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• Abstract

This paper illustrates the use of the Kullback-Leibler Information (KU)

measure for assessing the relative quality of two approximations to an unknown

distribution from which we can obtain simple random drawings. The illustration

involves comparing the large-sample and small-disturbance asymptotic distributions

under the null hypothesis of a t statistic from the dynamic linear regression model.

We find very clear evidence in favour of the use of p-values and critical values from

the small-disturbance Student's t distribution rather than from the large-sample

standard normal distribution in this case.



1. Introduction

Because of the complexity of models econometricians are required to work

with, they often use test statistics whose exact distributions under the null hypothesis

are unknown. They typically use asymptotic approximations in the hope that these

will provide reasonably accurate critical values or p-values. Sometimes this approach

works well while in other circumstances it can be extremely poor. For an example in

this latter category, see Table 1 of King and McAleer (1987).

There are also different kinds of asymptotic approximations. The most

common is first-order large-sample asymptotics which involves finding the

distribution of the statistic in question (suitably normalized) in the limit as the sample

size goes to infinity. Then there are second-order or higher-order asymptotics which

attempt to improve on the quality of first-order asymptotics. This typically involves

finding a power series expansion (usually involving powers of n'2 where n is the

sample size) of either the distribution function or the density function of the statistic

and then constructing an approximation using more than the first term of this

expansion; see for example Rothenberg (1984). An alternative approach is small-

disturbance asymptotics which involves using the distribution of the test statistic in

the limit as the disturbance variance goes to zero. This has received considerably less

attention in the literature than large sample asymptotics. Its use has been suggested

and investigated by Kadane (1974) and Morimune and Tsukuda (1984) in the context

of testing linear simultaneous equation models and by Inder (1986, 1990), Nankervis

and Savin (1987), King and Wu (1991) and King and Harris (1995) with respect to

tests of the dynamic linear regression model.

1



Typically different approaches yield different approximations and it is not

clear which approach is best in any particular setting. While it might seem that

second-order approximations are better than first-order approximations, this is not

always the case. If the higher-order terms in the expansion involve unknown

parameters, then approximating these with estimates can sometimes worsen the

approximation error rather than improve it. There is also the added worry of

stochastic adjustments to test statistics badly affecting the power of the resultant test.

In view of these considerations, it is highly desirable to have a simple method for

comparing the quality of two or more approximations to an unknown distribution.

The aim of this paper is to advance the case for using the Kullback-Leibler

Information (KU) measure for assessing the relative quality of two approximations.

To the best of our knowledge, this idea was first suggested by White (1994) but has

yet to be applied to compare two asymptotic approximations. We illustrate its use

with a comparison of two approximations in the context of the t test of the lagged

dependent variable coefficient in the dynamic linear regression model. The large-

sample distribution under the null hypothesis is standard normal while its small-

disturbance asymptotic distribution is Student's t, as shown by Nankervis• and Savin

(1987). Through the approach illustrated in this paper, we are able to conclude that

the small-disturbance approximation is typically more accurate in this case although,

as the sample size increases, the two approximations converge. This finding adds

further to the growing evidence that suggests small-disturbance asymptotics deserve

closer attention than they are currently getting from the econometrics profession.
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The organisation of the remainder of the paper is as follows. The theory

behind the use of the KU I measure for assessing the relative quality of two

approximating distributions is outlined in section 2. The dynamic linear regression

model and the t-test of the coefficient of the lagged dependent variable are introduced

in section 3. Section 4 provides the details of the Monte Carlo simulations and the

results of these experiments are reported in section 5. Some concluding remarks are

made in section 6.

2. Theory

In order to evaluate the quality of an approximating distribution, we need a

convenient measure of distance or difference or divergence between distributions.

One such measure is the KU I measure introduced by Kullback and Leibler (1951).

Let g(x) be the true density function of a q x 1 random vector x and f (x) be an

approximating density for x. The KU I measure is defined as

I (g, f) = E[logg(x)If (x)}1

= Lq log{ g(x) 1 f(x)},g(x)dx .

Its usefulness as a measure of the quality of approximation comes from the

following properties:

(i) I (g, f) .. 0 for all g and f.

(ii) I (g; f) = 0 if and only if g(x) = f (x) almost everywhere.
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As observed by Renyi (1961, 1970), the KU I measure can be interpreted as the

surprise experienced on average when we believe f (x) is the true underlying

distribution and we are told it is in fact g(x) . The smaller the value of I (g; f) , the

less the surprise and the closer we consider the approximating distribution f (x) to be

to the true distribution g(x) . Also note that I (g; f) is the expected value of the log

of the likelihood ratio which, according to the Neyman-Pearson Lemma, provides the

best test of Ho: x g(x) against H1:x f (x) In fact if x1,...,x„, was a simple

random sample of size m from either 1/0 or II, then the most powerful test can be

based on rejecting Ho for small values of

T114 logfg(;)1 f(x, )1

which, when g(x) is the true distribution, is the standard estimate of

I (g; f) = Etlog(g(x)/f (x))1

from a simple random sample of size m. In this sense we feel confident in using

I (g; f) as a measure of distance between g(x) and f (x) . For further discussion of

the KU I measure, see Kullback (1959), Renyi (1961, 1970), Maasoumi (1993) and

White (1994). For more on other measures of distance or divergence between

distributions see Maasoumi (1993).

As White (1994) observed, a comparison of the adequacy of two approx-

imating densities of g(x) , namely fl  (x) and f2(x) , can be made using the difference

in Ku measures. This difference is
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D(f,,f2) = I(g; I(g; f2)

= fR, logg(x)1 fl(x)} g(x)dx — JR, logg(x)1 f2(x)}g(x)dx

= fR, log/2 (x)/f; (x)} g(x)dx

Obviously, if this difference is positive, f2 is the better approximation, while if it is

negative, f1 is better. Unfortunately g is unknown but, typically through Monte Carlo

methodology, we are able to obtain a simple random sample of m observations from

g. If these observations are denoted by xl, x2 ,...,xm then D(fi,f2) can be estimated

by

d(fl, f2) = logif2(xi)ifi(xi)}

1 ilogf(x,)-. 1 ilogfAxi)—

An estimate of the standard error of this estimator is given by CT / m where

= 

rn 
 1 

2 1 1 (x.)/f(x.)}-d(f /12 ., 2

3. The Dynamic Linear Regression Model

Our interest is in the linear dynamic regression model

y, = ay,_, + x',13 + u„ t = 1,...,n ,

(1)

(2)

where y, is the dependent variable, x, is a k x 1 vector of exogenous variables, cc

and p are an unknown parameter scalar and k x 1 vector respectively and u, is the
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is required to complete the model. Following Nankervis and Savin (1987) and others,

we assume y0 =0 with no loss of generality in the fixed start-up model when an

intercept is present. If there are n observations available on each variable then the

parameters are estimated using the last n —1 observations. The model for these

observations can be written as

y=ay_1 i-X13+u

where y, y_1 and u are (n — 1) x 1 vectors and X is an (n — 1) x k matrix which we will

assume has full-column rank.

The ordinary least squares estimators of a and p are

and

ci =.Y!_1 My/y 1My 1

= (XX)' X ' (y Ocy_,) ,

respectively, where M = — X(XX)-1 X'. The associated estimator of a2, denoted

2 •
,

s2 = — _x)' (), — (V_ — .41)(n— k — 2)

= — ecy M(y— _1) — k —2) .

In the context of this model, we are interested in the problem of testing Ho:a = cx *

using the t test whose test statistic is given by

ta 
(ec cc *) (y, I my )1/2 /s
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It is well known that under 1/0, ta has a standard normal large sample

asymptotic distribution under the following regularity conditions (Schmidt (1976,

1197)):

(i) The elements of X are uniformly bounded in absolute value as n —› 00

(ii) lim  1 
n—> con—i_ 

X:Xt+i

1=2

exists for any integer i and is nonsingular for i = 0 ;

(iii) la,*1<1.

Observe that these regularity conditions impose important restrictions on both the

regressors and a*. For example, trending regressors and a* = 1 are excluded. In the

latter case, the large sample asymptotic distribution of ta depends on the regressors

and the unknown parameters. In some cases it is N(0,1) . On the other hand, Dickey

and Fuller (1979) derived it for 13 =0 when x, is just the intercept term and when x,

comprises the intercept and linear trend and found in both cases it is not N(0,1) .

Alternatively, Nankervis and Savin (1987) (also see King and Wu, 1991) have

shown that under H0, ta has a Student's t distribution with n — k —2 degrees of

freedom as o2 tends to zero. The only restrictions on X are that it be nonstochastic

(or that the inference be conditional on X) and that Mg/n_, — a* LI' # 0 where L is

the (n —1) x (n —1) matrix
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There is no restriction on a *. Notice that in our testing problem, a2 is a nuisance

parameter. Because the small disturbance distribution is the limit of a sequence of

null distributions for different values of this nuisance parameter, it will work well for

testing problems with very little non-similarity. In our case, the test becomes more

similar under Schmidt's regularity conditions as n —› 00, but for some regressors we

know it can be very non-similar when a* = 1 .

The question is, which of these two approximating asymptotic distributions

should be used to calculate p-values and critical values for tc, ?

4. The Monte Carlo Experiment

In order to answer this question, we conducted a Monte Carlo experiment with

the aim of estimating D(f;, f2) using (1) for a range of situations based on (2) where

f1 is the standard normal density function and f2 is the density of the Student's t

distribution with n— k —2 degrees of freedom. That is

(x) = (207 -1/2 exp(—x2/2)
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12(x). r t(v + 1)/21/[(nv)1/2r(v / 2)11+ (x2 /v)1(v+1)/21

where ro is the gamma function and v = n— k —2. The following sets of exogenous

variables were used in the Monte Carlo experiment.

X1 : (k = 3). The three exogenous regressors are a constant dummy, Australian

private capital movements and Australian Goverment capital movements

commencing 1968(1).

X2 : (k = 5). The five exogenous regressors are a constant dummy, quarterly

Australian household disposable income commencing 1959(4), quarterly final

consumption expenditure commencing 1959(4) and these latter two variables

lagged one quarter.

X3 : (k = 5) . The five exogenous regressors are a constant dummy and four

independent series each generated as independent samples from the uniform

distribution with range [0,1].

These three X matrices provide a range of different regressor types with the capital

movement series in X1 showing high variability and strong seasonality and the X2

variables being more typical of macroeconomic data.

Because our interest is in how the approximations perform as a and n vary,

we calculated d(f1,12) using m = 20,000 for all combinations of a = 0.05, 0.1, 0.5, 1,

10, 50, 500 and 5000; and n = 10, 20, 30, 40, 50 and 60. For X2 and X3, we also

included calculations for n = 70, 80 and 90. All calculations were performed for

a * =0, 0.25, 0.5, 0.75, 0.95 and 1. Throughout, all 13 values were set to one.
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5. Results

Selected estimated values of D(fi, f2) (denoted d) and their standard errors

(s.e.) are presented in Tables 1 - 3. Note that significant positive values indicate that

the Student's t distribution provides the better approximation to the true null

distribution of the t statistic, while significant negative values suggest the standard

normal distribution is better.

The results very clearly indicate that the Student's t distribution better

approximates the true distribution than does the standard normal distribution. In the

majority of cases, the positive d(fi , f2) value is significantly different from zero. At

worst, some d(fi, f2) values suggest the two approximating distributions are equally

as good, which might be expected because the two distributions converge in large

samples. Of the total of 1152 d(f1,12) values calculated in our study, only 20 were

negative. Of these 16 were within one standard error of zero, 3 were within two

standard errors and the remaining negative value was 2.5 standard errors from zero.

The majority of these negative values occurred for the artifically generated X3 data set

when a*= 0.

As expected, because of the convergence of the two approximating

distributions, the d(fl,f2) values almost always decrease as n increases, ceteris

paribus. We also see a tendency for d(fi,12) to increase as a* increases,

particularly for large a values. One might expect d(f1,12) to decrease as a

increases, ceteris paribus. However, the actual pattern is more complicated than this.

For small a* values we do indeed see d(fi,f2) decline as a increases, although for
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X2 and X3 it declines and then increases. As n increases, and particularly as a *

increases, there is a greater tendency for d(fj, f2) to increase as a increases. The

largest differences in favour of the Student's t distribution occur at the largest a

values, the smallest n values and a* = 1.0. Thus, somewhat ironically, we observe

that the small-disturbance asymptotic approximation typically improves its

performance relative to the large-sample approximation as the disturbance variance

increases.

6. Concluding Remarks

Our results show very clearly that the small-disturbance Student's t distrib-

ution does a better job of approximating the true null distribution than does the large-

sample standard normal distribution. As expected, the largest differences are for

small sample sizes. Somewhat unexpectedly we have also found some large

differences for large a values, particularly when a * is around 1.0.

Our method does not enable us to gauge how close each approximating

distribution is to the true null distribution. In order to calculate the KU I measure for

each of these approximations, we need the density function of the true distribution.

We are currently experimenting with non-parametric density estimation methods to

solve this problem and expect to report on this work in a future paper.
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Table : Estimated differences in KLI between standard normal and Student's t

approximations (d) and associated standard errors (s.e.) for Xl.*

a

a * n .05 .5 10 50 500 5000 

0 10 d 122.37 126.65 112.57 119.88 78.16 61.69

s.e. 9.96 10.52 7.69 8.47 12.01 5.95

20 d 8.88 8.81 10.59 8.21 1.28 .33

s.e. 1.24 1.16 1.31 1.13 .88 .82

30 d 2.26 3.93 2.59 2.49 1.67 .50

s.e. .60 .66 .59 .56 .58 .55

40 d 1.20 1.71 1.04 1.85 1.07 1.05

s.e. .44 .46 .39 .44 .40 .42

60 d .35 .60 .76 .27 .36 .90

s.e. .25 .27 .30 .24 .25 .25

.5 10 d 110.89 108.70 130.31 133.40 116.68 118.25

s.e. 7.45 8.89 11.01 10.54 7.35 11.81

20 d 7.45 8.15 10.22 11.94 13.80 11.60

s.e. 1.02 1.12 1.20 1.28 1.25 1.12

30 d 3.17 2.37 3.27 3.36 5.92 6.76

s.e. .61 .56 .65 .68 .65 .71

40 d 1.76 2.01 1.69 1.90 4.62 5.88

s.e. .45 .45 .38 .46 .49 .53

60 d .65 .52 .70 .86 1.11 4.14

s.e. .24 .26 .26 .26 .29 .35

.95 10 d 115.18 120.54 119.67 131.81 275.79 326.58

s.e. 7.96 7.91 7.78 10.57 12.63 12.51

20 d 8.09 7.40 7.41 9.78 38.77 93.13

s.e. 1.11 1.03 1.03 1.26 1.79 2.35

30 d 4.24 2.61 2.62 4.18 28.61 55.19

s.e. .68 .64 .64 .79 1.32 1.47

40 d 1.17 1.48 1.50 2.10 20.09 40.64

s.e. .39 .46 .47 .59 .85 . 1.05

60 d .40 1.17 1.17 .76 2.83 27.36

s.e. .25 .29 .29 .26 .34 .68

1.0 10 d 124.14 119.44 128.65 115.22 263.17 404.26

s.e. 9.13 8.81 8.79 7.73 11.09 20.88

20 d 9.74 8.83 7.22 9.31 26.86 127.21

s.e. 1.15 1.10 1.03 1.29 1.60 2.89

30 d 3.05 2.62 3.59 2.91 19.50 86.70

s.e. .60 .56 .65 .73 1.02 1.87

40 d 1.40 1.49 1.39 1.41 13.36 74.72

s.e. .41 .42 .41 .45 .68 1.43

60 d .90 .44 .35 .93 1.23 48.62

s.e. .26 .25 .25 ' .27 .25 .90

All values have been multiplied by 103.
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Table 2: Estimated differences in KLI between standard normal and Student's t
approximations (d) and associated standard errors (s.e.) for X2.1

a* n .05 .5 10 50 500 5000 

0 10 d 627.54 433.56 332.84 339.99 398.25 396.06
s.e. 69.67 56.38 26.26 35.29 49.28 47.67

20 d 13.47 17.37 . 15.29 15.69 15.59 16.98
s.e. 1.25 1.57 1.33 1.37 1.39 1.49

40 d 3.43 4.57 3.76 6.06 3.95 4.46

s.e. .46 .47 .46 .65 .49 .47
60 d .92 1.48 1.75 1.51 1.42 1.49

s.e. .27 .30 .28 .29 .28 .30
90 d .50 .25 .47 .03 .36 .24

s.e. .18 .15 .17 .15 .16 .15

.5 10 d 503.59 539.75 768.02 763.95 707.04 675.52
s.e. 33.76 44.98 61.08 57.90 52.41 45.21

20 d 11.74 11.91 48.14 47.33 48.65 48.18

s.e. 1.5 1.14 2.19 1.99 2.13 2.09

40 d 1.95 3.10 16.45 17.42 15.76 18.55
s.e. .41 .46 .74 .79 .69 .88

60 d .49 1.86 7.41 7.80 8.04 7.32
s.e. .26 .29 .42 .44 .45 .42

90 d .61 .57 3.22 3.22 3.00 2.97
s.e. .19 .17 .24 .24 .24 .22

.95 10 d 549.17 513.50 872.21 1631.50 1675.92 1604.86

s.e. 57.40 42.54 53.42 87.64 79.86 75.97
20 d 12.97 16.12 124.04 231.17 238.23 241.28

s.e. 1.25 1.49 3.38 4.47 4.75 4.74

40 d 1.37 1.59 47.71 106.10 108.97 110.38

s.e. .41 .39 1.29 1.88 1.95 1.88

60 d 1.11 .72 26.39 76.26 83.21 82.75
s.e. .28 .27 .77 1.23 1.27 . 1.27

90 d .54 .08 12.03 43.26 45.63 46.01
s.e. .17 .15 .40 .74 .75 .76

1.0 10 d 539.00 549.79 884.61 1695.82 1694.37 1801.58
s.e. 39.10 45.28 60.50 79.03 78.44 94.65

20 d 10.43 13.36 141.74 298.83 314.11 320.50
s.e. 1.14 1.47 3.80 5.28 5.59 5.92

40 d 1.23 1.73 85.93 172.26 179.37 174.44
s.e. .40 .43 1.70 2.34 2.47 2.39

60 d .77 .97 19.68 126.62 151.64 153.57
s.e. .27 .29 .59 1.51 1.74 1.74

90 d .13 -.07 4.26 72.19 101.36 103.84
s.e. .15 .15 .24 1.02 1.20 1.20

All values have been multiplied by iO3.
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Table 3: Estimated differences in KLI between standard normal and Student's t
approximations (d) and associated standard errors (s.e.) for X3.*

a* n .05 .5 10 50 500 5000 
0 10 d 506.23 373.89 457.71 407.70 453.74 420.58

s.e. 52.53 34.62 46.91 33.51 49.45 40.18
20 d 11.14 8.63 4.74 1.14 2.81 1.91

s.e. 1.28 1.40 1.03 ..90 .95 .96
40 d 2.20 .68 -.15 .84 .26 .72

s.e. .49 .41 .36 .42 .36 .43
60 d .58 .37 .13 -.14 -.23 .21

s.e. .26 .25 .24 .23 .23 .25
90 d .45 .06 -.01 .04 -.08 .11

s.e. .16 .16 .16 .15 .15 .15

.5 10 d 471.17 436.58 334.10 322.65 294.46 680.90
s.e. 31.94 46.33 21.44 32.72 28.73 41.00

20 d 14.40 16.81 23.20 19.19 .73 17.34
s.e. 1.73 1.48 1.77 1.34 .87 1.58

40 d 2.05 2.30 1.76 3.10 1.52 3.21
s.e. .47 .47 .44 .44 .49 .46

60 d .72 .46 .97 1.46 .65 .69
s.e. .25 .26 .26 .28 .27 .25

90 d .50 .42 .37 .91 .39 .63
s.e. .17 .18 .17 .18 .17 .18

.95 10 d 508.87 537.47 1635.58 624.99 692.65 415.17
s.e. 42.22 56.78 85.85 51.96 42.68 41.98

20 d 14.33 12.92 54.27 82.42 128.98 81.90
s.e. 1.43 1.51 2.30 2.40 3.74 2.61

40 d 1.77 1.98 26.87 33.01 29.05 23.76
s.e. .41 .41 1.05 1.02 .91 .85

60 d .72 .64 11.14 14.03 14.95 14.20
s.e. .28 .25 .45 .49 .51 .52

90 d .22 .45 5.58 8.05 7.18 6.84
s.e. .17 .16 .26 .31 .30 .30

1.0 10 d 437.44 501.11 1225.66 759.49 535.78 1525.24
s.e. 28.63 36.80 72.19 45.80 38.00 86.35

20 d 12.34 12.30 59.48 163.26 118.03 105.42
s.e. 1.26 1.54 2.25 4.04 3.22 2.66

40 d 1.12 1.04 24.46 53.19 49.14 62.11
s.e. .40 .39 .89 1.17 1.10 1.34

60 d .47 .45 11.52 35.43 35.78 39.78
s.e. .28 .24 .47 .75 .75 .82

90 d .09 .20 5.78 23.03 24.10 22.86
s.e. .14 .15 .33 .49 .47 .46

All values have been multiplied by iO3.
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