are obtained

with exponential smoothing rather than the Kalman filter. Unlike the Kalman filter,

the one-step ahead prediction errors from exponential smoothing are homoscedastic.

The conditioning on xo eliminates the need to deal with the heteroscedastic one-step

ahead prediction errors.

2.3 Estimation Method

The maximum likelihood estimate of a is given by

6 = 11E4 In1=1
(2.18)

On concentrating a2 out of the likelihood function (2.17) with (2.18), it may be

established that maximising the likelihood is equivalent to minimising the sum of

squared errors function
11

s(x0,o)=Ee,2 , (2.19)
1=1

the e, being the one-step ahead prediction errors from the exponential smoothing

routine which are conditional on xo and 0.

Those values of xo and 0 which minimise the sum of squared errors function (2.19),

denoted by I° and 0, are obtained by numerical optimisation, possibly with a

suitably adapted version of the Newton-Raphson method. Special transformations
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may be needed to ensure that parameters such as a1 and a 2 are restricted to non

negative values. The number of variables to be optimised in xo and 0 can become

quite sizeable in some models, particularly those involving seasonality. It is

anticipated, however, that the model's linearity in xo helps to maintain computational

loads at relatively low levels.

2.4 Predictions

Predictions can be obtained, for t = n+1,•••n+ h, with the equations

Si, = (2.20)

(2.21)

It is convenient to combine the h predictions into the h-vector 5.

3. PREDICTION INTERVALS

3.1 Conditional Hessian Method (CHS)

The future values of the time series, denoted by the h-vector y, ultimately depend on

xo and 0. The relationship, which can be written as

y = f(x0,0)+e (3.1)

where e is the h-vector of future disturbances, has a Jacobian with respect to x0,0

which, when evaluated at the optimal solution , will be denoted by the matrix J.

The Hessian of the sum of squares function (2.19), evaluated at the optimal solution,

will be denoted by H. If y is a h-vector of future values of the time series, then

E(y — Sr)(y Sr) 6' 2 (111-1J1 + I) (3.2)

The square roots of the diagonal elements of the resulting RHS matrix in (3.2) may

then be used as approximate root mean squared prediction errors required to establish

the prediction intervals.

A potential difficulty with this strategy is that the elements of 0 are constrained in our

context to be non negative. The establishment of prediction intervals when inequality
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restrictions apply to the parameters is a non trivial problem. To avoid the associated

complexities, we only find the Hessian with respect to those elements of 0 which are

not at their lower bound of zero in the optimal, feasible solution. The other elements

are fixed at their optimal value of zero and are treated as though their sampling

distribution is entirely concentrated at this point. The effect is to understate the risk

and hence underestimate the root mean squared prediction errors. To the extent that

the estimates are consistent, the errors from this form of conditioning are likely to be

insignificant in all but small samples.

3.2 Bootstrap Methods

Bootstrap methods (Horowitz, 1995) represent an alternative where inequality

restrictions are handled relatively simply by imposing constraints on the optimisation

used to obtain the estimates. It is assumed that estimates 10,o of the model have

been obtained from the time series data and that the associated errors are represented

by an n-vector ê. The bootstrap strategy, in our context, is to simulate from a model

with seed vector xso and parameter vector Os determined by the approximation

x; = io and Os = 0̂ . (3.3)

3.2.1 Conventional Bootstrap Method (CBS)

The typical trial of the conventional bootstrap method, in our context, consists of

the following steps:

B1 Generate n + h disturbances elt 5. • • e,r,+h using random selection with

replacement from the elements of ê.

B2 Calculate the enlarged time series sample v 
5 • • 

with the relationships in
• Ynt 4-h

the model (2.1)-(2.2) for the seed vector and parameter vector (3.3).

B3 Find the constrained maximum likelihood estimates iro ,et for the sample

y;,- • • yt„ . Then generate the corresponding predictions E+1,•••E+h with

(2.20) and (2.21).

6
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B4 Compute the associated prediction errors

"e;r = )); (t= n +1,• • • n + h) ,

storing them in the ih row of a matrix t •

These steps are repeated a total of m times. On completion, the typical column j of

the result matrix E corresponds to a sample of size m of the j-step ahead prediction

errors. The (1-P)/2 and (1+P)/2 fractiles of this sample are used as the limits of a

prediction error interval, P being the nominated confidence level.

3.2.2 Parametric Bootstrap Method (PBS)

Another strategy is to again rely on the approximation (3.3) but to generate the

disturbances from a continuous distribution presumed to be a good approximation to

the empirical distribution of the residuals ê. The possibility used here is an N(0,62)

distribution, a being the estimate of the standard deviation computed from the vector
e with (2.18). This parametric form of the bootstrap method is essentially the same

as the conventional bootstrap method, the only difference being that step B1 above is

replaced by random selection from an N(0, 2) distribution.

4. MONTE CARLO SIMULATION

The three approaches to prediction interval determination potentially yield different

results. Monte Carlo simulation studies were therefore undertaken to gauge the

• differences under controlled conditions.

4.1 Monte Carlo Design

The following steps were repeated 1000 times in each simulation:

Si Generate an extended sample of disturbances e1,- • • ,en+h from an N(0, a 2 )

distribution.

S2 Use the model (2.1) to (2.2), in conjunction with the disturbances from step 1, to

generate the extended time series y1,• • • 9 yn y,1+1 , • • • n+h•

10



S3 Obtain the prediction intervals for a nominated confidence level P with one of the

three methods applied to the sample yl,•••,y„. (m= 1000 in the case of the

standard bootstrap and parametric methods).

S4 Update coverage counters for lead times .e = 1,2,... h with

K „44 +1 if y„.„ is in prediction interval for period n+
K n+t •

K tuft otherwise

On completion of the simulation compute the coverage indexes:

K n+e = for = 1,2,... h
1000P

(4.1)

(4.2)

Ideally, when expressed as percentages, these indexes should be 100 percent. Any

significant deviation from 100 percent is an indicator of serious problems with the

prediction intervals.

The computer programs for the simulation, written in Fortran 77, were run on a DEC

Alpha 7000 - 610 computer under the VMS operating system. Optimisation and

random number generation were undertaken with standard subroutines from the

NSWC subroutine library (Morris, 1993). Since the optimiser was designed for

problems without constraints, non negative conditions on the parameters were

enforced by replacing each non negative quantity by the square of a quantity

permitted to range over the entire real line.

The simulation was applied under a range of experimental conditions to the models in

examples 1 and 2. In the case of the local level model, all simulations began with

ac, = 200. The smoothing parameter cc was varied, being assigned any of the values

0.0, 0.5 and 1.0. In all cases of the local trend model a() = 200 and bo = 3 . The

smoothing parameters (cc I a2) were assigned values of (0 0) , (0.8 0.5) and

(1 1) . The standard deviation a of the disturbances was set to 5 and 10. The

simulations were undertaken for sample sizes n = 30, 50, 200. In the case of the local

trend model we report results for a sample size of 20. To test the robustness of the

results, all the simulations were repeated with a t-distribution in place of the normal
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distribution in step Si above. More specifically, random variates were generated from

a t-distribution with 5 degrees of freedom. These variates were then scaled by a

quantity of appropriate size to give the required disturbances with the nominated

standard deviations of 5 or 10. The objective was to determine the effect of fatter tails

on the prediction intervals.

4.1 Monte Carlo results

Tables 1 and 2 contain cross tabulations of the results expressed in percentage terms.

Most sections of the tables refer averages of the coverage indexes. Two refer to the

standard deviations of the coverage indexes. The following notation is used:

CBS standard bootstrap method

CHS conditional Hessian method

PBS parametric bootstrap method

Smpl Size sample size

Nominal CL nominal confidence level

From the tables it can be seen that all methods produced prediction intervals that were

too small on average. The parametric method is best amongst the three proposed

methods, its performance being close enough to the 100 percent mark to justify its

use in practice.

The conditional Hessian method out performed the conventional bootstrap method,

despite previous findings indicating that, in many applications, bootstrap statistics are

more accurate in small samples than first-order approximations (Horowitz, 1995).

It may have been anticipated, given the dependence of the other methods on the

normal distribution, that the conventional bootstrap method would have worked best

in the case of the t-distribution. This preconception, however, is not supported by the

results. Interestingly, for the local trend model, the prediction intervals proved to be
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more reliable in the case of the t-distribution. The resulting prediction intervals were

presumably slightly wider than those for data generated from a normal distribution

and hence had less of a downward bias.

More detailed findings are as follows:

• The prediction intervals improve with sample size. The parametric bootstrap

method could be relied upon for most applications for sample sizes in excess of

30.

• The prediction intervals become less reliable with increases in the prediction

horizon. Again the parametric approach seems to produce satisfactory results for

the five periods tested.

• The simulations were undertaken for two nominal confidence levels (0.9 and

0.95). The results were remarkably similar for both the cases considered.

• The results for the various parameter values are more complex. Both small and

large values of the parameters were associated with a strong performance.

Intermediate values were associated with a diminution in the reliability of the

intervals.

Tables summarising the results for the two standard deviations of 5 and 10 are not

shown in the paper. The results for the prediction intervals were very close for both

cases. This may reflect an invariance property with respect to the scale parameter o.

5. APPLICATION

The parametric method for prediction interval determination is illustrated with an

application to current GNP per capita of Malaysia. The data, available in annual
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terms, was taken from the World Bank World Tables (released: 22-April-96),

extending from 1962 to 1994. This data is reproduced in Table 3.

Because of the presence of a long term exponential trend, the entire series was

initially transformed with the natural logarithm function. Trend corrected exponential

smoothing was applied to the transformed series in conjunction with a numerical

optimiser to find the best smoothing parameters. Point forecasts were generated for

the period 1995-1999 in the 'log space' and converted back to original terms with the

exponential function. The limits of the 90 percent prediction intervals, expressed as

percentage deviations from the point predictions in Table 4, were obtained directly

from the results of the parametric bootstrap in 'log-space' based on 1000 replications.

The results appear to be plausible and are illustrative of the potential that this

approach holds in practice.

6. CONCLUSIONS

The bootstrap approach provides a relatively simple solution to the problem of

establishing prediction intervals for the exponential smoothing methods. Despite the

associated approximations, this study indicates that the parametric form of the

bootstrap method produces sufficiently accurate prediction intervals for them to be

used in practice. The computational loads associated with this method are quite high

on traditional standards. With the recent advances in modern desktop computers,

however, it has reached a point where the associated calculations can be done in a

relatively short period of time, in the range of 30 to 60 seconds for the 1000 iterations

of the bootstrap on the DEC Alpha computer. The parametric bootstrap method is

now an attractive proposition for many business forecasting applications.
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Method

Factor CBS CHS PBS

Distribution Effect on Average Coverage

Normal 97.6 98.5 99.1

t-Dist 97.1 98.4 98.8

Distribution Effect on Std Dev of Coverage

Normal 1.8 1.4 1.2

t-Dist 2.4 1.6 1.5

Smpl Size Effect on Average Coverage

30 96.4 97.8 99.0

50 97.3 98.3 98.8

200 99.1 99.4 99.5

Lead Time Effect on Average Coverage

1-Step 99.0 99.6 100.2

2-Step 97.6 98.5 99.0

3-Step 97.5 98.1 98.8

Nominal CL Effect on Average Coverage

0.9 97.4 98.3 99.0

0.95 97.9 98.7 99.1

Alpha Effect on Average Coverage

0 98.6 99.0 99.6

0.5 96.9 97.9 98.5

1 97.4 98.6 99.1

Table 1. Simulation of Prediction Intervals: Local Level Model

17



•

Method

Factor CBS CHS PBS

Distribution Effect on Average Coverage

Normal 95.8 96.1 98.2

t-Dist 96.4 97.2 98.7

Distribution Effect on Std Dev of Coverage

Normal 3.9 3.7 2.5

t-Dist 2.8 2.4 1.6

Smpl Size Effect on Average Coverage

20 84.5 85.7 90.7

30 93.8 94.2 97.6

50 96.4 96.8 98.6

Lead Time Effect on Average Coverage

1-Step 97.9 98.0 99.8

2-Step 96.2 96.5 98.4

3-Step 95.3 95.6 97.7

4-Step 95.1 95.7 97.7

5-Step 94.3 95.0 97.2

Nominal CL Effect on Average Coverage

0.9 95.4 95.8 98.1

0.95 96.1 96.5 98.2

Alphal Alpha2 Effect on Average Coverage
0 0 96.9 96.8 99.1

0.8 0.5 93.8 94.3 96.7

1 1 96.9 97.6 99.0

Table 2. Simulation of Prediction Intervals: Local Trend Model
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Year 1966 1967 1968 1969 1970
NGNP 340 350 370 380 390

Year 1971 1972 1973 1974 1975
NGNP 410 460 600 780 890

Year 1976 1977 1978 1979 1980
NGNP 950 1010 1160 1470 1800

Year 1981 1982 1983 1984 1985
NGNP 1940 1860 1800 1940 1910

Year 1986 1987 1988 1989 1990
NGNP 1880 1960 2130 2240 2400

Year 1991 1992 1993 1994
NGNP 2530 2830 3140 3520

Table 3. Current Gross National Product per Capita of Malaysia ($US)

Source: World Bank World Tables (released: 22-April-96)
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Year Prediction Lower Upper
Limit Limit

1995 3955 -4.3% 3.7%
1996 4273 -4.7% 4.3%
1997 4617 -5.4% 5.1%
1998 4989 -6.3% 5.8%
1999 5390 -7.3% 6.7%

Table 4. Predictions and 90 Percent Prediction Intervals

4 Current GNP per Capita of Malaysia
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