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ABSTRACT

A test for the presence of serial correlation is routinely carried out as a test for efficiency in financial markets. The
problems inherent in such testing in the presence of dynamic heteroscedasticity are addressed in this paper. The
accuracy of using standard critical values of serial correlation tests in the presence of autoregressive conditional
heteroscedasticity (ARCH), generalized ARCH (GARCH), normal and non-normal disturbances is investigated.
Tests examined include the conventional Durbin-Watson, Box-Pierce, Ljung-Box, Lagrange multiplier tests,
‘proposed ARCH-corrected versions of these tests, and the robust tests of Diebold (1986) and Wooldridge (1992).

Standard serial correlation tests are derived assuming that the disturbances are homoscedastic, but this study shows
that asymptotic critical values are not accurate when this assumption is violated. Asymptotic critical values for the
ARCH(2)-corrected LM, BP and BL tests are valid only when the underlying ARCH process is strictly stationary,
whereas Wooldridge's robust LM test has good size and power properties overall. These tests exhibit similar
behaviour even when the underlying process is GARCH (1, 1). When the regressors include lagged dependent
variables, the sizes and powers of the corrected tests depend on the coefficient of the lagged dependent variables,
and the ratio of signal to noise. They appear to be robust across various disturbance distributions.
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1. Introduction

The problem of testing for serial correlation arises frequently in applied research involving
economic and financial time series data. For example, omitted variables and inédequate
modelling of functional form can give rise to correlated errors. A test of serial correlation,
therefore, can be a test for misspecification of a model. Non-synchronicity due to infrequent
trading of financial assets or inefficiency in financial markets results in serially correlated

individual asset returns. A test for the absence of serial correlation in asset returns then can be a

test for market efficiency [see Fama (1965) and Bollerslev and Hodrick (1992)] and

synchronous trading [see Scholes and Williams (1977) and Lo and MacKinlay (1990)]. These
are but two examples which illustrate both the importance of testing for serial correlation and

how this issue can arise in different contexts.

Engle (1982) and Bollerslev (1986) demonstrated that autoregressive conditional
heteroscedastic (ARCH) behaviour may be commonly present in a time series context. ARCH-
type processes that emerge from evolving variance over time have the ability to capture the
volatility clustering and leptokurtosis characteristic of financial time series of various
frequencies; for example, see Bollerslev ef al. (1992). A non-normal ARCH or generalized
(GARCH) process is often required for a satisfactory representation of the distributional
behaviour of asset returns, as shown by Baillie and DeGennaro (1990), Engle and Gonzalez-
Rivera (1991) and others. See Bollerslev, Chou and Kroner (1992) and Bera and Higgins

(1992) for extensive surveys of this ARCH literature.
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Both phenomena, serial correlation and ARCH processes, have been found to occur
simultaneously in models involving economic and financial variables, mainly due to time
varying autoregressive parameters. Recent studies by Weiss (1986), Tsay (1987),A Bera,'Higgins
and Lee (1992), Bollerslev and Hodrick (1992) and Bolleslev and Wooldridge (1992) consider
the theory and applications of such ARMA-ARCH models, and demonstrate that the issue of

testing for serial correlation in the presence of ARCH behaviour deserves attention.

The limiting distributions of many serial correlation tests are derived assuming independent

identically distributed (i.i.d.) normal disturbances. In empirical studies involving time series
this ideal assumption is often violated, and these tests can be biased. Since an indication of
serially correlated errors has far-reaching implications for econometric modelling, it is
important that tests for this behaviour have correct size and good power in finite samples,

particularly when the underlying assumptions are violated.

The main objective of this study is to investigate the robustness of the popular Durbin-Watson
(DW), Lagrange multiplier (LM), Box-Pierce (BP) and Ljung-Box (LB) tests and their
corrected versions against autoregressive disturbances in the presence of dynamic

heteroscedastic disturbances with normal or non-normal distributions.

Diebold (1986) addressed the question of robustness of the BP and LB tests in the presence of
ARCH and recommended using ARCH-corrected standard errors. Although empirical evidence
" using an observed time series supports his claim, the performance of these tests with

unobserved series needs to be evaluated. This is important as serial correlation is commonly
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present, for example, in the disturbance term of the regression model and our simulation study
is designed to address this issue. Recently, Wooldridge (1991) proposed LM-type tests for
serial correlation in the presence of ARCH and showed that they are robust when the dynamics
are completely specified. The properties of these robust LM-type tests in finite samples remain

unknown, though Small (1993) has undertaken some investigation in small samples.

We also suggest corrections similar to those of Wooldridge to the conventional DW, BP, LB
and LM tests and examine their properties. Here we assess the finite-sample size properties of
the standard tests, Diebold's and Wooldridge's robust tests and our ARCH-corrected tests and
compare their performance also when the underlying disturbance process is normal or non-

normal ARCH and GARCH.

The model and the tests are discussed in the next section and a Monte Carlo experiment and the
results are reported in section 3. Section 4 gives an illustrative example and section 5 concludes

the paper. '

2. The Model and the Tests
Consider the mpdel

Yy, =xB+u, t=1,..T €))

where y, is a dependent variable, X, = [Xy,.-Xy] is a kx1 vector of variables, which may include

* stochastic and non-stochastic variables, lagged regressors and lagged values of y,, and B is a kx1
vector of unknown parameters, and u, follows the stationary AR(m) 'process

w = puat ..t ppumt e, t=m+l, .., T
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where py, ... , p are unknown autoregressive parameters. In order to ensure the stationarity of
(2), we assume that roots of 1 -p;L - ... -pL" =0, where L is the lag operator, lie outside the
unit circle. The term e, is assumed to be of the form

€& = OtZ
where 6,> 0, {z,} isi.i.d. with E(z) =0 and var (z) =1, and for some functiorr h,

ol =E@’ | @)= h(®,) @)

where @, is the information set available at time t-1. This model is widely used 1n finance.
Our interest lies in testing for serial correlation in model (1), but appropriate tests would depend
on the functional form of h. Although several different functional forms have been suggested in

the literature, we restrict attention to the well known GARCH(p,q) process

q P
2 2 2 2
G, =0y +Zaiet-l +ZYtG t-j (5)

i=1 =1

where 0'02 >0,0;20,i=1,..,qandy;20,j=1, ..., p [see Bollerslev (1986)]. Nelson and Cao
(1992) show that the non-negativity conditions can be relaxed somewhat when the process is

GARCH.

Stationary and integrated GARCH(p,q) processes have been of interest in many empirical

studies. Therefore, we assume that

p
ajt X vj; sl
i=1  j=1

If 7;=0,j=1,..,p, then (5) reduces to the ARCHY(q) disturbance process.

We wish to test the null hypothesis, given E(ut2 | @)= ctz,




Hy:p1=..=pn=0
against the alternative hypothesis

Hy:Notallp;=0,j=1,..,m

The Durbin-Watson test, although most often used to test against AR(1) disturbanc.es, can be
regarded as a test for disturbances with a first-order autocorrelated component [see King and
Evans (1988)]. Against higher order AR(m) disturbances, the BP, LB and LM tests, denoted
by BPm, LBm and LMm respectively, are used frequently. These test statistics are defined as

T T
DW1 = > (& - )/ D,
t=1

t=2

S8,

i=1

LBm = T(T+2) Y (T-i)"p;,
i=1 :

and LMm = (T-m)R?,

wheré 4, t=1, ..., T, are the OLS residuals of model (1), p, = Thbu/2Z8,i=1,..,m, and

R? is the coefficient of determination of the regression of @, on x, and ({.,, ..., O.y). The test

statistics other than DW1 have a chi-squared distribution with m degrees of freedom (Xfm))
asymptotically under the null hypothesis. All are derived under the assumption of

homoscedastic and normal disturbance distributions.

Diebold's corrected BP and LB tests, denoted DBPm and DLBm respectively, are defined as




m ~A4
¢ a2
T Z [A4 + Az]pl
i=1 LO Ti

m ~4
DLBm = T(T+2) > [MG—AZ](T-i)" P,
= Lo T Ti

respectively, where T ? is an estimate of the ith autocovariance of &t deﬁned as
= T 2@ - )@k - 67
and 6" is the square of an estimate of the unconditional second moment of §; defined as
& = [T'TET.
Diebold (1986) has shown that these tests are asymptotically xfm, under the ﬁull hypothesis and

the normality assumption. Although the exact expressions for 1 and c* can be derived for an

ARCH process, they need to be estimated in practice, which is done in our simulation study.

Wooldridge's ARCH-corrected LM test, denoted RLMm, is robust for testing H, in time-series
models with completely specified dynamics. The construction of RLMm involves the

following steps:

1) Obtain the fitted values denoted here by ﬁ, , =1, ..., T from the linear regression

2 =00+ 0; 04 + ... eqﬁ;{q'*'v., t=1,...,T.
(i) Define x: = xi/+/h and & = /A, t=1,.,T.
(iii) Save the 1xm vector of residuals, say T, from the regression of each of the Xt on x,,

where A, = (ﬁm, cees ﬁt-m)’
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(iv) Compute (T - SSR), where SSR is the sum of squares of residuals from the regression of
1 on % T:. (T - SSR) ~ x*(m) asymptotically under H,

Before introducing our modified versions of the seﬁal correlétion tests, recall that an irﬁportant
assumption underlying the tests is that the disturbance terms have a constant variance, which is
not the case in the presence of ARCH. This suggests that the DW1, BPm and LBm tests might
be improved by replacing {, with its standardised version. We therefore replace @, by [,

obtained in step (ii) of Wooldridge's procedure and denote the corresponding corrected versions
by CDWI1, CBPm and CLBm, respectively. We also include such a correction for the
conventional LMm test computed as (T-m)R?, where R? is the coefficient of determination of
the linear regression of ¥, on x; and (U,,...,%, ), and denote it by CLMm. The asymptotic
distributions of these corrected tests are valid under the particular ARCH(q) model - including
homoscedasticity - estimated in the preliminary stage, but are not robpst to variance
misspecification. However, Woolridge’s corrected LM tests are asymptotically valid under any
heteroscedasticity. We assess the properties of all corrected tests when the true model is

GARCH (p.q) but the correction is made assuming the ARCH(q) process.

Bolleslev and Wooldridge (1992) proposed easily computable LM tests for AR-GARCH, and in

a simulation study showed that their sizes and powers compare favourably with the standard
Wald and LM tests when the disturbances are non-normal. These tests are not considered in
this study. Bera, Higgins and Lee (1992) also proposed a LM test for serial correlation in the

presence of ARCH/GARCH process which arises as a result of time varying serial correlation
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and Small (1993) considered its applications. However this test could not be applied directly to

model (1).

We use Monte Carlo simulations to assess the properties of the corrected versions of the various
tests and compare them with those of their uncorrected counterparts and the robust tests of

Diebold and Wooldridge.

3. Empirical Evaluation of the Tests

A Monte Carlo experiment was conducted to assess the accuracy of the sizes of the
abovementioned tests in the presence of ARCH and GARCH disturbances, using standard
critical values. Some power comparisons were also undertaken. Selected size and power

results only are presented in Tables 1 to 9. The complete set of results is available on request.

3.1 Experimental Design
Critical values were based on the assumption of standard i.i.d. normal errofs in model (1) at the
1, 5 and 10 per cent nominal levels. Exact values were calculated for the DW1 test and

tabulated chi-square values were used for the other tests with an asymptotic justification.

Monte Carlo simulations were based on 2,000 replicatioﬁs. In order to limit the simulation

study to a manageable scale, we considered only the cases m = 1, 2, 5, 10, 20 in the disturbance

process (2), and (p,q) = (0,2), (1;1) in model (5) which corréspond to ARCH(2) and

GARCH(1,1) processes, respectively. An ARCH(2) process can be generated as

—_ 2 2 \112
ee = N1+ et + azerz)
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where (o}, a,) € Q; = {(}, ap) | a,, o, 2 0 and o, + a, < 1} with 1, a random disturbance. A

GARCH(1,1) process can be generated as

— 2 2 \112
e = N1+ e ¥1101)

where (ct;, 1) € 2 = {(a, 1) | 00,7y 2 0and o) +y, <1},

For an underlying ARCH(2) disturbance process, sizes were estimated at the grid points

{(0}, ap): &0, = 0.0, 0.2, 0.4 and a, = 0.0, 0.4, 0.6} < Q,,
and when the process is GARCH(1,1) they were estimated at

{(0},71): 0 =0.2, 0.4 and v, = 0.0, 0.4, 0.6} = ;.

The following regressor or X matrices, with T = 50, 100, 500, were used

X1: A constant dummy and the daily 90-day Australian Treasury bill rate commencing 16
September 1985 (k=2).
A constant dummy and the daily spread between 90 and 180 days Australian Treasury
bill rates commencing 16 September 1985 (k=2).
A constant dummy, the 90-day bill rate and this variable lagged by one, two and three
days (k=5).
X1 and the first-order lagged dependent variable (k=3), where the coefficient of X is '
=(0,1,5), with the coefficient of the lagged dependent variable, 6, set.at 0.2, 0.4, 0.6 and

0.8,and 6=0.07,2, 7.
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X5: X2 and the first-order lagged dependent variable (k=3), where the coefficient of X is
B’ = (0,1,8), with the coefficient of the lagged dependent variable, 6, set at 0.2, 0.4, 0.6

and 0.8,andc=2,4,7.

With dynamic regressors, test characteristics can depend on the signal to noise ratio, which for

X4 and X5 corresponds to £x% /o . Generally the signal to noise ratio is given by [[x*g || /o,
where X* is the matrix of regressors excluding the lagged dependent variable. To keep the
experiment manageable, we chose only one set of values for B but a range of values for o,

mostly those which result in reasonable R? values for the model (1).

A number of fitted values of h, were found to be negative, which is undesirable because the

variables used to construct the test statistics are normalized by dividing by \/ﬁ_t (see step (i) in

Wooldridge's procedure). Hence, to ensure that these fitted values ﬁ, were positive, the
parémeter .estimates of the model with q = 2 were obtained by the method of least squares
subject to the constraints 6,> 0, 6,, 0, > 0. [When investigating the possibility of using absolute
values of ﬁ‘ and log (ﬁt ), the ARCH-corrected tests were found to have unacceptably high

sizes but Wooldridge's robust tests were unaffected.]

To generate the random disturbances {n,}, a standard normal distribution, which is symmetric

with a kurtosis of 3, and a weighted mixture (MIXNOR) of normal distributions {0.1N(0,1) +

0.9N(0,3)} were used. Disturbances following six other distributions, each with a zero mean,

unit variance and characterised by their skewness and kurtosis, were also generated, based on a
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generalisation of Tukey's lambda distribution. Parameter values were chosen from the table in
Ramberg, Tadikamalla, Dudewicz and Mykytka (1979). Leptokurtosis is implied by a kurtosis
or tail measure greater than 3. These distributions have, respectively: a right skewness of 0.5
and medium kurtosis or tail of 4 (RSMT) and heavy kurtosis (RSHT); a heavy right skewness
of 0.8 and medium kurtosis of 4 (HRSMT) and heavy kurtosis of 9 (HRSHT); and symmetry
with kurtosis of 6 (KURT6) and 9 (KURTY9). These distributions enable a systematic
investigation of the effect of skewness and kurtosis and were chosen to represent a range of

alternative behaviour characteristic of financial and economic situations.

The powers of the ARCH-corrected DW test were computed against an AR(1) alternative
hypothesis with p; = 0.1, 0.3, 0.5, 0.7, 0.9 and those of the other ARCH-corrected tests against
AR(2) were computed at the grid points {(p,, p,) : p; = 0.1, 0.3, 0.4 and p, = 0.1, 0.3, 0.5}.

~ Note that the ARCH/GARCH behaviour is present also under the alternative hypothesis.

3.2  Size Comparisons

Empirical sizes at a nominal significance level of 5 per cent for the DW1, LM2, LMS5, BPS and
LB5 tests and our proposed ARCH(2)-corrected versions in the presence of ARCH(2)

disturbances are reported in Table 1, and those in the presence of GARCH(1,1) are presented in

Table 2 over selected grid points. Corresponding sizes of Wooldridge's robust RLM2 and

RLMS tests and Diebold's DBP5 and DLBS tests are reported in Table 3. These are all based on
the non-stochastic matrix X1 with T = 50, 100 and 500. Empirical sizes of these tests, based on

asymptotic normal critical values, for various non-normal disturbance distributions are reported
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in Table 4. Size comparisons for a stochastic regressor matrix X4 are shown in Table 5 for the

proposed ARCH(2)-corrected tests.

The results reported in Table 1A reveal that when the disturbances follow an ARCH(2) process
the sizes of the standard serial correlation tests first gradually and then more sharply increase as

o, + 0, increases to 1. The maximum sizes always occur at a,; + o, = 1, i.e., when the process

is integrated. The maximum size is near 0.4 for DW1, and can be as high as 0.7 for the BPS,

LBS5 and LMS tests in large samples. Ceferis paribus, the sizes of the standard tests tend to
increase as the sample size increases when the ARCH process is integrated or nearly integrated,
indicating that their asymptotic critical values are not accurate when the assumption of

homoscedastic errors is relaxed.

~ When the disturbances follow an ARCH(2) process, the ARCH(2)-corrected tests have sizes
which are generally closer to the nominal level than their uncorrected counterparts (see Table
1B), though still usually exceeding it particularly for (near) integrated process and in large
samples. Even when the underlying disturbance process is ARCH(1), correctéd tests based on
an over-parameterized ARCH(2) model show a marked improvement over the uncorrected tests,
particularly when the process is stationary. Our ARCH(2)-corrected tests appear to have
reasonably accurate sizes using asymptotic critical values only when the ARCH/GARCH
process is strictly stationary, possibly because the estimates of the ARCH parameters are not

well-behaved otherwise.
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Overall the sizes of the standard Durbin-Watson tests are smaller than those of the other tests;
the Box-Pierce tests are closer to the nominal level than the Ljung-Box test (with 5 lags); and
the Lagrange multiplier tests perform better with lags of two (LM2) than with five (LMS) in
some range of ARCH parameter values and sample sizes, whereas the reverse is true in the other

ranges.

When the tests are corrected assuming ARCH(2) disturbances, similar size behaviour is

observed when the true disturbances are GARCH(1,1), demonstrating the robustness of such a

correction when the heteroscedastic form is inappropriate (see Table 2). The sizes of our
proposed ARCH(2)-corrected tests are often closer to the nominal size in the GARCH(1,1)

parameter space at the selected grid points than those corresponding to ARCH(2).

The ARCH-corrected tests DBP5 and DLBS5 do not seem in this study to have accurate sizes
(see Table 3A), whereas in Diebold’s (1986) study the ARCH-corrected BP and LB tests do. A
possible reason for this inconsistency is that his study and ours differ in two respects. His
experiment involved an observed time series y, = e,, but we use residuals from the regression
model with an unobserved disturbance term. In addition, Diebold used a closed form
expression for the standard errors, assuming normal disturbance terms following an ARCH
process of known order, whereas we estimated the standard errors and the corrected tests
statistics are derived without such assumptions. Because of the pooi' size performance of these

tests in most cases, their powers are not computed.
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The Wooldridge ARCH(2)-corrected RLM2 test has close to the nominal size in almost all

cases considered in this study (see Table 3) and the size of the RLMS5 test is. much lower for

small samples but is reasonable for T > 50. A desirable property of Wooldridge’s‘test, not

shared by the others, is that its size is usually below the nominal level in all samples and is
stable over the range of ARCH/GARCH parameter values in large samples. The RLM2 and
RLMS tests are notably robust when the underlying disturbance process is GARCH(1, 1) rather

than ARCH(2) and the use of asymptotic critical values results in accurate sizes.

The sizes of all the tests appear reasonably stable across various underlying disturbance
distributions, as demonstrated in Table 4. This is consistent with Evans (1992), where DW1
and other tests of serial correlation were found to be robust even when the disturbance
distribution had no finite moments. Ceteris paribus, the tests are not significantly affected by
skewness and no systematic effect of kurtosis was apparent on their sizes. These characteristics

were evident also at the 1 and 10 per cent significance levels.

The sizes of the ARCH(2)-corrected tests for the stochastic X4 matrix (shown in Table 5)
depend on & and the signal to noise ratio, generally increasing as ¢ and/or 6 increase. The
RLM?2 test size is below 0.05 in all cases considered here, whereas for the CLM2, CBP2 and
CBL2 test sizes can be as high as 0.3, 0.1 and 0.1 respectively, particularly when the ARCH
processes is integrated or is nearly so. Cefteris paribus, the sizes of all tests increase as the
sample sizes increases, but generally remain below the nominal level when the process is

' stationary with the exception of CLM2. The CDW test size can be as low as 0.00 when T = 50.




3.3 Power Comparisons

Selected power calculations given in Tables 6 to 9 are based on ARCH(2)-corrected serial
correlation tests using standard critical values at the 5 percent nominal level. For the non
stochastic matrix X1 with T = 50, empirical powers for the corrected LM and BP tests against
AR(2) are shown for AR(2)-ARCH(2) disturbances in Table 6: for normal distﬁrbances in Table
6A, for disturbances which are right skewed with heavy kurtosis in Table 6B; and for heavily
right skewed disturbances with medium kurtosis in Table 6C. Power results of corrected tests
against AR(2) disturbance process are given in Table 7A as well as for the corrected Durbin
Watson test against AR(1) disturbances in Table 7B, when the underlying process is normal
AR(2)-GARCH(1,1). For the stochastic matrix X4 with T = 50, power results for the
ARCH(2)-corrected DW test when the disturbance distribution is normal AR(1)-ARCH(2) are
given in Table 8 and with T = 100 in Table 9, for the ARCH(2)-corrected LM and BP tests

when the disturbance distribution is normal AR(2)-ARCH(2).

The ARCH-corrected tests appear to have reasonable powers for non-stochastic regfessors, as
seen in Table 6, increasing with higher values of the autoregressive parameters p, and p,. The
power properties of the tests when the disturbance distribution is non-normal and the regressors
are non-stochastic differ relatively little from the normal case: when the distribution is

leptokurtic, the powers of the corrected tests are marginally lower than those for normal

distribution in most cases; when the disturbance distribution is skewed, the powers slightly

exceed those for normal distribution, particularly when p; and p, values exceed 0.3. The
overall power was generally high for all, and the tests can be ranked as CBL2, CBP2, CLM2

and RLM2 in terms of power. Wooldridge’s RLM2 test however actually pgrforms the best,
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given that its sizes are the lowest and the closest to the nominal sizes, particularly for larger
values of the ARCH(2)/GARCH(1, 1) parameter values. However, with a heavily skewed

disturbance distribution (Table 6C), the RLM2 test is consistently superior for o} + o, > 0.4.

The RLM test is more powerful than the other ARCH(2)-corrected tests in the presence of
normal GARCH (1, 1) disturbances (see Table 7). Patterns similar to these for ARCH(2)
disturbances were observed across all X matrices. These power results and the corresponding
- signs demand the effectiveness and rorbustness of ARCH corrections, even if the true model is

some other form of dynamic heteroscedasticity.

The power against AR(1) of the corrected DW test varies from 0.1 to 1.00 as p, varies from 0.1
" to 0.9, when the regressions are non-stochastic as seen from Table 8 with 6 = 0. Powers are
quite reasonable with a tendency to marginally decline as the ARCH(2) parameters a., and/or o,

increase.

However when the regressor matrix is stochastic, with & = 0 such that it includes a lagged
dependent variable, powers increase as ¢ decreases and/or & increases and are significantly
lower for high o and low & parameter. The CDW test is most powerful with powers ranging

from 0.003 to 1.00 for T = 50 and 100: generally the nominal size exceeded the power for the

other tests for T = 50, but these are not reported here. For a stochastic regressor matrix the

- power of each of the tests generally increases with higher & values, as evident in Table 8 and 9.
Generally when the dynamic term coefficient is large the power is quite reasonable for T = 100.

The powers of the ARCH(2)-corrected LM tests are above the nominal level for all p, and P2
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values (see Table 9). The CBL2 test performs better than the CBP2 test as expected, but
surprisingly its power can be much smaller than the nominal size for small values of 6 and T =
100. The RLM2 tests have lower power than the other corrected LM tests in all cases as a
consequence of its lower size for large ARCH parameter values; this difference is noticeable

only when (p,, p,) values are small.

4. An Illustrative Example

The Australian Treasury bill rates used in our experiment have been found to be I(1) variables

with GARCH(1,1) disturbances [see Inder and Silvapulle (1993)] when using monthly
observations. Serial correlation in the first differences of these bill rates was tested for, using
monthly data for the period January 1973 to October 1992. The estimated uncorrected test

statistics and corresponding corrected versions are:

Series LM5 BP5

3 month rate 13.148 15911

6 month rate 12.402 19.000
Series CLM5 RLMS5 CBP5

3 month rate 7.036 8.414 14.112

6 month rate 5.890 10.001 12.927

At the 5 percent level, the uncorrected statistics all exceed the critical values, indicating that the

null of no serial correlation is rejected. In contrast, the CDW, CLMS, and RLMS statistics are
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insignificant at the 5 per cent level, indicating acceptance of the null hypothesis. However, the

CBP5 and CLBS statistics are still significant at the 5 per cent level.

This example demonstrates that, in the presence of ARCH disturbances, tests for serial
correlation may result in misleading inferences if this ARCH behaviour is not taken into

account. ARCH-corrected tests may improve such testing.

S. Conclusion

Using a Monte Carlo simulation study, we investigated the validity of the standard critical
values of the Durbin-Watson, Lagrange multiplier, Box-Pierce and Llung-Box tests and their
ARCH-corrected versions plus Diebold's and Wooldridge's robust tests in the presence of

ARCH/GARCH disturbances.

- Our results suggest that sizes of standard serial correlation tests are higher than the nominal size
when ARCH/GARCH disturbance behaviour is present but unaccounted for, and they increase
sharply as the parameter values of the process increase. For all sample sizes, our proposed
ARCH-corrected tests have sizes that are close to the nominal level only when the underlying
ARCH/GARCH disturbance process is stationary. Diebold's tests have relatively poor size
properties. Wooldridge's ARCH-corrected LM tests sizes appear the closest to the nominal level
and are stable over a range of ARCH/GARCH parameter values in large samples. The Durbin-

Watson test appears to be the next best.

The sizes of the ARCH-corrected serial correlation tests are marginally smaller when the

underlying disturbances follow a GARCH rather than an ARCH process. In the presence of
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stationary ARCH behaviour, when the correlation tests are corrected assuming a slightly over-

parameterized process, the sizes are appear close to the nominal level.

Taking account of the size properties of the tests, it is evident from power comparisons that the
corrected tests have good powers when the regressors are non-stochastic even in small samples,
whereas they have poor powers for stochastic regressors, particularly when the sample size and

the coefficient of lagged dependent variable are small and the signal to noise ratio is large.

Again taking size properties into account, generally the ARCH-corrected Durbin Watson test is

most powerful against first order autoregressive disturbances and Wooldridge’s robust LM test
against higher orders. Wooldridge’s test is most powerful in the presence of inappropriate form
of dynamic heteroscedasticity. ARCH corrected DW and LM tests resulted in correct inference

when applied to Australian Treasury Bill rates.

Given their good size and power properties when the disturbance process is either some form of
dynamic heteroscedasticity or is homoscedastic, the use of ARCH-corrected tests is highly
recommended: one can test for serial correlation without taking a stand on the disturbance

variance process.
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Table 1

Empirical sizes, with normal ARCH(2) disturbances, based on standard 5% critical values for matrix
X1.

Test Statistics oy oy = 0.0

A: Standard serial correlation tests

DW1 0.0 0.038 0.048

LM2

M 0.061 0.100

B 0.064 0.091

e 0.045 0.061
0.065 0.090

DW1 : . 0.081 0.093
LM2 0.121 0.153
LMS5 0.105 0.127
BPS 0.074 0.102
LB5 0.103 0.134

DW1 . 0.069 0.098
LM2 0.141 0.175
LMS5 0.134 0.153
BP5 0.098 0.138
LB5 0.137 0.170

B: ARCH(2)-corrected serial correlation tests

CDW1 0.0 0.041 0.047
CLM2 0.030 0.052
CLM5 0.056 0.064
CBP5 0.047 0.047
CLBS5 . 0.063 0.073

CDW1 . 0.068 0.059
CLM2 © 0034 0.072
CLMS5 0.061 0.072
CBP5 0.045 0.060
CLBS . 0.074 0.084

CDW1 . 0.052 0.067
CLM2 0.041 0.081
CLM5 0.075 0.084
CBP5 0.061 0.066
CLBS 0.084 ~ 0.096
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Table 2

Empirical sizes, with normal GARCH (1, 1) disturbances, based on standard 5% critical values for
matrix X1. :
50 100 500

Test Y o, =02 04 . 0.4 . 0.4
Statistics

A: Standard serial correlation tests

DW1 0.0 0.045 0.053 | 0.061
LM2 0.091 0.140 | 0.087
LM5 0.079 0.113 | 0.076
BP5 0.058 0.074 | 0.068
LB5 0.082 0.101 | 0.079

DW1 . 0.090 0.095 | 0.087
LM2 0.096 0.159 | 0.116
LM5 0.097 0.145 | 0.095
BPS 0.068 0.117 | 0.088
LB5 0.099 0.157 | 0.104

DW1 . 0.091 0.111 | 0.099
LM2 0.093 0.146 | 0.129
LMS 0.101 0.156 | 0.117
BP5 10.096 0.158 | 0.113
LB5 0.124 0.192 | 0.127

B: ARCH (2)-corrected serial correlation tests

CDW1 0.0 0.042 0.050 | 0.053
CLM2 0.045 0.069 | 0.046
CLM5 0.060 0.064 | 0.045
CBP5 0.042 0.044 | 0.047
CLB5 0.069 0.064 | 0.058

CDW1 . 0.063 0.068 | 0.062
CLM2 0.050 0.070 | 0.064
CLM5 0.060 0.093 | 0.068
CBP5 © 0.041 0.059 | 0.052
CLB5 0.067 0.082 | 0.059

CDhbW1 . 0.062 0.080 | 0.059
CLM2 " 0.050 0.084 | 0.057
CLM5 0.083 0.140 | 0.079
CBP5 0.057 0.070 | 0.062
CLB5 0.089 0.098 | 0.071
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Table 3

Empirical sizes of the Wooldridge's ARCH(2)-corrected robust LM test and Diebold's corrected
BP and LB tests based on standard 5% critical values for matrix X1. :

T= 50 100 500

Test o, =0.0 0.2 0.4 . 0.2 . X 0.2
Statistics % 1

A: Normal ARCH(2) disturbances.

RLM2 0.0
RLMS5
DBP5
DLBS

RLM2
RLMS5

N =
B: Normal GARCH (1,1) disturbances.

RLM2 0.0
RLMS
DBP5
DLBS

RLM2
RLM5
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Table 4

Empirical sizes with ARCH (2) disturbances of ARCH(2)-corrected serial correlation tests, based
on standard 5% critical values for matrix X1 and different disturbance distributions.

Disturbance Distribution

Test HRSHT KURT6 KURT9
Statistics
CDhW1 0.050 0.049 0.050
CLM2 0.039 0.028 0.030
CLMS5 0.056 0.057 0.055
CBP5 0.032 0.035 0.034
CLBS 0.046 . 0.052 0.049
RLM2 0055 0057  0.056
RLMS ' 0.031 0.030 0.032

(0.4,04) | CDWI1 0.073 0.077 0.075
CLM2 0.104 0.104 0.104
CLMS 0.100 0.104 0.100
CBP5 0.080 0.079 0.078
CLBS 0.099 0.093 0.095
RLM2 0.050 0.052 0.055
RLMS5 0.028 0.029 0.032

CDWI 0.055 0.056 0.056
CLM2 0.029 0.032 0.028
CLMS5 0.053 0.056 0.055
CBPS 0.055 0.057 0.058
CLBS 0.072. 0.073 0.073
RLM2 0.050 0.052 0.052
RLMS5 0.052 0.050 0.054

(04,04) | CDWI 0.089 0.099 0.091
CLM2 0.129 0.129 0.128
CLMS 0.116 0.115 0.114
CBPS 0.112 0.109 0.115
CLBS5 0.109 0.108 0.105
RLM2 0.055 0.055 0.058
RLMS5 0.050 0.051 0.054
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Table 5

Estimated sizes with normal ARCH(2) disturbances of the ARCH(2)-corrected serial correlation
tests based on standard 5% critical values for matrix X4.

0.0 0.0 0.2

(T,0,8) = . 0.4 0.6 0.0

(50,2,0.2)

(50,2,0.8)

(50,0.07,0.2)

. (50,0.07,0.8)

(100,2,0.2)

(100,2,0.8)

(100,0.07,0.2)

1(100,0.07,0.8)
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Table 6
Empirical powers against normal AR(2) disturbances of ARCH(2)-corrected serial correlation tests

based on asymptotic 5% critical values for matrix X1 with T = 50, with different underlying
disturbance distributions.

o, = 00 0.0 0.0

Py [ o, = 0.0 04 0.6

A: Normal AR(2)-ARCH(2) disturbances

0.1 |01 | CLM2 0.071 0.072
CBP2 0.083 0.063
CBL2 0.092 0.086
RLM2 0.060 0.061

CLM2 0.251 0.279
CBD2 0.283 0.280
CBL2 0.323 0.315
RLM2 0.250 0.258

CLM2 0.430 0472
CBP2 0.519 0.461
CBL2 0.551 0.495
RLM2 0.445 0.426

CLM2 0313 0.321
CBP2 0.344 0.326
CBL2 0.375 0.360
RLM2 0.282 0.280

CLM2 0.564 0.592
CBP2 0.612 0.624
CBL2 0.632 0.654
RLM2 0.562 0.500

CLM2 0.720 0.721
CBP2 0.762  0.746
CBL2 0.789 0.766
RLM2 0.703  0.680

CLM2 0.736 0.777
CBP2 0.748 0.781
CBL2 0.770  0.800
RLM2, 0.700 0.703

CLM2 0906 0.883
CBP2 0.926 0.895
CBL2 0.938 0.904
RLM2 0.812 0.810

CLM2 0.939 0.938
CBD2 0.950 0.941
CBL2 0.958 0.948
RLM2 0925 0.907




Table 6 (continued)

oy = 0.0 0.0

P P2 a, = 0.0 0.4
B: RSHT - AR(2)-ARCH(2) disturbances

01 (0.1 | CLM2 0.057  0.063
CBP2 0.069  0.070
CBL2 0.080  0.082
RLM2 0.057  0.070

CLM2 0.261 0.276
CBP2 0299 0315
CBL2 0327  0.347
RLM2 0.271 0.216

CLM2 0.517  0.467
CBP2 0.541 0.492
CBL2 0.580  0.539
RLM2 0.471 0.381

CLM2 0315  0.329
CBP2 0337 0.343
CBL2 0359  0.368
RLM2 0265  0.271

CLM2 0.552  0.546
CBP2 0.618  0.604
CBL2 0.643  0.632
RLM2 0.532  0.499

CLM2 0.716  0.716
CBP2 0.774  0.746
CBL2 0.796  0.765
RLM2 0.673  0.649

CLM2 0772 0.787
CBP2 0.803  0.806
CBL2 0.822  0.818
RLM2 [ 0.729  0.725

CLM2 | 0878  0.886
CBP2 | 0913 0902
CBL2 | 0928 0914
RLM2 | 0870 0.871

CLM2 0.935  0.933
CBD2 0952  0.947
CBL2 0.957  0.953
RLM2 0923  0.904




Table 6 (continued

o= 00 00

0y = 0.0 0.4
- AR(2)-ARCH(2) disturbances

CLM2 0.041 0.095
CBP2 0.047 0.076
CBL2 0.059 0.092
RLM2 0.061 0.161

CLM2 0.249 0.260
CBP2 0.286 0.271
CBL2 . 0.316 0.298
RLM2 0.235 0.358

CLM2 0.448 0.428
CBP2 0.484 0411
CBL2 0.525 0.442
RLM2 0.419 0.565

CLM2 0.285 0.379
CBP2 0318 0.355
CBL2 0.345 0.390
RLM2 0.232 0.356

CLM2 0.533 0.582
CBP2 0.591 0.602
CBL2 0.615 0.631
RLM2 0.520 0.630

CLM2 0.732  0.693
CBP2 0.768 0.711
CBL2 0.796 0.733
RLM2 0.681 0.764

CLM2 0.744 0.769
CBP2 0.762 0.755
CBL2 0.790 0.787
RLM2 0.698 0.772

CLM2 0.903 0.896
CBP2 0919 0.898
CBL2 0.930 0.907
RLM2 0.849 0.892

CLM2 0.953 0.928
CBP2 0.955 0.935
CBL2 0.962 0.940
RLM2 0.908 0.940
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Table 7

Empirical powers of ARCH(2)-corrected serial correlation tests based on standard 5% critical
values for matrix X1 with T = 50, when the underlying disturbance process is normal AR(2) -
GARCH(1, 1) : ‘ '

oy = 0.2 0.2 0.2 0.4 0.4 0.4

pr | Ps Y= 0.0 04 0.6 0.0 04 0.6
A: Powers against normal AR (2).

0.1 |01 |cCLM2 0.055
CBP2 0.070
CBL2 0.083
RLM2 0.102

CLM2 0.231
CBD2 0.276
CBL2 0.288
CLM2 0.320

CLM2 0.467
CBP2 0.505
CBL2 0.519
RLM2 0.553

CLM2 0.242
CBP2 0.291
CBL2 0314
RLM2 0.342

CLM2 0.460
CBP2 0.537
CBL2 0.582
RLM2 0.615

CLML 0.666
CBP2 0.724
CBL2 0.747
RLM2 0.767

CLM2 0.671
CBP2 0.742
CBL2 0.760
RLM2 0.781

CLM2 0.857
CBP2 0.894
CBL2 0.909
RLM2 0.912

CLM2 0.908
CBP2 0.932
CBL2 0.949
RLM2 0.952




a; = 0.2

0.2

0.2

0.4

32

04

0.4

Py ¥, =0.0

0.4

0.6

0.0

0.4

0.6

B: Powers against normal AR(1) of the correct DW test, CDW1

0.089
0.415
0.829
0.979
1.000

0.089
0.422
0.833
0.984
0.997

0.101
0.429
0.847
0.975
0.995

0.107
0.453
0.841
0.969
0.995

0.116
0.437
0.798
0.973
0.999

0.116
0.452
0.827
0.968
0.999
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Table 8

Estimated powers against normal AR(1) disturbances of the ARCH(2)-corrected DW test, based on
standard 5% critical values for matrix X4 with T = 50, when the underlying disturbance
distribution is normal AR(1)-ARCH(2).

o; =0.0 0.0 0.0

(p,0,0) o, =0.0 04 0.6

(0.1,1,0) 0.124 0.126
(0.3,1,0) 0.480 0.502
(0.5,1,0) 0.850 0.850
(0.7,1,0) 0.970 0.950
(09,1,00| .  1.000 0.990

(0.1,2,0.2) 0.003 0.006
(0.3,2,0.2) 0.028 0.044
(0.5,2,0.2) 0.142 0.153
(0.7.2,0.2) 0.245 0.287
(0.9,2,0.2) 0.381 0.392

(0.1,2,0.8) 0.061 0.080
(0.3,2,0.8) 0.207 0212
(0.5,2,0.8) 0.481 0.430
(0.7.2,0.8) 0.680 0.728
(0.9.2,0.8) 0.978 0.978

(0.1,0.07,0.2) 0.089 0.080
(0.3,0.07,0.2) 0.232 0.245
(0.5,0.07,0.2) 0.396 0410
(0.7,0.07,0.2) 0.588 0.562
(0.9,0.07,0.2) 0.940 0.955

(0.1,0.07,0.8) 0.132 0.142
(0.3,0.07,0.8) 0.328 0.352
(0.5,0.07,0.8) 0.633 0.692
(0.7,0.07,0.8) 0.978 0.978
(0.9,0.07,0.8) © 1.000 1.000
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Table 9

Estimated powers against normal AR(2) distributions of ARCH(2)-corrected serial correlation tests
based on asymptotic critical values at the 5 per cent nominal level for matrix X4 with T = 100,
when the underlying distribution is normal AR(2)-ARCH(2)

0.0 0.0 0.0 0.2 0.2 0.2 04 0.4 0.4

(6,p1,P2,0) = 0.0 0.4 0.6 0.0 0.4 0.6 0.0 0.4 0.6

(2,0.3,0.1,0.2)

(2,0.3,0.1,0.8)

(2,0.3,0.4,0.2)

(2,0.3,0.4,0.8)

(2,0.5,0.1,0.2)

(2,0.5,0:1,0.8)

(2,0.5,0.4,0.2)

(2,0.5,0.4,0.8)




Table 9 continued

(G,p,,p2,5)

(0.07,0.3,0.1,0.2)

(0.07,0.3,0.1,0.8)

(0.07,0.3,0.4,0.2)

(0.07,0.3,0.4,0.8)

(0.07,0.5,0.1,0.2)

(0.07,0.5,0.1,0.8)

(0.07,0.5,0.4,0.2)

(0.07,0.5,0.4,0.8)







