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Abstract

It is well known that the usual techniques for estimating random and fixed effects panel data
models are inconsistent in the dynamic setting. As a consequence, numerous consistent estimators
have been proposed in the literature. However, all such estimators rely on certain well defined
assumptions, which in practice may often be violated. The purpose of this paper is to ascertain
how robust the available estimators are to such misspecifications, thus providing guidance to the
applied researcher as to an appropriate choice of estimator in such situations.
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1. Introduction
Ever since the pioneering work of Balestra and Nerlove (1966), the estimation of dynamic error

components panel data models has been at the fore of applied econometrics research.! The

econometric interest in such models results from the fact that the usual estimation techniques

(Ordinary Least Squares - OLS, Feasible Generalised Least Squares - FGLS and the Within
estimators) are all biased and inconsistent in typical panel data sets i.e., those with small time
series components but a large cross-sectional one. This is true for both the random and fixed

effects specifications (Kiviet [1995] Sevestre and Trognon [1985] and Nickell [1981]).

As a consequence, numerous semi-consistent (as N, the number of individuals, tends to infinity)
estimators have been proposed in the literature, generally comprising of Instrumental Variables
(IV) and Generalised Method of Moments (GMM) estimators. A Without exception however, all of
these estimators, either explicitly or implicitly, rely on certain assumptions or maintained
hypotheses. In this paper we investigate how robust the most frequently used estimators are
against some basic violations of the underlying assumptions, those which are most likely to occur

in practice.

The plan of this paper is as follows. Section 2 deals with model specification, “traditional”
estimation and (semi-)consistent estimators for dynamic fixed and random effects models.
Section 3 describes the simulation study utilised and discusses its results. Section 4 analyses the
Solow growth model previously considered in a panel context by Islam (1995) and others, and

applies our previous findings to it. Finally, some conclusions are drawn in Section 5.

2. The Fixed and Random Effects Dynamic Panel Model and Traditional

Estimation.

2.1 The Model

“The model to be analysed is the one most commonly used in practice, that is:
Y =0 +0y,, +x, Btu,
where: @; are the individual effects

and: u;, are the usual white noise disturbance terms.

' Comments by Badi H. Baltagi are kindly. acknowledged.




As is well known, the fixed effects specification assumes that the individual effects of (1) are
fixed parameters, whereas the random effects specification treats them as random drawings from a
particular distribution. It also well known that the usual methods for estimating either
specification (for example, the OLS, the Within and Feasible AGeneralised Least Squares
estimators) are all biased and inconsistent as N — o and finite T (Nickell [1981] and Sevestre
and Trognon [1985]). Consistent estimators are available however, generally in the form of

Instrumental Variable (IV) or Generalised Method of Moments (GMM) estimators.

Conditional on the instrument set Z, one generally has three choices of estimator for non-spherical

models with variance-covariance matrix 2 (see Bowden and Turkington [1984]):

a) (X 'Z(Z'QZ)-’Z’)?)—I Xz(zoz)'z’y,

1

b (R 'z(z'z) z2"'X) XQ'zZ(ze'z) ZzQ"y,

) (}?’Q"/zZ(Z’Z)" Z'Q"/ZX)"l xQrz(zz)y'za "y,

where X = ( y_lf X ) Variant a) may be recognised as the usual form of the linear GMM estimator,

and is the only appropriate variant when Z contains lagged values of the endogenous variable as

instruments (see Sevestre and Trognon [1995]).

2.2 Estimation in Levels.”

The Balestra-Nerlove Estimators: (BN(L)) and (G-BNran).

Balestra and Nerlove (1966) show that consistent parameter estimates in an autoregressive error
components (or random effects) model can be obtained by use of lagged exogenous variables as
appropriate instruments (for which all three variants, a) to c), are appropriate, where Q is the
covariance matrix of the composite v, = ¢; +u,, disturbance term). The estimator can similarly
be adapted to the fixed effects model, by estimating (1) by IV, again using lagged values of X as

instruments. The BN® estimator is the only one appropriate for the fixed effects model in levels

? For a fuller description of the following estimators, the reader is referred to source papers and Harris and Méityés
(1996), for a useful summary.




(see below for estimators of the first differenced model). The following estimators are therefore

only appropriate for the random effects specification.

The Hausman-Taylor Estimator: (HT)

Hausman and Taylor (1981) partition the X-matrix such thatX =(X,:X,), where X, are
uncorrelated with the individual effects, but X; is not. In a dynamic panel data setting, the lagged
dependent variable is analogous to X, whilst the remaining explanatory variables (X in the
notation of this paper) are analogous to Hausman-Taylor’s X;. Expanding on the G-BNran
estimator, the HT estimator also considers the means and deviations from the means of the

original exogenous variables as valid instruments in addition to lagged values-of X.

The Amemiya-MaCurdy (AM) IV Estimator
If the x’s are strictly exogenous all past, present and future values become valid instruments for
each time equation. Thus the Amemiya and MaCurdy (1986) estimator for the dynamic model

further extends the instrument set to include X :, , defined as:
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This estimator, if consistent, is at least as efficient as the HT estimator (Amemiya and MaCurdy

[1986], pp.871-872).

The Wansbeek-Bekker (WB) IV Estimator

Despite the presumed asymptotic efficiency of the GMM estimator, its small sample performance
is often bettered by simpler IV type estimators. As a response Wansbeek and Bekker (1996)
suggest a simple generic IV estimator. As we shall see below, the optimal WB estimator is that
which minimises the variance of the generic one. Now both lags and leads (and linear
combinations of these) of the dependent variable are included in the instrument set. That is, by
defining the variable y from period ¢t = 1 to t = T, the WB estimator considers linear functions of

Y, as instruments, where y, is the stacked vector of observations defined from t =0 to ¢t = T for




each individual. The linear functions are defined by the (T + l)x T matrix A;, which yields A’ Y.

as the full instrument set (where A =1, ® A,). Restrictions are imposed on A; such that:
Aty = and  E(y’, Au)=trAE(uy’ ) =0, 3)

where 1, is the (7 X 1) unit vector, which respectively ensure elimination of the individual effects

and consistency of the estimator.

Wansbeek and Bekker (1996) show that these conditions for A; define its structure such that its
rows sum to zero, as do each of its lowest T quasi-diagonal elements (in particular, the lower left
element is zero). Wansbeek and Bekker (1996) only consider the simple AR(1) dynamic model,
therefore in the case where there are additionally exogenous variables, the full WB-type instrument
set would be defined as:

z=(Ay iX) “)
and using 02(Z’Z) as the variance of(Z’u), the generic WB estimator is obtained by applying GLS

to equation (1) after it has been pre-multiplied by the transpose of (4).3 The estimator’s semi-

asymptotic variance will be given by:

Gi(plim%(}?’sz)_l),

Nore

where: P, =Z(Z’Z)_lZ’,

which, from (4), is a function of A. The optimal choice of A is that which minimises (5), such that
A; conforms to its appropriate restrictions. Harris and Matyés (1996) suggest minimising the trace

of (5) by constrained optimisation, such that A; conforms to the restrictions of (3), treating O'i as a

3 Note that this expression for the variance of (Z'l_z) is only an approximation, differing from the true variance to the

extent that E(y' g) # 0, and this cross correlation is not taken into account.




constant. Note that the list of valid instruments can be expanded to include not only A’ Y, butalso

A’X, for example (WB and WB", respectively), such that:
Z'=(Ay iAXX). ' ' 6)

These estimators can also be adapted to the model where the assumption of a scalar covariance
matrix of the disturbance terms u;; is relaxed. The corresponding estimators are still obtained by

applying GLS, but where the variance of (Z’u) is now (Z’Q,Z), where Q, is unspecified and

(Z2'Q,Z) is estimated from initial preliminary estimates of ;.

The Arellano and Bover (ABov) IV Estimator

As with the WB estimator, the Arellano and Bover (1993) estimator first involves transforming the

system of T equations. The nonsingular transformation is now given by:

g= X 7
o) - 7

where K is similar to Wansbeek and Bekker’s A, in thatK1, =0, where K is any (T —1)X T matrix

of rank (T—1). As the first (T —1) transformed errors,

®)

are free of ¢;, all exogenous variables are valid instruments for these first (T—l) equations.
Moreover, assuming serial independence of the disturbance terms v;, along the lines of the

Arellano-Bond estimator, the series (y,.o, y“,...,y,.’,_,) is also a valid instrument (although this

assumption requires more structure for K, which now additionally has to be upper triangular).

Letting H = I, ® H,, the A-Bov estimator is obtained by estimating the transformed model:

ZHy=Z'HXy+Z'Hy,




where: V(Z'Hv)=Z'HQ H'Z,

by GLS. Operationally, Arellano and Bover (ibid p.18), state that provided K satisfies the above

restrictions, the ABov estimator is invariant to the choice. of K*

2.2 Estimation in First Differences.

As first differencing removes the individual effects, whether fixed or random, such estimators are
appropriate for either specification. However, the transformed model still cannot be consistently
estimated by OLS, as the lagged endogenous variable Ay ~is correlated with the model’s
disturbance vector Au, and if the original disturbances are spherical the transformed one Au;, will

follow a first order moving average (MA[1]) process, with variance Var(Au)=02Q, where:
0)

0|
~1

0 -1 2

The Anderson-Hsiao (AH) and Arellano (AR) Estimators

Anderson and Hsiao (1982) suggest both y,_, and Ay, ,as an appropriate instrument forAy, |,
although the latter yields inefficient estimates and therefore y,_, is a more appropriate instrument
(Arellano [1988]). The small sample performance of these estimators is likely to be enhanced by
including additional instruments, AX | for example, as if the number of instruments is the same as
the number of explanatory variables, the resulting estimator will, in general, have no finite

moments (Kinal [1980]).

As the “augmented” AH and AR estimators (AH" and AR") have more instruments than exogenous
regressors, the non-spherical IV variant a) is now appropriate, where Q = QA.S If one wishes to

relax the assumption of a spherical original disturbance terms, following White (1984) it is

possible to consistently estimate the matrix (Z’Q,Z) (I/ N ZZ'Au Ag; Z) . The two-step

* Using this result, the first difference operator was used in subsequent simulation experiments (see Section 4 below).
5 Recalling that only variant c) is applicable when the instrument set contains lagged endogenous variables.




and one-step variants of these (and following) estimators will be asymptotically equivalent if the

u;; are independent and homoscedastic (Arellano and Bond [1991]).6

The Balestra Nerlove (BN(A)) and Sevestre-Trognon (ST(") and ST®) Estimators
The Balestra-Nerlove estimator can also be applied to the first difference model, where the

instruments for A y_, are simplyAX _,. Sevestre and Trognon (1995) suggest the same instrument

set, but non-spherical IV variants b) and c), as opposed to a). Although these estimators will be
more efficient than those using the same instruments on the untransformed model (Sevestre and
Trognon [1995] and White [1984]), a direct comparison with the Anderson-Hsiao estimator, for

example, is not straightforward as different instrument sets are used. For the two-step estimator,

N
Q, was directly estimated as Q, = (1/ NY Au AR ,.) .
i=1

The Arellano-Bond One Step IV (AB) Estimator
If the time series is assumed to start at ¢ = 0, the variable A y,_, will only be defined at 1 =2. Att

= 2 the only valid instrument for Ay, _, is y,,. At =3, the valid set of instruments for Ay,_, is
now expanded to include y;;, and so on. Along similar lines to the AM estimator, if the x’s are
strictly exogenous, they are also all valid instruments for each time equation (Arellano and Bond
[1991]). Once the appropriate instrument set has been defined, the AB estimator is then a simple

application of non-spherical IV variant a).

The AB estimator is the most semi-asymptotically efficient of all IV estimators using lagged
values of the dependent variable as instruments (Sevestre and Trognon [1995]), although more
efficient GMM estimators can be derived (see below). However, computationally both of the AB
estimators may prove problematic due to: the size of the instrument matrix (especially as T
increases); the loss of two time periods for estimation; and difficulty in coding the appropriate

instrument matrices in standard econometric software packages.

2.3 A Generalised Method of Moments (GMM) Estimator

8 This procedure is similarly applicable to most of the subsequent estimators, and are called “hat” estimators.




The essence of GMM estimation involves explicit exploitation of theoretical moment conditions
which, for estimation purposes, are replaced by their sample counterparts. The IV estimators
presented above are based upon only a subset (of the linear ones) of these conditions. Due to the
recent work of Ahn and Schmidt (1995) and Crépon et al. (1996) for example, attention has turned
to GMM estimation of dynamic error component panel models, although the technique can also be

applied to fixed effects dynamic models.
Firstly define the initial values as:

Yio=ai+£’io_ﬁ_+uio’ (11

where the parameter vector corresponding to the exogenous variables 3 is assumed to be identical
across equations (1) and (11) (a requirement of the need for consistent starting values of the full

parameter vector for GMM estimation). Equations (1) and (11), along with the “usual” set of

standard assumptions, allow g implicit orthogonality conditions to be defined. These conditions

for both the fixed and random effects specifications are summarised in Table 1 below, along with

how these relate to the IV estimators presented above.




Table 1: GMM Conditions and IV Estimators'

Fixed Effects Model Random Effects Model

Condition Estimators using it

E(vio) =0 GMM

Condition  Estimators using it

GMM

GMM (Vio )2 =03 GMM

E
All except AH, AH" & 2- 1 E(v,gv, ) =02 All except AH, AH" & 2-
step ST

GMM

step ST
E(Vi:) =0 GMM
All except 2-step BN,
BN® & ST®

All except 2-step BN®,
BN® & ST®

All one-step estimators

E(Vi: vis) =0,

a

!
|
|
I
|
|
I
|
|
[
|
|
l
|
|
|
|
l
|
|
[
|
!
|
|
|
! E(v,.,)z =o2+02 Alllevels estimators
| except GMM, WB, WB* &
|
|
|
|
|
|
|
|
I
I
|
|
|
I
|
|
|
|
I
|
|
l
I
|
|
|
1

ABov
GMM E( yiov,.,) =c? GMM, AR, AR*, AB & AB*

All except AR, AH & AB E(v.ox‘.':) 0 GMM

All E(v,x4) =0 All except AR, AH, AB &
WB

All except AR, AH & AB ) 0 All

E(v,
E(

V':xif
v, xi’;) 0 All except AR, AH, AB &
WB

' The relationship between conditions and IV estimator is only an approximation in many cases, for example
estimators that use X as instruments obviously do not require independence between all of the disturbances and all of
the X’s, etc..

2 ¢ is a constant.

Harris and Matyés (1996) give an example of how these orthogonality conditions translate into
identifying equations expressed in terms of observed variables and parameters. The GMM

estimator of the full parameter vector ¥, which contains the parameters of interest as well as other

nuisance parameters, is simply obtained by the value that minimises the criterion function:




’

@ = min, my (yr) W”'m, (v)

where: m, = N"Zm,.(_l/_/),

W = lim cov(N"/ZZm‘.)zcov(mN) ,

N oo
i

’

and: W= N"" Zm,. (z) m, (_IE) , evaluated at an initial consistent estimate of .

A problem with such GMM estimators is that the number of such orthogonality conditions g tends
to infinity as T — e. The question of how many of these over-identifying equations one should
use therefore naturally arises. Although asymptotic efficiency arguments suggest all such
conditions should be used, Crépon et al. (1996) have shown that there is no efficiency loss in
disregarding those equations in which any of the parameters of interest do not feature (which
unfortunately does not apply in this case). Moreover, Keonker and Machado (1996) show that if ¢
increases without bound as the sample size (here in 7) increases relative to the dimensions of the
parameter vector, the usual limiting distribution of the GMM estimator may not be valid. The

problem arises in thé estimation of W as q — oo too quickly. An obvious example is that the

columns of W are likely to become increasingly collinear, such that it becomes singular. Thus, as
in Harris and Métyéas (1996) and after Keonker and Machado (1996), two GMM-type estimators

are considered. The first one uses the (numerically determined) maximum number of such
conditions, with the “optimal” weighting matrix, W. The second uses all such conditions, but

uses [ as the weighting matrix (Table 2).

Table 2: GMM-Type Estimators for the Dynamic Panel Model.

Sample Size Conditions Used

T N Fixed Effects Random Effects =~ Weighting ~ Estimator Mnemonic _

Matrix'

25 a) -j) a) - k) I GMM_F1(R1)
25 a) - j) a)-k) . I GMM_FI1(R1)
25 | a) - g) and i)? a)-g),Jj) GMM_F2(R2)
25 a), b),d) and f) a), b), d) and e) GMM_F4(R4)




Notes: ' W is the estimated covariance matrix of the empirical moments. 22i) fork=1 only.

3. The Simulation Experiments
The data for the simulation experiments follows closely that Harris and Matyas (1996), such that
the assumed data generating process was:
Y, =0, +6y, + x,.(,')ﬁl + x‘.(,z)ﬂz +u,,
Yio =0, +x_’mé+ui0
where: u, ~ iid N(0,1),
xM =p x*) +uniform(-05,05), k= 1,2

it-1

and: 6=06,=6,=05,p,=05and 1.

The individual effects were generated as @, =1,...,N and @ ~iid N(0,1) for the fixed and

random effects specifications respectively. Sample sizes of T = 4, 10 and N = 25, 50 were chosen.
Finally, due to computation time, the number of Monte Carlo repetitions was limited to 100.” In

each case, analysis is focussed upon the estimation of &.

3.1 Misspecification: The Scenarios
The violations of the usual assumptions for the fixed effects model considered were that the

disturbances were allowed to be autocorrelated, such that:
Ujp = PU; 4 +Cit» C;p ~ iid N(O’ 1)' (14)

Secondly, the “exogenous” variables were allowed to be correlated with the disturbance terms:

*

X, = x;, +6uy, u, ~iid N(0,1),

7 For example, the sample size of 7= 10 and N = 50 was not undertaken for the random effects model as it was
estimated that the simulation would take in excess of two months on a Pentium 120 personal computer.

11




For the random effects specification, violations of the usual assumptions were again that the
disturbances were allowed to be serially correlated, as per equation (14). A correlation was also

instigated between the individual effects and the explanatory variables:

*
Xip = Xjp TV,

and finally, the individual effects and the disturbances were correlated:
iy =ty +Y 0. (17)
The strength of all of these correlations varied from weak (with the parameters p, 9, 6 and p*

equal to 0.1) to medium (0.5) to strong (0.9). For the smallest sample size considered (T=4, N =

25), a fuller range of parameters was considered (0.01 - 0.99).

These sources of misspecification were chosen not only because they were thought to be the most

likely to occur in applied work, but also because they should directly affect certain estimators, and
to varying extents (see Table 1). For example, serially correlated errors invalidates the past
history of y as an instrument, as well as making estimators less efficient. If the x variables are
correlated with disturbances, those IV estimators using lagged x’s as instruments should fare
poorly (although this should be less prevalent in the random effects model in first differences).
Correlating the individual effects and the disturbances should adversely affect those estimators
that assume independence of such (primarily those operating in levels in which the individual
effects are not removed, and that construct a composite covariance matrix). Finally, the GMM-
type estimators should be adversely affected by all of these sources of misspecification as they

explicitly rely on all of them.

In analysing the results for the experiments, we focus on Mean Squared Errors (MSE's) of the
estimation of d in jointly assessing the estimators’ performance both in terms of bias and variance
(the results B and for the absolute biases and ranges of such can be obtained from the authors on

request). Moreover, although the results pres‘entedbbelow are for p, =1, the only substantive




differences in setting p, =05 were that though absolute MSE’s were different, the rankings
across estimators remained substantially unaltered. A selection of the results is presented in

Figures 1 to 8 in the Appendix.

3.2 The Simulation Result: Random Effects Model

In both samples and for both the levels and the A model, several points immediately arise. Firstly,

some estimators can be immediately disregarded in terms of excessive MSE. For example, those
estimators that use expanded instrument sets for each time equation (ABov and AB™) tend to suffer
heavily from both the resulting small sample bias (i.e., when the correlation parameters equal
zero) and the misspecification bias. Those estimators that have no finite moments (the simple AR
and AH), also unsurprisingly, tend to have poor have small sample performance and
misspecification bias. Several estimators exihibited almost idgntical performance, for example all
variants of the AM estimator, the FGLS and OLS estimators (in levels), and invariably the two-

step estimators when T is “moderate” (T = 10).

AR Residuals

In the levels model, in addition to those poorly performing estimators as outlined above, the BN’
BN and estimators can be disregarded in the small T sample (Figure 1), although their
performance improves with 7. Many of the levels estimators follow a similar “cyclical’ pattern,
especially discernible in the smallest sample size (BN and HT variants). Only the GMM-type,
WB, AM and (inconsistent) OLS, Within and FGLS levels estimators exhibit a stable performance
across likely values of p. The performance of these does though vary with p. The WB estimators
in the small sample improve significantly with p (with the augmented instrument set variant WB*
outperforming its simpler counterpart, although there is very little difference between the one and
two step estimators), as does that of the Within (again, at least in the small sample). As one might
expect, the performance of the OLS and FGLS estimators are adversely affected by increasing p
(as was the AM estimator). Although this is generally the case for the GMM-type estimators, the
effect is much reduced, again especially in the small sample. In the larger T sample, the Within,
WB and WB" estimators yield both low and stable MSE’s, with the latter two outperforming the

former apart from mid range values of p (= 05).




As p tends to unity, the covariance matrix of the first differenced disturbances does tend to
equation (10), differing only by a scale factor. Indeed, in the small sample most of the estimators’
performance improves with p. However, the consistent estimators are bettered by OLS at every

value (Figure 2) and the ST®, ST® and BN A estimators can be disregarded, in addition to those

previously mentioned, due to excessive MSE’s. Increasing T does however, improve the relative

performance of the consistent estimators, most notably the AB estimator, which is quite clearly the

dominant first difference estimator in samples of moderate 7.

In summary, when the disturbances are serially correlated and T is small, several (consistent) first
difference estimators have good performances, but their MSE functions are erratic in p. Therefore
an appropriate estimator would appear to be a choice between the consistent GMM or WB

estimators, or the computationally easier, but inconsistent,. Within and OLS A estimators. In

moderate (or large) T the AB estimator performs consistently well across p

Individual Effects and Disturbances Correlated

In the levels model for the smallest sample size, the GMM estimators uniformly dominate at all
levels of correlation between the o; and the u; (Figure 3). Presumably due to the
misspecification in the assumed covariance matrix, most of the other estimators appear to be
adversely, and unpredictably, affected by such a correlation, for example now the BN, HT) and
HT® can also be immediately disregarded. The exceptions are the AM, Within, OLS, FGLS and
WB estimators. The MSE’s of all but the latter increase monotonically with the correlation p*,
whereas the WB estimators’ performance actually improves with increased correlation. The GMM
estimators again perform well when T is moderate. However, at all levels of correlation, all four
variants of the WB estimator uniformly dominate the GMM estimators, as does the simple Within

estimator, although the clearly dominant estimator is the WB" one.

Of the first difference estimators in small T samples, many of their MSE functions are both large
and erratic in p* (Figure 4). For a predictable low MSE one might be tempted to use the OLS A
estimator for low values of correlation between the individual effects and the disturbances, or any
of the AR*, AR* hat and AB estimators for medium to strong correlation. With moderate T, the AB

estimator clearly dominates the remaining A estimators, having the lowest (and stable) MSE




(although the ST® estimator also fares rather well). However, given the smaller MSE’s found in

the levels estimators, the preferred estimators would be GMM and WB" for small and moderate T

respectively.

Individual Effects and X Correlated

Violating the exogeneity assumption of X severely affects most of the estimators operating in
levels and using X in some form as an instrument in the small T samples (Figure 5). At weak
levels of correlation, the GMM estimators again dominate the others. However, somewhat
surprisingly, from 6 = 0.2 and stronger, the simple OLS and FGLS estimators clearly dominate in
the small samples. In moderate T samples, the simple FGLS and OLS estimators again fare well,
especially at stronger levels of correlation. Again performing well at low levels of correlation, the
GMM estimators are more adversely affected at strong levels of correlation in this larger sample,
and would not be recommended. The Within estimator’s reasonable and stable performance
appears even more attractive in moderate 7. However, for a consistent estimator, the WB" and
WB™* hat estimators exhibit a low and robust MSE in the larger sample sizes, and indeed have
quite reasonable performance in small T (although the simpler WB estimators fare rather poorly in

both samples).

With small T none of the A estimators clearly dominates the others (Figure 6), although the OLS
estimator has a stable and reasonable performance across 6. Overall, although again the simple
AR and AH variants are not appropriate, their augmented instrument set counterparts could be
considered, as could the ST variants. Surprisingly, of all the AB variants, only the two-step AB*
estimator has reasonable performance. These results were substantially unaltered when T was
increased to 10, although now the two-step AB* estimator can be disregarded. For such

misspecification therefore, the WB" again appears to be a good choice.

3.3 The Simulation Result: Fixed Effects Model

Results consistent across all simulations are firstly that expanding the instruments sets of the AR
and AH estimators, and indeed allowing for an unspecified covariance matrix, does not improve
their performance. Surprisingly, the performance of these estimators is by far superior in the fixed

effects specification. Once more the AB™ estimator appears to suffer especially from both small
p




sample and misspecification bias in N, when T is small or moderate. Finally, the ST® and BN
estimator in levels are effectively identical, as are the one and two step AB estimators, even in

small T samples.

AR Residuals Results

Again many of the estimators follow a “cyclical” pattern with p, with a distinct peak at p = 0.5

(Figure 7). In both samples several estimators (GMM, AH, AR, AB, Within and OLS A) clearly
dominate, having both a very small and stable MSE, of which the latter two may be favoured,

again in terms of ease of computation.

Disturbances and X Correlated

In the smallest sample size, as expected, most of the estimators performance decreases with 7.
However, any of the Within, OLS A, AB, AH, AR and GMM estimators, provide a small and
relatively constant MSE against all values of y (Figure 8), of which the simpler Within and OLS A

may again be preferred.

We also carried out a “Semi” Monte Carlo experiment, where the exogenous variables were not
generated as in (13), but instead taken from Section 4 and kept fixed. Then formulae (14) - (17)

were used to generate u;,, u; * and x; *. Although the absolute values of the biases and the

MSE’s obtained were different form those obtained in the “true” Monte Carlo experiments, the
basic pattern of behaviour of the different estimator was not affected by this. The poorly
performing estimators remained poor and the recommended estimator continued to perform well.
This shows our findings are not limited to the setup of our experiments, and can genuinely be used

as guidelines for empirical applications.

4. An Empirical Application

Let us now see how the above results can be used in the case of a “real data” application. The
Solow model (Solow [1956]) seems to be a good candidate for this exercise, as it has an important
role in neoclassical theory and has recently been estimated on panel data sets in several studies
(see, for example, Islam [1995], Nerlove [1996], Smith, Lee and Pesaran [1996]). It assumes (in
the form used here) a constant return-to-scale production function, substitution between the two

inputs labour and capital and constant depreciation and technical change. Convergence of the
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different countries’ growth rates (starting from different GDP per capita levels) is then deduced

from the theory. The model used in the above studies has the form

’
Yie =0y +X; By +uy

where y;; = In(Real GDP per capita, measured in Terms of Trade prices)

Xit = [ In(Real Inv), In(Population growth rate + tech change + depreciétion rate) ].

We estimated the model for 22 OECD countries for the period 1950-1990 using annual data
downloaded from the Penn World Tables 5.6. The sample size considered for the empirical
application is N=22 and T=41. Some of the estimators such as the Arellano-Bond and Arellano-
Bover estimators are numerically difficult to estimate as T increases since the number of columns
in the matrix of instruments increases substantially, causing serious multicollinearity problems.
The WB estimator could not be estimated using 7=41 since the objective function would have to
be minimised over more than 1000 parameters. The sample was also transformed to
quinquennium data using the levels at the end of each five year period so that 7=9, a number
comparable to the simulation experiments.

Table 3 Differenced Model Estimators.”

5-yearly data Speed of Annual Data Speed of
(T=9) Convergence (T=41) Convergence
o S.E(9) % per year o S.E(9) % per year
OLS 0.773 0.034 5.16 0.544 0.024 60.91
GLS 0.869 0.014 2.81 0.967 0.003 3.40
AR 0.909 0.017 1.91 0.964 0.007 3.67
AR+ 0.843 0.016 3.42 0.945 0.007 5.71
AR+ hat | 0.831 0.001 3.70 0.909 0.0003 9.53
STa 0.769 0.025 5.24 0.865 0.009 14.52
STb 0.747 0.025 5.83 0.705 0.012 34.96
STahat | 0.669 0.004 8.05 N/A N/A N/A
STbhat | 0.628 0.004 9.30 N/A N/A N/A
AB 0.864 0.014 2.93 N/A N/A N/A
ABhat | 0.873 0.001 2.71 N/A N/A N/A
AB+ 0.827 0.012 3.80 N/A N/A N/A
BN 0.506 0.101 13.63 0205 | . 0.056 158.26
BNhat | 0473 0.008 14.97 0.206 0.002 157.93
AH 0.905 0.024 2.00 0.841 0.028 17.37
AH+ 0.881 0.056 2.53 0.688 0.139 . 37.37
AH+ hat | 0.869 0.005 2.81 0.575 0.008 55.37

" Technical change parameter, exogenously set at 0.05 (per five year period). Depreciation parameter, exogenously
set at 0.2 (per five year period). OECD Countries (N=22, T=9 and 41)




Table 4 Levels Model Estimators .

5-yearly data Speed of Annual Data Speed of
(T=9) Convergence (T=41) Convergence

o S.E(9) % per year S.E(9) % per year
OLS 0.904 0.009 2.01 0.002 2.47
FGLS 0.896 0.010 2.20 0.002 2.77
Within 0.869 0.012 2.81 ' 0.003 " 3.64
GBNran 2a| 0.812 0.027 4.18 0.010 10.90
GBNran 2b| 0.799 0.026 4.50 0.010 10.30
GBNran 2¢| 0.765 0.032 5.37 0.011 10.64
HT 2a 0.828 0.023 3.77 0.009 8.50
HT 2b 0.827 0.022 3.80 0.009 9.60
HT 2¢ 0.815 0.026 4.08 0.011 9.57
AM?2a | 0.892 0.012 2.29 0.003 3.21
AM?2b | 0.892 0.012 2.29 0.003 3.13
AM2c | 0.895 0.012 221 0.003 3.06
WB 0.868 0.019 2.83 N/A N/A
WB+ 0.876 0.015 2.64 N/A N/A
WB hat | 0.872 0.017 2.73 N/A N/A
WB+ hat | 0.881 0.014 2.54 N/A N/A
GMM() | 0.105 0.012 45.08 N/A N/A
GMMW)*| 0.274 0.044 25.89 N/A N/A

" See notes to Table 3. * Uses only conditions a and d (Table 1).

The speed of convergence A is related to & as & =exp(~A7), so that real GDP per capita will

converge to the steady state if 0 <8 < 1.

The very first impression from the estimation result presented in Tables 3 and 4 is that the
estimated 6 parameter values and the implied speeds of convergence are quite different between
estimators for both data sets, but also between the two time series used. The estimated parameters
are uniformly larger for the annual data set with several highly unlikely implied convergence rates
for both time series. Some of the results for the quinquennium data are similar to those presented
by Islam (1995) and Nerlove (1996) but many are markedly different. Note also, that the
estimators which do not contain the dependent variable in the instrument set (ST and BN) produce
the lowest estimates of 8. Given the relatively large 7, the differences in the estimates are due to

the efficiency and/or small sample performance of the estimators (Harris and Métyés [1996]). The




most plausible explanation may be that some of the basic assumptions behind the utilised
estimators are violated, and thus the produced parameters values are unreliable.

The simulation study showed that for the larger sample size, the WB and Within estimators are the
most robust against the three types of misspecification considered. For the quinquennium data the
derived convergence rates are nearly identical and make good economic sense. The bottom line
here is that one must be very careful about the choice of the appropriate estimator, and should not
automatically assume that the underlying assumptions behind a model are satisfied. This implies
that robustness must have an important role when choosing an estimator for empirical

applications.

5. Conclusions

In this paper we considered several well known estimators for the dynamic panel model (for
example, AR, AH and AB) as well as other less well known ones (GMM and WB for fixed and
random effects model respectively). All of these estimators rely on certain assumptions which we
purposely violated to ascertain how robust they are to such misspecification. In this way the
applied researcher can be confident in his/her choice of estimator, even if the assumed data

generating process is not true.

Two-step “robust” variants of many of these estimators were also considered. Invariably the two
step variants showed no significant improvement on their (misspecified) one step counterparts.
This (superficially) surprising result was presumably a consequence of the fact that the initial
estimates of the disturbance term were, dependent upon the exact form of misspecification,
invariably inconsistent, as would be any estimate of their covariance matrix based upon these. For
example, AR disturbances invalidate the recent past history of y;..; as an instrument. Accordingly,
estimators such as the AR one will be inconsistent, as will any estimates of disturbances (and
covariances of such) based upon these. These findings bring into question the usefulness of two-

step estimators such as the AB, AR, AH and, indeed, the GMM ones.

In terms of preferred random effects estimators, if one is concerned about the true data generating
process, in small T samples the GMM-type estimators generally have a reasonable performance

against most types and strengths of misspecification. In moderate T samples the WB" estimator

tended to be the dominant one. These estimators may prove computationally burdensome, and




some researchers may prefer either of the (inconsistent in the case of no-mis;specification) Within
or OLS A estimators. The choice of estimator appears less important for the fixed effects model.
Several estimators had a similar (and acceptable) performance, most notably the GMM, AR, AH,
AB, OLS A and Within estimators (the latter two being inconsistent in the “usual” setting).
Although unlike in the random effects setting, where prudence suggests using the expanded
instrument sets of the AR and AH estimators (if indeed these estimators are chosen), in the fixed
effects model there appears to be very little difference between the three variants of these

particular estimators. However, for ease of computation the OLS A and Within estimators appear

an acceptable choice.
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Figure I: Random Effects Model: N=25, T=4

Empirical MSE Functions; Levels Model: AR Residuals. *
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*ABov, ABov hat and BN (b and ¢) excluded due to excessive MSE. AM (b and ¢) excluded as identical performance to AM (a).




Figure 2: Random Effects Model: N=25, T=4

Empirical MSE Functions; A Model: AR Residuals.*
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*AR,AH,AB+, AB+ Hat, ST (aand b), BN A and BN A Hat not included due to excessive bias.




Figure 3: Random Effects Model: N=25. T=4

Empirical MSE Functions; Levels Model: Individual Effect and Disturbances Correlated*
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*4Bov, ABov hat, HT (a and b) and BN (a) not included due to excessive MSE. AM (b and ¢) not
included as performance identical to AM (a) .




Figure 4: Random Effects Model; N=25, T=4

Empirical MSE Functions; A Model: Individual Effect and Disturbances Correlated*
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*AR, AH, AH+ hat , AB+, AB+ hat and ST (b) hat not included due to excessive MSE .




Figure 5: Random Effects Model; N=25, T=4

Empirical MSE Functions; Levels Model: X and Individual Effects Correlated*
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*ABov , ABov hat, BN (a to ¢) and HT (c) not included due to excessive MSE. AA (b to ¢) not included as identical performance to AM (c).




Figure 6: Random Effects Model; N=25, T=4

Empirical MSE Functions; A Model; X and Individual Effects Correlated*
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*4R , AB+, ST (c) and AH not included due to excessive MSE.




Figure7: Fixed Effects Model: N=25, T=4

Empirical MSE Functions: AR Residuals.*
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*0.3 subtracted from OLS series. AB+ excluded due to excessive MSE. 4B hat excluded as identical performance to AB.
AH+ , AH+ hatand AR+ and AR+ hat excluded as identical performance to AH and AR, respectively. ST (b) excluded as identical to BNV.




Figure8: Fixed Effects Model: N=25, T=4

Empirical MSE Functions: X and Disturbances Correlated. *
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respectively.







