
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


TnovA-s4-

ISSN 1032-3813

ISBN 0 7326 0791 4

MONASH UNIVERSITY

OCT I

AUSTRALIA

A TEST TO COMPARE

TWO RELATED STATIONARY TIME SERIES

Anne' Maharaj and Brett Inder

Working Paper 10/96

September 1996

DEPARTMENT OF ECONOMETRIC_Sj

X



A TEST TO COMPARE TWO RELATED STATIONARY TIME SERIES
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ABSTRACT

Hypothesis tests designed to compare stationary time series usually require the series

to be independent. In order to compare time series that may be influenced by one or

more COMM011 factors, one has to assume that their underlying generating processes

are related. In this paper we present a test statistic, which will be used to test for

significant differences between generating processes of two time series that may be

logically connected. The lest statistic is based on the differences between estimated

parameters of the aittoregressive niodels which are fitted to the series.

1. INTRODUCTION

The comparison of time series has applications in various fields including economics,

geology, engineering and climatology. Hypothesis tests designed to compare two •

stationary independent time series involving the use of fitted parameter estimates were

considered by De Souza and Thomson (1982) and Maharaj (1996). Most other tests in

the literature for the comparison of independent stationary series involve the use of the

estimated spectra of the series. Some relevant studies are Swanepoel and Van Wyk

(1986), Coates and Diggle (1986) and Diggle and Fisher (1991). In practice the

application of these tests to real time series is limited since comparisons are often made
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between logically connected series. For example if we wish to compare gold

production over a number of years between two countries, we need to take into

account that global supply and demand influences production in the two countries. In

this case the time series are not independent.

We will assume that if the series are not stationary, then the same order of

differencing will be needed to make each one stationary. Just as in Maharaj (1996), it

will also be assumed that ARMA models, converted to infinite order AR models

truncated to order k, will be fitted to each series and the test statistic will be based on

the difference between the AR(k) estimates of the two series under consideration.

However in this paper it will be assumed that the disturbances of the two models are

correlated. A test for significant differences between the generating processes of these

logically connected series uses a statistic based on generalised least squares estimates

of the AR parameters. This test is concerned only with testing for significant

differences between the underlying stochastic nature of two series. In section 2 we

present the test statistic which has an asymptotic chi-square distribution, and in section

3 we investigate the distributional properties, size and power of the test, for finite

sample sizes by a Monte Carlo study. In section 4 we apply this test to economic time

series and to climatological time series.

2. TEST OF HYPOTHESIS

Let Zt be a zero mean univariate stochastic process and at be a univariate white noise

process with mean 0 and variance, Ga2. Then Zt is such that Zt E L , where L is the

class of stationary and invertible ARMA models. Using the standard notation of Box

and Jenkins (1976), such a model is defined as



(1)(B)Zt = e(B)a,

where

4)(B) = 1 - (1)113 - ck2B2 -. . . - 431,13'

e(B) = 1 - 0113 - 02B2 -. . . - OqBq

with the usual restrictions on the roots of (B) and e(B).

Zt can be expressed as

where

Z, = + a,

11(3) = 4)(B) 0-1(B) = 1 - 7c113 - 7c2B2 - . • •

Let {xt } and {yt}, t = 1, 2, . . . , T, be two correlated stationary time series. Then

using a definite criterion such as Schwartz's BIC for modelling AR structures,

truncated AR(00) models of order k1 and k2 can be fitted to {xt} and {Yt},

respectively. Define the vector of the AR(k1) and AR(k2) parameters of the generating

processes Xt and Y1 , respectively as

IT = [7c rc nix 2x • • • k ix

and

H'
Y 
=[m,

1

Let

TC2v • • • Thkg ] •

k = max(k1,k2).

Then if k = k2

n iy = 0 for j = k2+1, k2+2,. . . , k

and if k k2#1c,

for j =1:1+1, kl+2, , k.
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Then define

x PC1 x x • • • kx

= [kv . TE 2v . . . ky

Given the series {xt} and {yt}, t = 1,2,...T , the hypotheses to be tested are

Ho: There is no significant difference between the generating processes of two

stationary series i.e. 1TkX= 11ky •

H1: There is a significant difference between the generating processes of two

stationary series. i.e. Flkx # nkv •

Berk (1974) truncated the infinite order AR process to order k and obtained the AR

estimates by the method of least squares. This gives valid asymptotic results providing

k is chosen as a function of T, such that

0 and VT E 1ThJx1-÷ 0 as T —› oo ,
J=k+1

where T is the length of the stationary series to which the AR(k) model is fitted.

Bhansali (1978) derived the asymptotic normal distribution of these estimates.

The model to be considered is of the form of the "seemingly unrelated

regressions" model, as proposed by Zellner (1962). The T-k equations of the models

fitted to {xt} and {y,} can be expressed collectively as

x = WJ1. + ax

where

y = 
Wynk, 

av

. XT- I Xi]

= [yk+1 YT-1 yr]

(2.1)
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and

W, =

=

X' k xk-1 x,

XT-3 • xT-k-1

XT-2 xT-k

Yk Yk-1 yl

• •YT-2 YT-3 • YT-k-1

_YT-1 YT-2 • YT-k

IT = [TEL. ix 72\

nk' • =

=

nkx]

nkyi

aT-I x aTx]

[ak+, y aT-I y aTy

E[a]=O E axa', 2,,c I T-k

E[ay] = 0 E[ayad =

. where IT.k is a (T-k) x (T-k) identity matrix. We will assume that the disturbances of

the two models are correlated at the same points in time but uncorrelated across

observations, i.e.

E(a xa,) axyIT.k •

The dimensions of x, y, a, and ay are (T-k) x 1, of rik,, and Ilky are k xl and of Wx and

Wy are (T-k) x k.
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Then, assuming that a total of 2(T-k) observations are used in estimating the

parameters of the two equations in (2.1), the combined model may be expressed as

Z = WII + a , (2.2)

where

and

where

Z

II =

E=

_

--xl

_yi
, W=

-

E(a) = 0

_
W, 0

0 Wy __

[a xl
a =

[a y

E(aa') = V= E 0 IT.k

0. (72. 1.

2a x CY yx

_ xY !,.,

-, •

Thus the generalised least squares estimator is

fl = [W'V-1W1-1 WiNT-1 . (2.2)

Now assuming that a is normally distributed, then by results in Anderson (1971) and

. Amemiya (1985), 11 is asymptotically normally distributed with mean n and

covariance matrix

Now

may be expressed as

Var(f1). (W'V-IW) 1 . (2.3)

Ho . IIkx = IT ky

H0: Rn = o ,

.

_



where

R = [Ik -Ik]

and Ik is akxk identity matrix. Hence RU is asymptotically normally distributed with

mean RII and covariance matrix

Var(Rfl) = (RW'V-1WR') . (2.4)

Let

F = (Var(RfI)) I/2(R — RH).

Then substituting (2.2) into (2.5), F becomes

F = [R(W'V-1W) R 11/214(W'V-IWY V(VII + a) —

Under Ho,

_ }1/2

F = [R(W'V-1W)
1 

R' It(WV-1W) 1 Va,

and under the assumption that

a — N(0, V) ,

E(F) = 0 and E(FF') = Ik .

Hence

Therefore

A

F N(O, Ik).

F'F = (RfI) [RVar(fl)RTI(Rfl)

(2.5)
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Since E is unknown, a feasible generalised least squares estimator of n will have to be

used. By Zellner (1962) least squares residuals may be used to estimate consistently

A , y
ai

X y 
the elements of E with a: = ' ' , a- =  and a,

T — k T — k T k

Hence the feasible generalised least squares estimator is

with

where

= [W1 "-c7-1W]-1W'criZ ,

(Var(n)) =

= 01 and t =
^ 2 ^
6 x 6xy

a 6xy Y

Since CT in nonsingular and

plim V = V = plim = Var(f1) ,

then under 110

F = (Var(RfI)) v2Rfl N(O, 1k)

(Var(Rn)) 1/2Rfl ~A N(O, 1k)

D = F'F = (Rn) [RVar(n)R1 l(Rfl)
A

X2(lc).

The statistic D presented thus has asymptotically a chi-squared distribution.

(2.5)

3. SIMULATION STUDY

To investigate the finite sample behaviour of the test statistic D, series of lengths 50

and 200 were simulated from a number of ARMA process. Distributional properties of

the test based on D were checked by obtaining estimates of the mean, variance and
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skewness and size. This was done by applying the test to pairs of series simulated from

AR(1) processes for (1) = 0.1, 0.5, 0.9, MA(1) processes for 0 = 0.1, 0.5, 0.9, AR(2)

processes for 4)1 = 0.6 4)2 = 0.2, MA(2) processes for 01= 0.8 02= -0.6 and

ARMA(1,1) processes for 4) = 0.8 0 = 0.2. It was assumed that the correlation

between the disturbances of the underlying generating processes of the series in each

pair was in turn 0, 0.5 and -0.9. Estimates of size were obtained for the 5% and 1%

significance levels. Estimates of power for the 5% and 1% significance levels were

obtained by applying the test to pairs of AR(1) processes for (1) =0.5 versus 0.1, 0.2,

0.3, 0.4, 0.6, 0.7, 0.8 and 0.9. This was again done by assuming that the correlation

between the series in each pair was in turn 0, 0.5 and -0.9. The order (up to 10) of

the truncated AR model to be fitted to each series was determined by Schwartz's BIC.

However in estimating the model in (2.1), the maximum order k was fitted to both the

series in each pair. The test statistic D was then obtained. This was repeated 2000

times. As well as obtaining size and power estimates for the degrees of freedom

corresponding to k each time, overall estimates of power and size were also obtained

by aggregating over the various k values.

For series of length 50, size is considerably overestimated. The overall size

estimates are shown in Table 1. No further analysis was done on series of length 50.

For series of length 200, the estimates of the means, variances and skewness for the

various degrees of freedom are very often fairly close to the theoretical means,

variances and measures of skewness respectively. The measure of skewness was

calculated from the ratio of (mean -median) and standard deviation. The results for

which there were at least 100 test statistics corresponding to a particular degree of

freedom are shown in Table 2. Size estimates for the series simulated from the AR

9



models are fairly close to the predetermined significance levels when the correct order

was fitted but size was often overestimated for other values of k. For the MA and

ARMA models, for some values of k, the size estimates are fairly close to the

predetermined significance levels but in other cases it is overestimated. Hence this

often caused the overall estimates of size to be slightly overestimated. These results are

shown in Tables 2 and 3. Overall power estimates are given in Table 4 and it is clear

the test has reasonably good power.

Table 1 Overall Estimates of Size for T = 50
Correlation

Generating Level of 0 0.5 -0.9

Process Significance

AR(1)
4)=0.1

5%
1%

0.1520
0.0570

(1)=0.5 5% 0.1590

0.0640

(1)=0.9 5% 0.1670
1% 0.0595

MA(1)

0=0.1 5% 0.1570

1% 0.0590

8=0.5

0=0.9

5%

1%

5%

0.1350

0.0510

0.1800
0.0740

0.1240
0.0445

0.1355
0.0445

0.1320

0.0580

0.1235

0.0535

0.1360

0.0515

0.2065
0.0875

0.0935
0.0280

0.0885

0.0320

0.0875

0.0330

0.0930

0.0345

0.0925

0.0330

0.1390
0.0585

AR(2)

(1)1=0.6 (1)2=0.2 5% 0.1630 0.1420 0.0980

1% 0.0610 0.0575 0.0310

MA(2)

01= 0.8 02=-0.6 5%
1%

5%
ARMA(1,1).

(1)=0.8 0=0.2
1%

0.1855

0.0715

0.1575
0.0645

0.1660

0.0715

0.1405
0.0575

0.1300

0.0545

0.1080
0.0290

10



Table 2 Estimates of Mean, Variance, Skewness and Size for T=200

Table 2a Correlation = 0

Generating
Process

Degrees
of
freedom

Number of
Test
Statistics

Mean Variance Skewness Size
(5% sig.
level)

Size
(1% sig.
level)

AR(1) 4)=0.1 1

,

1662 1.0214 2.0306 0.3770 0.0511 0.0123

2 240 3.4933 8.0018 0.2271 0.1750* 0.0417*

AR(1) 4)=0.5 1 1623 1.0161 2.0533 0.3903 0.0462 0.0148

2 252 3.5020 7.5468 0.1813 0.1706* 0.0357*

AR(1) (1)=0.9 1 1648 1.0579 2.3850 0.3787 0.0564 0.0146
9 249 3.3558 8.6883 0.2515 0.1888* 0.0522*

MA(1) 0=0.1 1 1618 1.0381 2.2504 0.3704 0.0544 0.0148

2 269 3.7089 8.8782 0.3160 0.1970* 0.0595*

MA(1) 0=0.5 2 1037 2.2041 5.3012 0.3019 0.0665 0.0154

3 627 3.4591 6.1579 0.2100 0.0686 0.0080

4 184 5.6847 12.0599 0.1351 0.1630* 0.0272

MA(1) 0=0.9 4 111 4.7068 11.7943 0.0952 0.0541 0.0360

5 327 5.4548 11.8254 0.2387 0.0581 0.0092

6 462 6.5769 13.0084 0.1732 0.0800* 0.0108

7 408 7.6273 18.0725 0.2292 0.0882* 0.0196

8 344 8.9412 20.5206 0.1997 0.0930* 0.0262*

9 192 10.7266 22.4665 0.1780 0.1094* 0.0643*

10 140 12.7247 35.3618 0.2707 0.1714* 0.0643*

AR(2) 1 113 1.2847 2.6521 0.3474 0.0531 0.0265

2 1572 2.0913 4.0517 0.2873 0.0541 0.0115

4)2=0.2 3 208 3.9970 9.4500 0.2679 0.1106* 0.0337*

MA(2) 4 814 4.1453 8.1814 0.1929 0.0541 0.0074

0=0.8 5 469 5.7609 12.8913 0.1910 0.0918* 0.0171

02=-0.6 6 258 7.5594 14.5066 0.0654 0.0930* 0.0310*

7 297 8.3352 21.8085 0.2475 0.1111* 0.0337*

ARMA(1,1) 1 602 1.2775 3.2159 0.3935 0.0797* 0.0249*

4)=0.8 2 1145 2.2906 4.7083 0.3037 0.0655 • 0.0131

0=0.2 3 176 4.5763 _ 10.8567 0.2505 _ 0.1705* 0.0450*

* significant at the 5% level
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Table 2b Correlation = 0.5

Generating Degrees Number of Mean Variance Skewness Size Size

Process of Test (5% sig. (1% sig.

freedom Statistics level) level)

AR(1) 4)=0.1 1 1641 1.0466 2.1346 0.3887 0.0609 0.0197

259 3.7052 9.0065 0.2853 0.1313* 0.0579*

AR(1) 4)=0.5 1 1650 1.0713 2.3751 0.3832 0.0582 0.0133

2 227 2.8520 6.7121 0.3348 0.1322* 0.0308*

AR(1) 4:0=0.9 1 1640 1.0204 2.0791 0.3877 0.0573 0.0098

2 280 2.6904 6.1286 0.2872 0.1120* 0.0200

MA(1) 0=0.1 1 1621 0.9616 1.8854 0.3900 0.0432* 0.0093*

262 2.9045 7.4221 0.3175 0.1260* 0.0496*

MA(1) 0=0.5 1 112 1.0469 2.0740 0.4471 0.0538 0.0089

2 1037 2.1237 4.8950 0.2780 0.0601 0.0155

3 567 3.4209 7.4025 0.2173 0.0723 0.0176

4 203 4.6443 12.0947 0.2297 0.0837* 0.0246

MA(1) 0=0.9 4 165 4.5195 10.1064 0.3129 0.0909* 0.0242

5 373 5.7407 14.9021 0.2414 0.0965* 0.0348*

6 411 6.6279 13.6251 0.1027 0.0803* 0.0097

7 381 7.9259 18.8673 0.2068 0.0866* 0.0262*

8 307 9.4861 26.0783 0.2158 0.1433* 0.0325*

9 196 10.6881 21.8468 0.1511 0.0765 0.0352*

10 149 12.2770 25.1335 0.0682 0.1392* 0.0070

AR(2) 1 172 1.5739 5.0712 0.6384 0.0930* 0.0465*

4301=0.6 2 1508 2.1354 4.5089 0.2910 0.0517 0.0146

4)2=0.2 3 212 3.8088 7.4842 0.3192 0.1038* 0.0235

MA(2) 4 815 4.0574 8.7903 0.2182 0.0541 0.0147

0=0.8 5 457 5.6743 11.9856 0.1991 0.0656 0.0175

02=-0.6 6 242 7.1842 16.9086 0.1743 0.0785 0.0289*

7 297 8.3022 18.3549 0.1975 0.1111* 0.0237*

ARMA(1,1) 1 680 1.3028 2.8338 0.3820 0.0838 0.0191

4=0.8 2 1051 2.1556 4.2158 0.2668 0.0533 0.0124

0=0.2 3 187 3.9038 8.2476 0.2849 0.0963* 0.0214

* significant at the 5% level
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Table 2c Correlation = -0.9

Generating Degrees Number of Mean Variance Skewness Size Size

Process of Test (5% sig. (1% sig.

freedom Statistics level) level)

AR(1) 4)=0.1 1 1703 1.0674 2.2951 0.3998 0.0575 0.0117

206 2.2391 5.1043 0.3934 0.0922* 0.0100

AR(1) (1)=0.5 1 1713 1.0828 2.3795 0.3829 0.0613 0.0128

2 191 2.4880 4.5684 0.3037 0.0681 0.0171

AR(1) (1)=0.9 1 1725 0.9845 1.8257 0.3845 0.0441 0.0064

2 181 2.0377 3.2909 0.2483 0.0552 0.0000

MA(1) 0=0.1 1 1717 1.0365 2.0798 0.3856 0.0559 0.0122

2 1703 2.3371 4.5538 0.2552 0.0690 0.0246

MA(1) 0=0.5 1 250 1.0782 2.0458 0.4429 0.0640 0.0040
-) 1061 2.0778 4.1409 0.3134 0.0537 0.0123

3 474 3.2280 6.3863 0.2113 0.0591 0.0105

4 153 4.3478 8.6183 0.2543 0.0588 0.0065

MA(1) 0=0.9 4 284 4.3926 9.6804 0.2835 0.0704 0.0211

5 379 5.6586 11.5141 0.1974 0.0712 0.0211

6 418 6.3640 14.3158 0.2326 0.0742 0.0167

7 322 7.7944 19.5413 0.1912 0.1056* 0.0156

8 261 8.4483 17.4808 0.2024 0.0536 0.0038

9 149 9.9748 29.4605 0.1522 0.0805 0.0604

10 109 10.2732 23.3131 0.1593 0.0550 0.0183

AR(2) 1 339 1.0426 2.5442 0.3234 0.0619 0.0206

2 1396 2.0935 4.4773 0.3104 0.0659 0.0150

(1)2=0.2 3 165 3.4423 7.0527 0.2777 0.0606 0.0242

MA(2) 4 960 4.1243 9.7191 0.2587 0.0583 0.0208

el= 0.8 5 397 5.2624 11.6867 0.1340 0.0453 0.0126

02=-0.6 6 185 6.6477 16.0740 0.1027 0.1027* 0.0108

7 224 7.2634 14.4319 0.2601 0.0536 0.0089

ARMA(1,1) 1 915 1.1620 2.4236 0.3923 0.0710* 0.0186

(1)=0.8 2 886 2.1222 4.2012 0.2978 0.0508 0.0113

0=0.2 3 134 3.3145 7.0200 0.2083 0.0597 0.0075

* significant at the 5% level
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Table 3 Overall Estimates of Size for T = 200

Correlation

Generating Level of 0 0.5

Process Significance 

AR(1)
5% 0.0740*

0.0175

0.0770*
0.0195*

-0.9

0.0645*
0.0120

4)=0.5 5% 0.0740* 0.0735* 0.0625

1% 0.0215* 0.0200* 0.0130

MA(1)
0=0.1

0=0.5

0=0.9

AR(2)

(1)1=0.6 4:02=0.2

5% 0.0830* 0.0680* 0.0535

1% 0.0225* 0.0130 0.0125

5%

1%

5%

5%
1%

5%

0.0835*
0.0270*

0.0795*
0.0145

0.0880*

0.0220*

0.0700*

0.0185

MA(2)

01= 0.8 02=-0.6 5% 0.0880*

1% 0.0215*

ARMA(1,1)

4)=0.8 0=0.2 5% 0.0850*

1% 0.0240*

0.0600
0.0165

0.0690*
0.0185*

0.0985*
0.0245*

0.0680*

0.0210*

0.0770*
0.0220*

0.0715*
0.0160

0.0580
0.0135

0.0580
0.0110

0.0740*

0.0215*

0.0660*

0.0190

0.0625
0.0185

0.0595
0.0135

* significant at the 5% level
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Table 4 Overall Power Estimates for T=200 (AR(1) .1)=0.5 vs AR(1) 00.5)

Correlation

Generating Level of 0 0.5

Process Significance

-0.9

AR(1) 14)
0.1 5% 0.9850 0.9995 1.0000

1% 0.9400 0.9995 1.0000

0.2 5% 0.8875 0.9790 1.0000

1% 0.7255 0.9290 1.0000

0.3 5% 0.5900 0.7955 1.0000

1% 0.3625 0.5730 1.0000

0.4 5% 0.2155 0.3105 0.9220

1% 0.0785 0.1335 0.7865

0.5 5% 0.0740 0.0735 0.0625

1% 0.0215 0.0200 0.0130

0.6 5% 0.2485 0.3490 0.9510

1% 0.1020 0.1615 0.8575

0.7 5% 0.7160 0.8835 1.0000

1% 0.4710 0.7255 1.0000

0.8 5% 0.9720 0.9985 1.0000
1% 0.9080 0.9900 1.0000

0.9 5% 1.0000 1.0000 1.0000
1% 0.9995 1.0000 1.0000
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4. APPLICATION

4.1 Loans Data

Total fixed loan commitments in thousands of dollars of all banks, finance companies

and credit co-operative in Australia for the period Jan. 1985 to Nov. 1995 are

examined. Of interest is whether, over the given period, there are significant

differences in the lending patterns between the institutions The natural log transforms

of these series are shown in Figure L It seems from this figure that, while lending is

on different levels for the three institutions, the lending patterns over the given time

period are similar for the banks and finance companies but differ for the banks and

credit co-operatives and for the finance companies and credit co-operatives. Because

the series are nonstationary, the first difference of the natural log transform of each

series was obtained. All further analysis was carried out on these differenced series

which were assumed to be stationary. Each series has 130 observations. The test was

applied to each pair of series . The results are shown in Table 5. From the results it

can be seen that

• there is some residual correlation between each pair of series. This would be

expected since the same economic factors would affect lending commitments from

the three types of institutions.

• there is not enough evidence to conclude that lending patterns between the banks

and finance companies are significantly different, but there is strong evidence that

lending patterns between the banks and credit cooperatives and between finance

companies and credit cooperatives are significantly different. Since the means of

the undifferenced bank and finance companies series are clearly not the same, the

result of no significant difference between the underlying generating processes of
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the corresponding differenced series clearly demonstrates that the test can

distinguish between the underlying stochastic nature of the two series but not the

underlying deterministic nature of the two series.

These results are in keeping with the observations made on examination of the series in

Figure 1.

Table 5 Results of Loans Data Application

Pair AR(k) fit Residual
Correlation

P-value

Banks vs AR(9), AR(5) 0.3534

Financial Co.

Bank vs AR(9), AR(2) 0.4868

Credit Corp.

Credit Corp. vs AR(2), AR(5) 0.5416

Financial Co.

0.4107

0.0034

0.0002

Figure 1: Total Loan Committments of the Banks, Finance Companies and

Credit Co-operatives from January 1985 to November 1985
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4.2 Tree Ring Data

In order to reconstruct historical climates from information from trees, one type of

measurement that climatologists use are distances between the consecutive rings of

trees. Figures 2, 3 and 4 show tree ring data series for three separate sites about 10

km. apart at about the same altitude on Mount Egmont on the North Island of New

Zealand. Each data set consists of standardised distances between rings, averaged

over a number of trees in a particular site. Standardisation allows samples with large

differences in growth rates to be combined and can be used to remove any undesired

growth trends present. Of interest is whether there are any significant differences

between the growth patterns at the three sites, given that climatic conditions were

assumed to be the same at the three sites. Each series consists of 352 observations.

The test was applied to each pair of series. The results are shown in Table 6.

From the results it can be seen that

• there are almost no residual correlations between the series in each pair

• there is not enough evidence to conclude that there are significant differences

between the underlying processes of the series in each pair.

Table 6 Results of Tree Ring Data Application

Pair AR(k) fit Residual
Correlation

P-value

Site 1 vs Site 2 AR(8), AR(3) -0.0033 0.0698

Site 1 vs Site 3 AR(8), AR(3) 0.0001 0.8814

Site 2 vs Site 3 AR(3), AR(3) -0.0005 0.8783

18



Figure 2 Tree Ring Series at Sites 1, 2 and 3 over 352 years

5. CONCLUDING REMARKS

From the simulation study is clear that for series of reasonable length, distributional

approximations of the proposed test statistic to the chi-square distribution are

reasonably adequate. The size of the test reasonably approximates the nominal size.

Power estimates indicate fairly good power but further comparison with other tests

would be needed to confirm this. From the results so far, it appears that the test can be

quite successfully applied.
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