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ABSTRACT

A test for the presence of serial correlation is routinely carried out as a test for efficiency in fmancial markets. The

problems inherent in such testing in the presence of dynamic heteroscedasticity are addressed in this paper. The

accuracy of using standard critical values of serial correlation tests in the presence of autoregressive conditional

heteroscedasticity (ARCH), generalized ARCH (GARCH), normal and non-normal disturbances is investigated.

Tests examined include the conventional Durbin-Watson, Box-Pierce, Ljung-Box, Lagrange multiplier tests,

•proposed ARCH-corrected versions of these tests, and the robust tests of Diebold (1986) and Wooldridge (1992).

Standard serial correlation tests are derived assuming that the disturbances are homoscedastic, but this study shows

that asymptotic critical values are not accurate when this assumption is violated. Asymptotic critical values for the

ARCH(2)-corrected LM, BP and BL tests are valid only when the underlying ARCH process is strictly stationary,

whereas Wooldridge's robust LM test has good size and power properties overall. These tests exhibit similar

behaviour even when the underlying process is GARCH (1, 1). When the regressors include lagged dependent

variables, the sizes and powers of the corrected tests depend on the coefficient of the lagged dependent variables,

and the ratio of signal to noise. They appear to be robust across various disturbance distributions.
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1. Introduction

The problem of testing for serial correlation arises frequently in applied research involving

economic and financial time series data. For example, omitted variables and inadequate

modelling of functional form can give rise to correlated errors. A test of serial correlation,

therefore, can be a test for misspecification of a model. Non-synchronicity due to infrequent

trading of financial assets or inefficiency in financial markets results in serially correlated

individual asset returns. A test for the absence of serial correlation in asset returns then can be a

test for market efficiency [see Fama (1965) and Bollerslev and Hodrick (1992)] and

synchronous trading [see Scholes and Williams (1977) and Lo and MacKinlay (1990)]. These

are but two examples which illustrate both the importance of testing for serial correlation and

how this issue can arise in different contexts.

Engle (1982) and Bollerslev (1986) demonstrated that autoregressive conditional

heteroscedastic (ARCH) behaviour may be commonly present in a time series context. ARCH-

type processes that emerge from evolving variance over time have the ability to capture the

volatility clustering and leptokurtosis characteristic of financial time series of various

frequencies; for example, see Bollerslev et al. (1992). A non-normal ARCH or generalized

(GARCH) process is often required for a satisfactory representation of the distributional

behaviour of asset returns, as shown by Baillie and DeGennaro (1990), Engle and Gonzalez-

Rivera (1991) and others. See Bollerslev, Chou and Kroner (1992) and Bera and Higgins

(1992) for extensive surveys of this ARCH literature.
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Both phenomena, serial correlation and ARCH processes, have been found to occur

simultaneously in models involving economic and financial variables, mainly due to time

varying autoregressive parameters. Recent studies by Weiss (1986), Tsay (1987), Bera, Higgins

and Lee (1992), Bollerslev and Hodrick (1992) and Bolleslev and Wooldridge (1992) consider

the theory and applications of such ARMA-ARCH models, and demonstrate that the issue of

testing for serial correlation in the presence of ARCH behaviour deserves attention.

The limiting distributions of many serial correlation tests are derived assuming independent

identically distributed (i.i.d.) normal disturbances. In empirical studies involving time series

this ideal assumption is often violated, and these tests can be biased. Since an indication of

serially correlated errors has far-reaching implications for econometric modelling, it is

important that tests for this behaviour have correct size and good power in finite samples,

particularly when the underlying assumptions are violated.

The main objective of this study is to investigate the robustness of the popular Durbin-Watson

(DW), Lagrange multiplier (LM), Box-Pierce (BP) and Ljung-Box (LB) tests and their

corrected versions against autoregressive disturbances in the presence of dynamic

heteroscedastic disturbances with normal or non-normal distributions.

Diebold (1986) addressed the question of robustness of the BP and LB tests iii the presence of

ARCH and recommended using ARCH-corrected standard errors. Although empirical evidence

using an observed time series supports his claim, the performance of these tests with

unobserved series needs to be evaluated. This is important as serial correlation is commonly
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present, for example, in the disturbance term of the regression model and our simulation study

is designed to address this issue. Recently, Wooldridge (1991) proposed LM-type tests for

serial correlation in the presence of ARCH and showed that they are robust when the dynamics

are completely specified. The properties of these robust LM-type tests in finite samples remain

unknown, though Small (1993) has undertaken some investigation in small samples.

We also suggest corrections similar to those of Wooldridge to the conventional DW, BP, LB

and LM tests and examine their properties. Here we assess the finite-sample size properties of

the standard tests, Diebold's and Wooldridge's robust tests and our ARCH-corrected tests and

compare their performance also when the underlying disturbance process is normal or non-

normal ARCH and GARCH.

The model and the tests are discussed in the next section and a Monte Carlo experiment and the

results are reported in section 3. Section 4 gives an illustrative example and section 5 concludes

the paper.

2. The Model and the Tests

Consider the model

yt = 43+ u„ t= 1,...T (1)

where yt is a dependent variable, xt = rxL--ti,•••xtd is a loci vector of variables, which may include

stochastic and non-stochastic variables, lagged regressors and lagged values of yt, and p is a loci

vector of unknown parameters, and ut follows the stationary AR(m) process

ut = p1 ut.i + • • •+ Pm ut-m et t = m+ 1, , T (2)
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where pi,•, pm are unknown autoregressive parameters. In order to ensure the stationarity of

(2), we assume that roots of 1 -piL - -pmLm =0, where L is the lag operator, lie outside the

unit circle. The term ; is assumed to be of the form

et = tzt (3)

where at > 0, {zt} is i.i.d. with E(zt) =0 and var (zt) = 1, and for some function h,

sat2 wut2 I
I (Dt-1) = h(cit-1) (4)

where Tit_i is the information set available at time t-1. This model is widely used in finance.

Our interest lies in testing for serial correlation in model (1), but appropriate tests would depend

on the functional form of h. Although several different functional forms have been suggested in

the literature, we restrict attention to the well known GARCH(p,q) process

2 2 T" 2 2
at =a0±Laiet-i +L7 ta t-;

J=1
(5)

where cro2 > 0, 0, i = 1, q and yi 0, j = 1, p [see Bollerslev (1986)]. Nelson and Cao

(1992) show that the non-negativity conditions can be relaxed somewhat when the process is

GARCH.

Stationary and integrated GARCH(p,q) processes have been of interest in many empirical

studies. Therefore, we assume that

E ai+ E Y•
i=1 j = 1

< 1.

If yi =0, j = 1, p, then (5) reduces to the ARCH(q) disturbance process.

We wish to test the null hypothesis, given E(ut2 I sacit_i) = at2,
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Ho Pi ••• = Pm 0

against the alternative hypothesis

Hi: Not all pi = 0, j = 1, m

The Durbin-Watson test, although most often used to test against AR(1) disturbances, can be

regarded as a test for disturbances with a first-order autocorrelated component [see King and

Evans (1988)]. Against higher order AR(m) disturbances, the BP, LB and LM tests, denoted

by BPm, LBm and LMm respectively, are used frequently. These test statistics•are defined as

DW1 = (fit -
t=2 t=1

BPm = TE

ut 5

LBm = T(T+ 2) (T- i ,
i=1

and LMm = (T- rn) R2

where at, t = 1, T, are the OLS residuals of model (1), f3; = E i = 1, m, and

R2 is the coefficient of determination of the regression of fit on xt and awn). The test

statistics other than DW1 have a chi-squared distribution with m degrees of freedom (X,(2m))

asymptotically under the null hypothesis. All are derived under the assumption of

homoscedastic and normal disturbance distributions.

Diebold's corrected BP and LB tests, denoted DBPm and DLBm respectively, are defined as



DBPm =
"4
Y  -2

"21P-
1=1 
[^4 
a ± i
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DLBm = T(T+ 2) E  
"4
a[  4 v l "2

a + Pi ,

respectively, where is an estimate of the ith autocovariance of ü defined as

"2 'Vr"2 "2\0,2
i i LAUt AUt-i â2)

and a4 is the square of an estimate of the unconditional second moment of fit defined as

= [Ti E

Diebold (1986) has shown that these tests are asymptotically X,(2„,) under the null hypothesis and

the normality assumption. Although the exact expressions for t and a4 can be derived for an

ARCH process, they need to be estimated in practice, which is done in our simulation study.

Wooldridge's ARCH-corrected LM test, denoted RLMm, is robust for testing Ho in time-series

models with completely specified dynamics. The construction of RLMm involves the

following steps:

(i) Obtain the fitted values denoted here by lit , t=1, T from the linear regression

"2 n 2 a 
-1- 

_ 
-1- 110 

n 
q 

2
Ut = 0 ± tti 1 Ut.i • • • Vt t = 1, ..., T.

(ii) Define x; = xt and lit = fit/ t = 1, ..., T.

(iii) Save the lxm vector of residuals, say ""c , from the regression of each of the 3:it on x: ,

where 3: =
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(iv) Compute (T - SSR), where SSR is the sum of squares of residuals from the regression of

1 on lit ?t. (T - SSR) x2(m) asymptotically under Ho.

Before introducing our modified versions of the serial correlation tests, recall that an important

assumption underlying the tests is that the disturbance terms have a constant variance, which is

not the case in the presence of ARCH. This suggests that the DW1, BPm and LBm tests might

be improved by replacing fit with its standardised version. We therefore replace ü by ift

obtained in step (ii) of Wooldridge's procedure and denote the corresponding corrected versions

by CDW1, CBPm and CLBm, respectively. We also include such a correction for the

conventional LMm test computed as (T-m)R2, where R2 is the coefficient of determination of

the linear regression of lit on xst and (11.1,...,11 m ) , and denote it by CLMm. The asymptotic

distributions of these corrected tests are valid under the particular ARCH(q) model - including

homoscedasticity - estimated in the preliminary stage, but are not robust to variance

misspecification. However, Woolridge's corrected LM tests are asymptotically valid under any

heteroscedasticity. We assess the properties of all corrected tests when the true model is

GARCH (p.q) but the correction is made assuming the ARCH(q) process.

Bolleslev and Wooldridge (1992) proposed easily computable LM tests for AR-GARCH, and in

a simulation study showed that their sizes and powers compare favourably with the standard

Wald and LM tests when the disturbances are non-normal. These tests are not considered in

this study. Bera, Higgins and Lee (1992) also proposed a LM test for serial correlation in the

presence of ARCH/GARCH process which arises as a result of time varying serial correlation
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and Small (1993) considered its applications. However this test could not be applied directly to

model (1).

We use Monte Carlo simulations to assess the properties of the corrected versions of the various

tests and compare them with those of their =corrected counterparts and the robust tests of

Diebold and Wooldridge.

3. Empirical Evaluation of the Tests

A Monte Carlo experiment was conducted to assess the accuracy of the sizes of the

abovethentioned tests in the presence of ARCH and GARCH disturbances, using standard

critical values. Some power comparisons were also undertaken. Selected size and power

results only are presented in Tables 1 to 9. The complete set of results is available on request.

3.1 Experimental Design

Critical values were based on the assumption of standard i.i.d. normal errors in model (1) at the

1, 5 and 10 per cent nominal levels. Exact values were calculated for the DW1 test and

tabulated chi-square values were used for the other tests with an asymptotic justification.

Monte Carlo simulations were based on 2,000 replications. In order to limit the simulation

study to a manageable scale, we considered only the cases m = 1,2, 5, 10,20 in the disturbance

process (2), and (p,q) = (0,2), (1,1) in model (5) which correspond to ARCH(2) and

GARCH(1,1) processes, respectively. An ARCH(2) process can be generated as

et Th(1 "2± sa2e.2) 
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where (a1, a2) s S21 = {(a1, a2) I al, a2 0 and al + a2 1) with it a random disturbance. A

GARCH(1,1) process can be generated as

et lt(1 +710'2")"2

where (ai, yi) s S-22= {(a1,71) I ai, 0 and a1 +71 1}.

For an underlying ARCH(2) disturbance process, sizes were estimated at the grid points

{(a1, a2): al = 0.0, 0.2, 0.4 and a2 = 0.0, 0.4, 0.6} c S21,

and when the process is GARCH(1,1) they were estimated at

{(a1, 70: al = 0.2, 0.4 and yi = 0.0, 0.4,0.6) c S22.

The following regressor or X matrices, with T = 50, 100, 500, were used

X1 : A constant dummy and the daily 90-day Australian Treasury bill rate commencing 16

September 1985 (k=2).

XI A constant dummy and the daily spread between 90 and 180 days Australian Treasury

bill rates commencing 16 September 1985 (1c=2).

X3: A constant dummy, the 90-day bill rate and this variable lagged by one, two and three

days (k=5).

X4: X1 and the first-order lagged dependent variable (k=3), where the coefficient of X is EY

= (0,1,8), with the coefficient of the lagged dependent variable, 8, set.at 0.2, 0.4, 0.6 and

0.8, and a = 0.07, 2, 7.
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X5: X2 and the first-order lagged dependent variable (k=3), where the coefficient of X is

13' = (0,1,8), with the coefficient of the lagged dependent variable, 8, set at 0.2, 0.4, 0.6

and 0.8, and = 2, 4, 7.

With dynamic regressors, test characteristics can depend on the signal to noise ratio, which for

X4 and X5 corresponds to Ex2e2 / . Generally the signal to noise ratio is given by I I x* p I I /a.,

where X* is the matrix of regressors excluding the lagged dependent variable. To keep the

experiment manageable, we chose only one set of values for p but a range of values for a,

mostly those which result in reasonable R2 values for the model (1).

A number of fitted values of fit were found to be negative, which is undesirable because the

variables used to construct the test statistics are normalized by dividing by Nric (see step (i) in

Wooldridge's procedure). Hence, to ensure that these fitted values h were positive, the

parameter .estimates of the model with q = 2 were obtained by the method of least squares

subject to the constraints 00> 0, 01, 02 0. [When investigating the possibility of using absolute

values of lit and log ( fie ), the ARCH-corrected tests were found to have =acceptably high

sizes but Wooldridge's robust tests were unaffected.]

To generate the random disturbances {TO, a standard normal distribution, Which is symmetric

with a kurtosis of 3, and a weighted mixture (MIXNOR) of normal distributions {0.1N(0,1) +

0.9N(0,3)} were used. Disturbances following six othei distributions, each with a zero mean,

unit variance and characterised by their skewness and kurtosis, were also generated, based on a
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generalisation of Tukey's lambda distribution. Parameter values were chosen from the table in

Ramberg, Tadikamalla, Dudewicz and Mykytka (1979). Leptokurtosis is implied by a kurtosis

or tail measure greater than 3. These distributions have, respectively: a right skewness of 0.5

and medium kurtosis or tail of 4 (RSMT) and heavy kurtosis (RSHT); a heavy right skewness

of 0.8 and medium kurtosis of 4 (HRSMT) and heavy kurtosis of 9 (HRSHT); and symmetry

with kurtosis of 6 (KURT6) and 9 (KURT9). These distributions enable a systematic

investigation of the effect of skewness and kurtosis and were chosen to represent a range of

alternative behaviour characteristic of financial and economic situations.

The powers of the ARCH-corrected DW test were computed against an AR(1) alternative

hypothesis with pi = 0.1, 0.3, 0.5, 0.7, 0.9 and those of the other ARCH-corrected tests against

AR(2) were computed at the grid points {(131, P2) Pi = 0.1, 0.3, 0.4 and p2 = 0.1, 0.3, 0.5} .

Note that the ARCH/GARCH behaviour is present also under the alternative hypothesis.

3.2 Size Comparisons

Empirical sizes at a nominal significance level of 5 per cent for the DW1, LM2, LM5, BP5 and

LB5 tests and our proposed ARCH(2)-corrected versions in the presence of ARCH(2)

disturbances are reported in Table 1, and those in the presence of GARCH(1,1) are presented in

Table 2 over selected grid points. Corresponding sizes of Wooldridge's robust RLM2 and

RLM5 tests and Diebold's DBP5 and DLB5 tests are reported in Table 3. These are all based on

the non-stochastic matrix X1 with T = 50, 100 and 500. Empirical sizes of these tests, based on

asymptotic normal critical values, for various non-normal disturbance distributions are reported
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in Table 4. Size comparisons for a stochastic regressor matrix X4 are shown in Table 5 for the

proposed ARCH(2)-corrected tests.

The results reported in Table 1A reveal that when the disturbances follow an ARCH(2) process

the sizes of the standard serial correlation tests first gradually and then more sharply increase as

ai + a2 increases to 1. The maximum sizes always occur at al + a2 = 1, i.e., when the process

is integrated. The maximum size is near 0.4 for DW1, and can be as high as 0.7 for the BPS,

LB5 and LM5 tests in large samples. Ceteris paribus, the sizes of the standard tests tend to

increase as the sample size increases when the ARCH process is integrated or nearly integrated,

indicating that their asymptotic critical values are not accurate when the assumption of

homoscedastic errors is relaxed.

When the disturbances follow an ARCH(2) process, the ARCH(2)-corrected tests have sizes

which are generally closer to the nominal level than their uncorrected counterparts (see Table

1B), though still usually exceeding it particularly for (near) integrated process and in large

samples. Even when the underlying disturbance process is ARCH(1), corrected tests based on

an over-parameterized ARCH(2) model show a marked improvement over the uncorrected tests,

particularly when the process is stationary. Our ARCH(2)-corrected tests appear to have

reasonably accurate sizes using asymptotic critical values only when the ARCH/GARCH

process is strictly stationary, possibly because the estimates of the ARCH parameters are not

well-behaved otherwise.
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Overall the sizes of the standard Durbin-Watson tests are smaller than those of the other tests;

the Box-Pierce tests are closer to the nominal level than the Ljung-Box test (with 5 lags); and

the Lagrange multiplier tests perform better with lags of two (LM2) than with five (LM5) in

some range of ARCH parameter values and sample sizes, whereas the reverse is true in the other

ranges.

When the tests are corrected assuming ARCH(2) disturbances, similar size behaviour is

observed when the true disturbances are GARCH(1,1), demonstrating the robustness of such a

correction when the heteroscedastic form is inappropriate (see Table 2). The sizes of our

proposed ARCH(2)-corrected tests are often closer to the nominal size in the GARCH(1,1)

parameter space at the selected grid points than those corresponding to ARCH(2).

The ARCH-corrected tests DBP5 and DLB5 do not seem in this study to have accurate sizes

(see Table 3A), whereas in Diebold's (1986) study the ARCH-corrected BP. and LB tests do. A

possible reason for this inconsistency is that his study and ours differ in two respects. His

experiment involved an observed time series yt = ;, but we use residuals from the regression

model with an unobserved disturbance term. In addition, Diebold used a closed form

expression for the standard errors, assuming normal disturbance terms following an ARCH

process of known order, whereas we estimated the standard errors and the corrected tests

statistics are derived without such assumptions. Because of the poor size performance of these

tests in most cases, their powers are not computed.
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The Wooldridge ARCH(2)-corrected RLM2 test has close to the nominal size in almost all

cases considered in this study (see Table 3) and the size of the RLM5 test is. much lower for

small samples but is reasonable for T ?_ 50. A desirable property of Wooldridge's test, not

shared by the others, is that its size is usually below the nominal level in all samples and is

stable over the range of ARCH/GARCH parameter values in large samples. The RLM2 and

RLM5 tests are notably robust when the underlying disturbance process is GARCH(1, 1) rather

than ARCH(2) and the use of asymptotic critical values results in accurate sizes.

The sizes of all the tests appear reasonably stable across various underlying disturbance

distributions, as demonstrated in Table 4. This is consistent with Evans (1992), where DW1

and other tests of serial correlation were found to be robust even when the disturbance

distribution had no finite moments. Ceteris paribus, the tests are not significantly affected by

skewness and no systematic effect of kurtosis was apparent on their sizes. These characteristics

were evident also at the 1 and 10 per cent significance levels.

The sizes of the ARCH(2)corrected tests for the stochastic X4 matrix (shown in Table 5)

depend on 5 and the signal to noise ratio, generally increasing as a and/or 8 increase. The

RLM2 test size is below 0.05 in all cases considered here, whereas for the CLM2, CBP2 and

CBL2 test sizes can be as high as 0.3, 0.1 and 0.1 respectively, particularly when the ARCH

processes is integrated or is nearly so. Ceteris paribus, the sizes of all tests increase as the

sample sizes increases, but generally remain below the nominal level when the process is

stationary with the exception of CLM2. The CDW.test size can be as low as 0.00 when T = 50.
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3.3 Power Comparisons

Selected power calculations given in Tables 6 to 9 are based on ARCH(2)-corrected serial

correlation tests using standard critical values at the 5 percent nominal level. For the non

stochastic matrix X1 with T = 50, empirical powers for the corrected LM and BP tests against

AR(2) are shown for AR(2)-ARCH(2) disturbances in Table 6: for normal disturbances in Table

6A, for disturbances which are fight skewed with heavy kurtosis in Table 6B; and for heavily

right skewed disturbances with medium kurtosis in Table 6C. Power results of corrected tests

against AR(2) disturbance process are given in Table 7A as well as for the corrected Durbin

Watson test against AR(1) disturbances in Table 7B, when the underlying process is normal

AR(2)-GARCH(1,1). For the stochastic matrix X4 with T = 50, power results for the

ARCH(2)-corrected DW test when the disturbance distribution is normal AR(1)-ARCH(2) are

given in Table 8 and with T = 100 in Table 9, for the ARCH(2)-corrected LM and BP tests

when the disturbance distribution is normal AR(2)-ARCH(2).

The ARCH-corrected tests appear to have reasonable powers for non-stochastic regressors, as

seen in Table 6, increasing with higher values of the autoregressive parameters p1 and p2. The

power properties of the tests when the disturbance distribution is non-normal and the regressors

are non-stochastic differ relatively little from the normal case: when the distribution is

leptokurtic, the powers of the corrected tests are marginally lower than those for normal

distribution in most cases; when the disturbance distribution is skewed, the powers slightly

exceed those for normal distribution, particularly when pi and p2 values exceed 0.3. The

overall power was generally high for all, and the tests can be ranked as CBL2, CBP2, CLM2

and RLM2 in terms of power. Wooldridge's RLM2 test however actually performs the best,
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given that its sizes are the lowest and the closest to the nominal sizes, particularly for larger

values of the ARCH(2)/GARCH(1, 1) parameter values. However, with a heavily skewed

disturbance distribution (Table 6C), the RLM2 test is consistently superior for al + a2 >. 0.4.

The RLM test is more powerful than the other ARCH(2)-corrected tests in the presence of

normal GARCH (1, 1) disturbances (see Table 7). Patterns similar to these for ARCH(2)

disturbances were observed across all X matrices. These power results and the corresponding

signs demand the effectiveness and rorbustness of ARCH corrections, even if the true model is

some other form of dynamic heteroscedasticity.

The power against AR(1) of the corrected DW test varies from 0.1 to 1.00 as pi varies from 0.1

• to 0.9, when the regressions are non-stochastic as seen from Table 8 with 8 = 0. Powers are

quite reasonable with a tendency to marginally decline as the ARCH(2) parameters ai and/or a2

increase.

However when the regressor matrix is stochastic, with 8 # 0 such that it includes a lagged

dependent variable, powers increase as a decreases and/or 8 increases and are significantly

lower for high a and low 8 parameter. The CDW test is most powerful with powers ranging

from 0.003 to 1.00 for T = 50 and 100: generally the nominal size exceeded the power for the

other tests for T = 50, but these are not reported here. For a stochastic regressor matrix the

• power of each of the tests generally increases with higher 8 values, as evident in Table 8 and 9.

Generally when the dynamic term coefficient is large the power is quite reasonable for T = 100.

The powers of the ARCH(2)-corrected LM tests are above the nominal level for all pi and
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values (see Table 9). The CBL2 test performs better than the CBP2 test as expected, but

surprisingly its power can be much smaller than the nominal size for small values of 8 and T =

100. The RLM2 tests have lower power than the other corrected LM tests in all cases as a

consequence of its lower size for large ARCH parameter values; this difference is noticeable

only when (Pi' p2) values are small.

4. An Illustrative Example

The Australian Treasury bill rates used in our experiment have been found to be I(1) variables

with GARCH(1,1) disturbances [see Inder and Silvapulle (1993)] when using monthly

observations. Serial correlation in the first differences of these bill rates was tested for, using

monthly data for the period January 1973 to October 1992. The estimated uncorrected test

statistics and corresponding corrected versions are:

Series DW1 LM5 BP5 BL5

3 month rate 1.614 13.148 15.911 15.083

6 month rate 1.789 12.402 19.000 18.904

Series CDW1 CLM5 RLM5 CBP5 CBL5

3 month rate 1.890 7.036 8.414 14.112 13.012

6 month rate 1.808 5.890 10.001 12.927 12.000

At the 5 percent level, the uncorrected statistics all exceed the critical values, indicating that the

null of no serial correlation is rejected. In contrast, the CDW, CLM5, and RLM5 statistics are
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insignificant at the 5 per cent level, indicating acceptance of the null hypothesis. However, the

CBP5 and CLB5 statistics are still significant at the 5 per cent level.

This example demonstrates that, in the presence of ARCH disturbances, tests for serial

correlation may result in misleading inferences if this ARCH behaviour is not taken into

account. ARCH-corrected tests may improve such testing.

5. Conclusion

Using a Monte Carlo simulation study, we investigated the validity of the standard critical

values of the Durbin-Watson, Lagrange multiplier, Box-Pierce and Llung-Box tests and their

ARCH-corrected versions plus Diebold's and Wooldridge's robust tests in the presence of

ARCH/GARCH disturbances.

• Our results suggest that sizes of standard serial correlation tests are higher than the nominal size

when ARCH/GARCH disturbance behaviour is present but unaccounted for, and they increase

sharply as the parameter values of the process increase. For all sample sizes, our proposed

ARCH-corrected tests have sizes that are close to the nominal level only when the underlying

ARCH/GARCH disturbance process is stationary. Diebold's tests have relatively poor size

properties. Wooldridge's ARCH-corrected LM tests sizes appear the closest to the nominal level

and are stable over a range of ARCH/GARCH parameter values in large samples. The Dubin--

Watson test appears to be the next best.

The sizes of the ARCH-corrected serial correlation tests are marginally smaller when the

underlying disturbances follow a GARCH rather than an ARCH process. In the presence of
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stationary ARCH behaviour, when the correlation tests are corrected assuming a slightly over-

parameterized process, the sizes are appear close to the nominal level.

Taking account of the size properties of the tests, it is evident from power comparisons that the

corrected tests have good powers when the regressors are non-stochastic even in small samples,

whereas they have poor powers for stochastic regressors, particularly when the sample size and

the coefficient of lagged dependent variable are small and the signal to noise ratio is large.

Again taking size properties into account, generally the ARCH-corrected Durbin Watson test is

most .powerful against first order autoregressive disturbances and Wooldridge's robust LM test

against higher orders. Wooldridge's test is most powerful in the presence of inappropriate form

of dynamic heteroscedasticity. ARCH corrected DW and LM tests resulted in correct inference

when applied to Australian Treasury Bill rates.

Given their good size and power properties when the disturbance process is either some form of

dynamic heteroscedasticity or is homoscedastic, the use of ARCH-corrected tests is highly

recommended: one can test for serial correlation without taking a stand on the disturbance

variance process.



20

REFERENCES

Baillie, R.T. and R.P. DeGennaro, 1990, Stock Returns and Volatility, Journal of Financial and

Quantitative Analysis, 25, 203-214.

Bera, A.K. and M.L. Higgins, 1992, A Survey of ARCH Models: Properties, Estimation and

Testing, College of Commerce and Business Administration, University of Illinois,

Urbana-Champagne, BEBR Working Paper 92-0017.

Bera, A.K., Higgins, M.L. and S.Lee, 1992, Interaction Between Auto-Correlation and

Conditional Heteroskedasticity: A Random Coefficient Approach, Journal of Business

and Economic Statistics, 10, 133-142.

Bollerslev, T. 1986, Generalised Autoregressive Conditional Heteroskedasticity, Journal of

Econometrics, 31, 307-327.

Bollerslev, T. Chou, R.Y. and K.F. Kroner, 1992, ARCH Modelling in Finance: A Review of

the Theory and Empirical Evidence, Journal of Econometrics, 52, 5-59.

Bollerslev, T. and R.J. Hodrick, 1992, Financial Market Efficiency Tests, NBER Working

Paper No. 132.

Bollerslev, T. and J.M. Wooldridge, 1992, Quasi-Maximum Likelihood • Estimation and

Inference in Dynamic Models with Time-Varying Covariances, Econometric Reviews,

11(12), 143-172.

Diebold, F.X., 1986, Testing for Serial Correlation in the Presence of ARCH, Proceedings of

the American Statistical Association, 323-28.

Engle, R.F., 1982, Autoregressive Conditional Heteroskedasticity with Estimates of the

Variance of U.K. Inflation, Econometrica, 50, 987-1008.



21

Engle, R.F. and G.Gonzalez-Rivera, 1991, Serniparametric ARCH Models, Journal of Business

and Economic Statistics, 9, 345-359.

Evans, M.A., 1992, Robustness of Size of Tests of Autocorrelation and Heteroscedasticity to

Non-Normality, Journal of Econometrics, 51, 7-24.

Fama, E.F. 1965, The Behaviour of Stock Market Prices, Journal of Business, 38, 34-105.

Inder, B. and -P. Silvapulle, 1993, Yield Spreads and Interest Rate Movements, Mimeo, Monash

University.

King, M.L. and M.A. Evans, 1988, Locally Optimal Properties of the Durbin-Watson Test,

Economic Theory, 4, 509-516.

Lo, A. and A.C. MacKinlay, 1990, An Econometric Analysis of Infrequent Trading, Journal of

Econometrics, 45, 181-211.

Nelson, D.B. and C.Q. Cao, 1992, Inequality Constraints in the Univariate GARCH Model,

Journal of Business and Economic Statistics, 2,220-235.

Ramberg, J.S., Dudewicz, E.J., Tadikarnalla, P.R. and E.F. Mykytka, 1979, A Probability

Distribution and its Uses for Fitting Data, Technometrics, 21,201-214.

Scholes, M. and J. Williams, 1977, Estimating Betas from Non-Synchronous Data, Journal of

Financial Economics, 5,309-327.

Small, P.S. 1993, Comparing Standard and Robust Serial Correlation Tests in the Presence of

GARCH Errors, Discussion Paper No. 9308, University of Canterbury, Christchurch,

New Zealand.



22

Tsay, R.S. 1987, Conditional Heteroscedastic Time Series Models, Journal of the American

Statistical Association, 82, 590-604.

Weiss, A.A. 1986, Asymptotic Theory for ARCH Models: Estimation and Testing,

Econometric Theory, 2, 107-131.

Wooldridge, J.M. 1991, On the Application of Robust, Regression-based Diagnostics to Models

of Conditional Means and Conditional Variances, Journal of Econometrics, 47, 5-46.



23

Table 1

Empirical sizes, with normal ARCH(2) disturbances, based on standard 5% critical values for matrix
Xl.

T= 50 100 . 500

Test Statistics a2 al = 
0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4

A: Standard serial correlation tests

DW1
LM2
LM5
BPS
LB5

DW1 •

0.0

0.4

0.038
0.061
0.064
0.045
0.065

0.081

0.048
0.100
0.091
0.061
0.090

0.093

,
0.057
0.133
0.110
0.079
0.108

0.099

0.048
0.062
0.071
0.053
0.064

0.068

0.065
0.089
0.070
0.063
0.076

0.090

0.078
0.138
0.109
0.106
0.120

0.112

0.050
0.056
0.058
0.051
0.052

0.098

0.067
0.085
0.074
0.071
0.074

0.124

0.123
0.134
0.136
0.134
0.136

0.142
LM2 0.121 0.153 0.206 0.121 0.187 0.254 0.133 0.272 0.517
LM5 0.105 0.127 0.196 0.114 0.159 0.260 0.136 0.287 0.514
BPS 0.074 0.102 0.165 0.096 0.153 0.253 0.123 0.272 0.517
LB5 0.103 0.134 0.200 0.110 0.168 0.271 0.125 0.279 0.513

DW1 0.6 0.069 0.098 0.125 0.102 0.189 0.213 0.123 0.292 0.381
LM2 0.141 0.175 0.242 0.168 0.237 0.348 0.258 0.431 0.597
LM5 0.134 0.153 0.224 0.161 0.256 0.389 0.293 0.498 0.693
BPS 0.098 0.138 0.201 0.139 0.237 0.349 0.264 0.509 0.711
LB5 0.137

,
0.170 0.244 0.156 0.261 0.378 0.269 0.513 0.714

B: ARCH(2)-corrected serial correlation tests

CDW1 0.0 0.041 0.047 0.054 0.051 0.058 0.061 0.052 0.055 0.049
CLM2 0.030 0.052 0.057 0.035 0.050 0.060 0.036 0.048 0.049
CLM5 0.056 0.064 0.063 0.065 0.047 0.053 0.051 0.042 0.046
CBP5 0.047 0.047 0.050 0.056 0.046 0.060 0.043 0.049 0.043
CLB5 0.063 0.073 0.069 0.065 0.055 0.069 0.046 0.050 0.045

CDW1 0.4 0.068 0.059 0.061 0.059 0.067 0.078 0.062 0.077 0.089
CLM2 • 0.034 0.072 0.107 0.032 0.077 0.132 0.037 0.074 0.151
CLM5 0.061 0.072 0.111 0.057 0.068 0.106 0.049 0.077 0.143
CBP5 0.045 0.060 0.082 0.053 0.063 0.089 0.045 0.061 0.101
CLB5 . 0.074 0.084 0.107 0.066 0.073 0.103 0.046 0.063 0.103

CDW1 0.6 0.052 0.067 0.088 0.068 0.090 0.095 0.052 0.095 0.099
CLM2 0.041 0.081 0.117 0.040 0.108 0.163 0.054 0.156 0.271
CLM5 0.075 0.084 0.118 0.063 0.098 0.172 0.071 0.140 0.267
CBP5 0.061 0.066 0.099 0.053 0.081 0.140 0.061 0.115 0.201
CLB5 0.084 • 0.096 0.132 0.069 0.096 0.160 0.062 0.120 0.207
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Table 2

Empirical sizes, with normal GARCH (1, 1) disturbances, based on standard 5% critical values for

matrix Xl.

T= 50 100
1

500

Test
Statistics

y1 cci = 0.2 0.4 0.2 0.4 0.2 0.4

A: Standard serial correlation tests

DW1 0.0 0.045 0.053 0.061 0.077 0.063 0.120

LM2 0.091 0.140 0.087 0.139 0.085 0.178

LM5 0.079 0.113 0.076 0.118 0.075 0.159

BPS 0.058 0.074 0.068 0.102 0.070 0.141

LB5 0.082 0.101 0.079 0.116 0.074 0.145

DW1 0.4 0.090 0.095 0.087 0.109 0.121 0.130
LM2 0.096 0.159 0.116 0.189 0.115 0.290
LM5 0.097 0.145 0.095 0.179 0.102 0.342
BPS 0.068 0.117 0.088 0.173 0.104 0.348
LB5 0.099 0.157 0.104 0.202 0.108 0.354

DW1 0.6 0.091 0.111 0.099 0.138 0.109 0.298
LM2 0.093 0.146 0.129 0.231 0.142 0.475

LM5 0.101 0.156 0.117 0.276 0.154 0.600

BPS 0.096 0.158 0.113 0.276 0.152 0.626

LB5 0.124 0.192 0.127 0.306 0.156 0.632

B: ARCH (2)-corrected serial correlation tests

CDW1 0.0 0.042 0.050 0.053 0.059 0.053 0.050

CLM2 0.045 0.069 0.046 0.060 0.041 0.058

CLM5 0.060 0.064 0.045 0.047 0.044 0.053

CBP5 0.042 0.044 0.047 0.043 0.043 0.050

CLB5 0.069 0.064 0.058 0.054 0.044 0.053

CDW1 0.4 0.063 0.068 0.062 0.070 0.077 0.081

CLM2 0.050 0.070 0.064 0.090 0.058 0.099
CLM5 0.060 0.093 0.068 0.090 0.057 0.120
CBP5 . 0.041 0.059 0.052 0.072 0.053 0.078
CLB5 0.067 0.082 0.059 0.086 0.055 0.080

CDW1 0.6 0.062 0.080 0.059 0.098 0.060 0.100
CLM2 0.050 0.084 0.057 0.127 0.062 0.223

CLM5 0.083 0.140 0.079 0.201 0.078 0.345
CBP5 0.057 0.070 0.062 0.107 0.061 0.204

CLB5 0.089 0.098 0.071 0.124 0.062 0.211
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Table 3

Empirical sizes of the Wooldridge's ARCH(2)-corrected robust LM test and Diebold's corrected
BP and LB tests based on standard 5% critical values for matrix X1 .

T= 50 100 500

Test
Statistics

a2
a = 0• 

0
1

0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4

A: Normal ARCH(2) disturbances.

RLM2 0.0 0.049 0.057 0.051 0.048 0.048 0.051 0.053 0.046 0.048

RLM5 0.026 0.026 0.023 0.046 0.040 0.042 0.049 0.052 0.050

DBP5 0.064 0.135 0.139 0.070 0.140 0.142 0.120 0.147 0.151

DLB5 0.060 0.120 0.121 0.065 0.128 0.128 0.100 0.120 0.134

RLM2 0.4 0.056 0.055 0.047 0.046 0.054 0.054 0.049 0.051 0.054

RLM5 0.027 0.032 0,025 0.041 0.049 0.048 0.048 0.049 0.052

DBP5 0.097 0.124 0.142 0.100 0.128 0.140 0.113 0.130 0.137

DLB5 • 0.087 0.113 0.124 0.090 0.112 0.106 0.096 0,118 0.127

RLM2 0.6 0.052 0.049 0.052 0.051 0.054 0.041 0.048 0.049 0.043

RLM5 0.028 0.022 0.025 0.041 0.042 0.034 0.037 0.043 0.040

DBP5 0.112 0.157 0.162 0.120 0.139 0.145 0.129 0.136 0.128

DLB5 0.096 0.142 0.157 0.115 0.131 0.139 0.120 0.120 0.127
,

, yi a1= 0.2 0.4 a1= 0.2 0.4 al = 0.2 0.4

B: Normal GARCH (1,1) disturbances.

RLM2 0.0 0.041 0.046 0.045 0.059 0.053 0.046

RLM5 0.018 0.029 0.039 0.048 0.052 0.047

DBP5 0.128 0.130 0.131 0.131 0.129 0.138

DLB5 0.121 0.123 0.120 0.122 0.118 0.121

RLM2 0.4 0.046 0.048 0.054 0.054 0.045 0.051

RLM5
.

0.034 0.025 0.047 0.042 0.047 0.049

DBP5 0.119 0.138 0.122 0.131 0.123 0.129

DLB5 0.102 0.130 0.111 0.120 0.120 0.121

RLM2 0.6 0.049 0.052 0.047 0.052 0.046 0.050

RLM5 0.028 0.028 0.041 0.045 • 0.047 0.053

DBP5 0.148 0.150 0.129 0.130 0.127 0.129

DLB5 ,
0.131 0.139 0.113 0.114 0.118 0.120



26

Table 4

Empirical sizes with ARCH (2) disturbances of ARCH(2)-corrected serial correlation tests, based
on standard 5% critical values for matrix X1 and different disturbance distributions.

Disturbance Distribution

T (a1, a2) Test
Statistics

NORMAL MIXNOR RSMT RSHT HRSMT HRSHT KURT6 KURT9

50
,

(0, 0)
.

CDW1 0.041 0.040 0.045 0.049 0.050 0.050 0.049 0.050
CLM2 0.630 0.038 0.036 0.028 0.032 0.039 0.028 0.030
CLM5 0.056 0.055 0.057 0.054 0.058 0.056 0.057 0.055
CBP5 0.047 0.049 0.040 0.032 0.039 0.032 0.035 0.034
CLB5 0.063 0.061 0.055 0.049 0.050 0.046 0.052 0.049
RLM2 0.049 0.051 0.050 0.053 0.052 0.055 0.057 0.056
RLM5 0.026 0.028 . 0.026 0.027 0.028 0.031 0.030 0.032

(0.4, 0.4) CDW1 0.061 0.065 0.068 0.072 0.070 0.073 0.077 0.075
CLM2 0.107 0.109 0.108 0.101 0.109 0.104 0.104 0.104
CLM5 0.111 0.110 0.105 0.109 0.098 0.100 0.104 0.100
CBP5 0.082 0.080 0.083 0.072 0.075 0.080 0.079 0.078
CLB5 0.107 0.108 0.094 0.092 0.090 0.099 0.093 0.095
RLM2 0.047 0.050 0.051 0.052 0.050 0.050 0.052 0.055
RLM5 0.025 0.027 0.030 0.030 0.021 0.028 0.029 0.032

100 (0,0)
i
CDW1 0.051 0.050 0.048 0.055 0.052 0.055 0.056 0.056
CLM2 0.035 0.048 0.037 0.029 0.032 0.029 0.032 0.028
CLM5 0.065 0.062 0.060 0.062 0.058 0.053 0.056 0.055
CBP5 0.056 0.058 0.054 0.059 0.054 0.055 0.057 0.058
CLB5 0.065 0.068 0.067 0.069 0.070 0:072. 0.073 0.073
RLM2 0.048 0.047 0.049 0.049 0.050 0.050 0.052 0.052

RLM5 0.046 0.047 0.050 0.051 0.051 0.052 0.050 0.054

(0.4,0.4) CDW1 0.078 0.075 0.090 0.092 0.087 0.089 0.099 0.091
CLM2 0.132 0.120 0.129 0.130 0.126 0.129 0.129 0.128
CLM5 0.106 0.110 0.117 0.115 0.113 0.116 0.115 0.114
CBP5 0.089 0.092 0.110 0.105 0.102 0.112 0.109 0.115
CLB5 0.103 0.103 0.110 0.120 0.125 0.109 0.108 0.105
RLM2 0.054 0.054 0.054 0.053 0.053 0.055 0.055 0.058
RLM5 0.048 0.050 0.050 0.049 0.050 0.050 0.051 0.054
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Table 5

Estimated sizes with normal ARCH(2) disturbances of the ARCH(2)-corrected serial correlation
tests based on standard 5% critical values for matrix X4.

al = 0.0 0.0 0.0 0.2 0.2 0.2 0.4 0.4 0.4

(T,o-,5) a2 = 0.0 0.4 0.6 0.0 0.4 0.6 0.0 0.4 0.6

(50,2,0.2) CLM2 0.054 0.075 0.093 0.059 0.079 0.132 0.060 0.121 0.142
CBP2 0.006 0.020 0.017 0.010 0.029 0.039 0.013 0.033 0.034
CBL2 0.010 0.025 0.023 0.013 0.038 0.047 0.014 0.039 0.051
RLM2 0.015 0.023 0.019 0.018 0.024 0.033 0.019 0.030 0.022
CDW 0.003 0.002 0.002 0.001 0.005 0.009 0.021 0.020 0.021

(50,2,0.8) CLM2 0.062 0.071 0.100 0.050 0.094 0.129 0.078 . 0.140 0.162
CBD2 0.019 0.024 0.024 0.015 0.027 0.037 0.016 0.035 0.049
CBL2 0.021 0.030 0.031 0.021 0.032 0.049 0.020 0.046 0.059
RLM2 0.024 0.029 0.027 0.022 0.020 0.031 0.028 0.025 0.026
CDW 0.020 0.012 0.027 0.021 0.030 0.042 0.027 0.039 0.059

(50,0.07,0.2) CLM2 0.053 0.062 0.097 0.057 0.081 0.152 0.049 0.132 0.139
CBP2 0.007 0.024 0.018 0.013 0.049 0.061 0.014 0.044 0.049
CBL2 0.009 0.026 0.020 0.018 0.048 0.057 0.013 0.049 0.071
RLM2 0.020 0.023 0.018 0.019 0.028 0.038 0.024 0.038 0.030
CDW 0.030 0.013 0.015 0.020 0.009 0.005 0.008 0.012 0.013

. (50,0.07,0.8) CLM2 0.062 0.069 0.095 0.040 0.098 0.138 0.082 0.140 0.152
CBP2 0.023 0.023 0.021 0.011 0.030 0.045 0.021 0.031 0.045
CBL2 0.025 0.028 0.029 0.024 0.032 0.055 • 0.027 0.043 0.058
RLM2 0.028 0.031 0.030 0.028 0.025 0.035 0.031 0.029 0.031
CDW 0.029 0.014 0.018 0.021 0.028 0.043 0.023 0.047 0.060

(100,2,0.2) CLM2 0.055 0.060 0.115 0.070 0.089 0.138 0.072 0.154 0.202
CBP2 0.012 0.017 0.030 0.021 0.026 0.045 0.010 0.041 0.077

• CBL2 0.013 0.019 0.032 0.023 0.030 0.049 0.012 0.045 0.085
RLM2 0.013 0.017 0.020 0.025 0.019 0.025 0.015 0.026 0.024
CDW 0.007 0.010 0.009 0.019 0.016 0.019 0.021 0.024 0.033

(100,2,0.8) CLM2 0.032 0.078 0.126 0.061 0.096 0.157 0.076 0.158 0.271
CBP2 0.014 0.036 0.037 0.020 0.024 0.044 0.020 . 0.046 0.086
CBL2 0.015 0.039 0.041 0.024 0.028 0.048 0.023 0.055 0.092
RLM2 0.021 0.026 0.032 0.026 0.018 0.019 0.020 0.019 0.017
CDW 0.015 0.025 0.033 0.024 0.029 0.053 0.040 0.055 0.087

(100,0.07,0.2) CLM2 0.059 0.055 0.102 0.075 0.079 0.117 0.068 0.148 0.182
CBP2 0.016 0.012 0.029 0.022 0.028 0.044 0.009 0.038 0.075
CBL2 0.023 0.018 0.030 0.033 0.035 0.047 0.010 0.042 0.089
RLM2 0.015 0.016 0.024 0.034 0.020. 0.023 0.012 0.029 0.024
CDW 0.010 0.012 0.018 0.019 0.021 0.021 0.025 0.030 0.037

(100,0.07,0.8) CLM2 0.025 0.075 0.131 0.062 0.095 0.130 0.074 0.160 0.288
CBP2 0.018 0.040 0.038 0.024 0.023 0.042 0.018 0.049 0.096
CBL2 0.018 0.044 0.044 0.027 0.028 0.047 0.021 0.048 0.092
RLM2 0.016 0.025 0.034 0.031 0.019 0.018 0.019 0.018 0.016

 CDW 0.017 0.028 0.038 0.021 0.037 0.056 0.025 0.056 0.084
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Table 6

Empirical powers against normal AR(2) disturbances of ARCH(2)-corrected serial correlation tests
based on asymptotic 5% critical values for matrix X1 with T = 50, with different underlying
disturbance distributions.

al = 0.0 0.0 0.0 0.2 0.2 0.2 0.4 0.4 0.4

PI P2 a2 = 0.0 0.4 0.6 0.0 0.4 0.6 0.0 0.4 0.6

A: Normal AR 2 -ARCH 2 disturbances
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0
0
0
0
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4
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0
0
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0.071 0.072 0.074 0.075 0.096 0.099 0.110 0.126 0.123
0.083 0.063 0.690 0.088 0.076 0.111 0.115 0.105 0.110
0.092 0.086 0.090 0.103 0.093 0.120 0.128 0.120 0.118
0.060 0.061 0.062 0.062 0.066 0.063 0.064 0.068 0.067

0.3 0.251 0.279 0.280 0.293 0.342 0.280 0.340 0.345 0.346
0.283 0.280 0.310 0.315 0.354 0.303 0.303 0.349 0.333
0.323 0.315 0.358 0.362 0.386 0.337 0.376 0.355 0.350
0.250 0.258 0.240 0.248 0.245 0.248 0.243 0.243 0.255

0.4 0.480 0.472 0.480 0.485 0.487 0.482 0.512. 0.514 0.516
0.519 0.461 0.512 0.520 0.482 0.473 0.490 0.499 0.489
0.551 0.495 0.532 0.557 0.515 0.515 0.522 0.530 0.538
0.445 0.426 0.429 0.430 0.440 0.436 0.442 0.435 0.440

0.1 0.3 0.313 0.321 0.311 0.272 0.353 0.313 0.348 0.360 0.362

• 0.344 0.326 0.315 0.300 0.342 0.308 0.336 0.342 0.350
0.375 0.360 0.350 0.330 0.371 0.333 0.366 0.372 0.379
0.282 0.280 0.288 0.290 0.285 0.288 . 0.280 0.286 0.289

0.3 0.564 0.592 0.585 0.571 0.603 0.589 0.565 0.580 0.589
0.612 0.624 0.621 0.616 0.629 0.605 0.593 0.590 0.603
0.632 0.654 0.648 0.649 0.655 0.625 0.615 0.618 0.609
0.562 0.500 0.497 0.490 0.498 0.525 0.530 0.510 . 0.520

0.4 0.720 0.721 0.721 0.724 0.732 0.732 0.721 0.708 0.715
0.762 0.746 0.752 0.757 0.750 0.757 0.755 0.714 0.714
0.789 0.766 0.770 0.774 0.769 0.785 0.776 0.750 0.760
0.703 0.680 0.672 0.678 0.690 0.686 0.689 0.685 0.690

0.1 0.5 0.736 0.777 0.728 0.713 0.746 0.717 0.719 0.740 0.754
0.748 0.781 0.755 0.746 0.759 0.721 0.717 0.734 0.738
0.770 0.800 0.778 0.759 0.777 0.739 0.736 0.743 0.752
0.700 0.703 0.700 0.698 0.705 0.707 0.699 0.692 0.692

0.3 0.906 0.883 0.891 0.880 0.851 0.867 0.876 . 0.866 0.868
0.926 0.895 0.899 0.909 0.877 0.882 0.879 0.867 0.862
0.938 0.904 0.918 0.917 0.886 ' 0.894 0.897 0.878 0.890
0.812 0.810 0.811 0.805 0.809 0.803 0.805 0.798 0.800

0.4 0.939 0.938 0.938 0.932 0.940 0.931 0.926 0.920 0.919

0.950 0.941 0.930 0.929 0.942 0.936 0.929 0.928 0.920

0.958 0.948 0.935 0.939 0.949 0.946 0.935 0.924 0.930

0.925 0.907 0.903 0.901 0.896 0.883 0.872 0.909 0.872
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Table 6 (continued)

al = 0.0 0.0 0.0 0.2 0.2 0.2 0.4 . 0.4 0.4

PI P2 a2 = 0.0 0.4 0.6 0.0 0.4 0.6 0.0 0.4 0.6

B: RSHT - AR 2 -ARCH 2 disturbances

0.1 0.1 CLM2 0.057 0.063 0.074 0.074 0.091 0.089 0.085 0.124 0.114
CBP2 0.069 0.070 0.081 0.075 0.092 0.086 0.093 0.103 0.106
CBL2 0.080 0.082 0.092 0.094 0.109 0.102 0.114 0.125 0.118
RLM2 0.057 0.070 0.067 0.064 0.069 0.050 0.063 0.077 0.052

0.3 CLM2 0.261 0.276 0.295 0.301 0.278 0.296 0.281 0.304 0.349
CBP2 0.299 0.315 0.312 0.334 0.280 0.300 0.304 0.310 0.333
CBL2 0.327 0.347 0.351 0.368 0.317 0.349 0.330 0.338 0.362
RLM2 0.271 0.216 0.214 0.250 0.207 0.182 0.227 0.206 0.180

0.4 CLM2 0.517 0.467 0.471 0.514 0.499 0.468 0.501 0.509 0.512
CBP2 0.541 0.492 0.476 0.553 0.508 0.486 0.520 0.519 0.496
CBL2 0.580 0.539 0.504 0.591 0.546 0.515 0.558 0.562 0.540
RLM2 0.471 0.381 0.354 0.429 0.372 0.368 0.457 0.349 0.321

0.1 0.3 CLM2 0.315 0.329 0.366 0.335 0.359 0.364 0.362 0.372 0.365
CBP2 0.337 0.343 0.373 0.356 0.349 0.364 0.362 0.372 0.361
CBL2 0.359 0.368 0.405 0.382 0.381 0.397 0.387 0.399 0.392
RLM2 0.265 0.271 0.301 0.250 0.260 0.254 0.234 0.198 0.211

0.3 CLM2 0.552 0.546 0.573 0.561 0.558 0.545 0.562 0.570 0.564
CBP2 0.618 0.604 0.620 0.615 0.599 0.582 0.590 0.618 0.595
CBL2 0.643 0.632 0.639 0.642 0.636 0.607 0.622 0.641 0.615
RLM2 0.532 0.499 . 0.515 0.507 0.494 0.452 0.495 0.450 0.391

0.4 CLM2 0.716 0.716 0.714 0.736 0.721 0.718 0.721 0.741 0.726
CBP2 0.774 0.746 0.750 0.780 0.754 0.734 0.738 0.747 0.745
CBL2 0.796 0.765 0.785 0.799 0.776 0.760 0.755 0.771 0.768
RLM2 0.673 0.649 0.659 0.711 0.642 0.596 0.658 0.603 0.571

0.1 0.5 CLM2 0.772 0.787 0.787 0.745 0.771 0.761 0.744 0.734 0.751
CBP2 0.803 0.806 0.790 0.768 0.786 0.770 0.749 0.741 0.752
CBL2 0.822 0.818 0.815 0.796 0.811 0.790 0.775 0.757 0.779
RLM2 . 0.729 0.725 0.727 0.674 0.685 0.657 0.644 0.609 0.542

0.3 CLM2 0.878 0.886 0.878 0.883 0.889 0.885 0.882 0.867 0.880
CBP2 0.913 0.902 0.893 0.902 0.898 0.903 0.899 0.893 0.888
CBL2 0.928 0.914 0.902 0.916 0.910 0.915 0.913 0.901 0.896
RLM2 0.870 0..871 0.848 0.855 0.842 0.805 0.839 0.834 0.773

0.4 CLM2 0.935 0.933 0.932 0.936 0.927 0.927 0.922 0.920 0.920
CBD2 0.952 0.947 0.938 0.947 0.941 0.939 0.937 0.932 0.928
CBL2 0.957 0.953 0.941 0.948 0.949 0.946 0.942 0.941 0.936
RLM2 0.923 0.904 0.894 0.917 0.899 0.868 0.914 0.875 0.851
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Table 6 (continued

al = 0.0 0.0 0.0 0.2 0.2 0.2 0.4 0.4 0.4

PI P2 a2 = 0.0 0.4 0.6 0.0 0.4 0.6 0.0 0.4 0.6

C: HRSMT - AR 2 -ARCH 2 disturbances„

0.1 0.1 CLM2 0.041 0.095 0.149 0.076 0.142 0.165 0.107 0.203 0.165
CBP2 0.047 0.076 0.115 0.067 0.111 0.112 0.092 • 0.147 0.112
CBL2 0.059 0.092 0.135 0.089 0.126 0.133 0.103 0.171 0.133
RLM2 0.061 0.161 0.194 0.074 0.219 0.293 0.139 0.283 0.353

0.3 CLM2 0.249 0.260 0.305 0.274 0.310 0.357 0.307 0.378 0.357
CBP2 0.286 0.271 0.273 0.309 0.297 0.305 0.295 0.337 0.305
CBL2 0.316 0.298 0.299 0.388 0.329 0.344 0.321 0.367 0.344
RLM2 0.235 0.358 0.463 0.264 0.462 0.519 0.317 0.490 0.574

0.4 CLM2 0.448 0.428 0.445 0.479 0.490 0.526 0.500 0.543 0.526
CBP2 0.484 0.411 0.403 0.486 0.452 0.449 0.504 0.482 0.449
CBL2 0.525 0.442 0.436 0.526 0.495 0.491 0.530 0.510 0.491
RLM2 0.419 0.565 0.613 0.454 0.597 0.643 0.524 0.640 0.691

0.1 0.3 CLM2 0.285 0.379 0.425 0.291 0.345 0.390 0.331 0.400 0.390
CBP2 0.318 0.355 0.361 0.313 0.327 0.347 0.315 0.325 0.347
CBL2 0.345 0.390 0.388 0.342 0.346 0.367 0.336 0.354 0.367
RLM2 0.232 0.356 0.442 0.326 0.439 0.563 0.400 0.523 0.575

0.3 CLM2 0.533 0.582 0.616 0.550 0.590 0.585 0.536 0.610 0.589
CBP2 0.591 0.602 0.585 0.586 0.584 0.580 0.556 0.570 0.580
CBL2 0.615 0.631 0.613 0.617 0.605 0.601 0.578 0.591 0.601
RLM2 0.520 0.630 0.656 0.530 0.681 0.714 0.603 0.714 0.785

0.4 CLM2 0.732 0.693 0.728 0.705 0.692 0.698 0.688 0.709 0.698
CBP2 0.768 0.711 0.716 0.735 0.706 0.679 0.696 • 0.703 0.679
CBL2 0.796 0.733 0.740 0.762 0.723 0.699 0.715 0.720 0.699
RLM2 0.681 0.764 0.775 0.690 0.820 0.836 0.724 0.815 0.851

0.1 0.5 CLM2 0.744 0.769 0.787 0.709 0.739 0.734 0.708 0.740 0.734
CBP2 0.762 0.755 0.754 0.721 0.722 0.700 0.702 0.729 0.700
CBL2 0.790 0.787 0.777 0.747 0.750 0.730 0.731 0.740 0.730
RLM2 • 0.698 0.772 0.791 0.730 0.777 0.813 0.731 0.784 0.810

0.3 CLM2 0.903 0.896 0.910 0.859 0.873 0.849 0.866 0.851 0.849
CBP2 0.919 0.898 0.899 0.886 0.873 0.847 0.877 0.850 0.847
CBL2 0.930 0.907 0.913 0.894 0.886 0.858 0.889 0.857 0.858

RLM2 0.849 0.892 0.902 0.855 0.910 0.940 0.869 0.921 0.924

0.4 CLM2 0.953 0.928 0.921 0.926 0.919 0.914 0.918 0.910 0.914

CBP2 0.955 0.935 0.917 0.941 0.926 0.921 0.918 0.910 0.921

CBL2 0.962 0.940 0.925 0.946 0.934 0.926 0.929 0.915 0.926

RLM2 0.908 0.940 0.935 0.907 0.940 0.952 0.914 0.960 0.969
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Table 7

Empirical powers of ARCH(2)-corrected serial correlation tests based on standard 5% critical
values for matrix X1 with T = 50, when the underlying disturbance process is normal AR(2) -
GARCH(1, 1)

al = 0.2 0.2 0.2 0.4 0.4 0.4

Pi P2 = 0.0 0.4 0.6 0.0 0.4 0.6
A: Powers against normal AR (2).

0.1

0.3

0.5

0.1

0.3

0.4

0.1

0.3

0.4

0.1

0.3

0.4

CLM2
CBP2
CBL2
RLM2

CLM2
CBD2
CBL2
CLM2

CLM2
CBP2
CBL2
RLM2

CLM2
CBP2
CBL2
RLM2

CLM2
CBP2
CBL2
RLM2

CLMI,
CBP2
CBL2
RLM2

CLM2
CBP2
CBL2
RLM2

CLM2
CBP2
CBL2
RLM2

CLM2
CBP2
CBL2
RLM2

0.055 0.045 0.068
0.070 0.061 0.093
0.083 0.070 0.085
0.102 0.089 0.093

0.231 0.245 0.210
0.276 0.295 0.277
0.288 0.318 0.297
0.320 0.355 0.337

0.467 0.422 0.424
0.505 0.488 0.490
0.519 0.518 0.512
0.553 0.548 0.555

0.242 0.244 0.233
0.291 0.298 0.306
0.314 0.311 0.313
0.342 0.344 0.337

0.460 0.505 0.418
0.537 0.570 0.557
0.582 0.615 0.595
0.615 0.640 0.624

0.666 0.638 0.638
0.724 0.728 0.707
0.747 0.729 0.749
0.767 0.762 0.761

0.671 0.656 0.640
0.742 0.750 0.726
0.760 0.763 0.744
0.781 0.785 0.762

0.857 0.838 0.843
0.894 0.889 0.892
0.909 0.901 0.912
0.912 0.913 0.928

0.908 0.897 0.900
0.932 0.914 0.936
0.949 0.929 0.941
0.952 0.937 0.944

0.063
0.092
0.090
0.109

0.234
0.294
0.312
0.345

0.418
0.518
0.507
0.544

0.200
0.314
0.306
0.330

0.454
0.559
0.585
0.611

0.625
0.716
0.731
0.766

0.618
0.717
0.725
0.744

0.830
0.892
0.895
0.905

0.893
0.917
0.926
0.933

0.045
0.104
0.100
0.113

0.237
0.316
0.337
0.375

0.396
0.554
0.531
0.570

0.213
0.340
0.327
0.354

0.445
0.571
0.600
0.629

0.641
0.741
0.746
0.770

0.597
0.744
0.751
0.767

0.814
0.867
0.876
0.889

0.882
0.921
0.922
0.929

0.043
0.104
0.082
0.098

0.211
0.332
0.331
0.356

0.361
0.518
0.515
0.550

0.184
0.339
0.317
0.352

0.449
0.575
0.590
0.617

0.627
0.714
0.734
0.756

0.593
0.732
0.721
0.741

0.795
0.874
0.886
0.897

0.885
0.916
0.927
0.931



al =0.2 0.2 0.2
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0.4 0.4 0.4

Pi = 0.0 0.4 0.6 0.0 0.4 0.6
B: Powers against normal AR(1) of the correct DW test, CDW1

0.1
0.3
0.5
0.7
0.9

0.089
0.415
0.829
0.979
1.000

0.089
0.422
0.833
0.984
0.997

0.101
0.429
0.847
0.975
0.995

0.107
0.453
0.841
0.969
0.995

0.116
0.437
0.798
0.973
0.999

0.116
0.452
0.827
0.968
0.999
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Table 8

Estimated powers against normal AR(1) disturbances of the ARCH(2)-corrected DW test, based on
standard 5% critical values for matrix X4 with T = 50, when the underlying disturbance
distribution is normal AR(1)-ARCH(2).

a, = 0.0 0.0 0.0 0.2 0.2 0.2 0.4 0.4 0.4

(PI,a,5) a2 = 0.0 0.4 0.6 0.0 0.4 0.6 0.0 0.4 0.6..

(0.1,1,0) 0.124 0.126 0.122. 0.120 0.130 0.110 0.130 0.140 0.136
(0.3,1,0) 0.480 0.502 0.463 0.461 0.460 0.430 0.440 0.420 0.380
(0.5,1,0) 0.850 0.850 0.810 0.820 0.770 0.730 0.760 0.730 0.700
(0.7,1,0) 0.970 0.950 0.930 0.960 0.950 0.920 0.940 0.900 0.860
(0.9,1,0) s 1.000 0.990 0.981 0.992 0.987 0.976 0.979 0.968 0.952

(0.1,2,0.2) 0.003 0.006 0.016 0.005 0.017 0.026 0.014 0.036 0.040
(0.3,2,0.2) 0.028 0.044 0.060 0.040 0.047 0.077 0.059 0.073 0.099
(0.5,2,0.2) 0.142 0.153 0.192 0.189 0.185 0.199 0.149 0.175 0.240
(0.7,2,0.2) 0.245 0.287 0.302 0.287 0.285 0.307 0.246 0.271 0.348
(0.9,2,0.2) 0.381 0.392 0.403 0.380 0.378 0.399 0.432 0.392 0.430

(0.1,2,0.8) 0.061 0.080 0.140 0.088 0.120 0.150 0.110 0.162 0.189
(0.3,2,0.8) 0.207 0.212 0.183 0.211 0.239 0.204 0.240 0.241 0.236
(0.5,2,0.8) 0.481 0.430 0.453 0.434 0.467 0.486 0.430 0.471 0.439
(0.7,2,0.8) 0.680 0.728 0.761 0.741 0.667 0.667 0.633 0.677 0.640
(0.9,2,0.8) 0.978 0.978 0.983 0.957 0.951 0.951 0.914 0.931 0.933

(0.1,0.07,0.2) 0.089 0.080 0.106 0.108 0.116 0.110 0.113 0.111 0.125
(0.3,0.07,0.2) 0.232 0.245 0.235 0.226 0.239 0.284 0.241 0.252 0.261
(0.5,0.07,0.2) 0.396 0.410 0.385 0.362 0.371 0.408 0.342 • 0.408 0.419
(0.7,0.07,0.2) 0.588 0.562 0.611 0.521 0.556 0.590 0.584 0.584 0.560
(0.9,0.07,0.2) 0.940 0.955 0.953 0.891 0.892 0.913 0.873 0.881 0.893

(0.1,0.07,0.8) 0.132 0.142 0.136 0.158 0.192 0.163 0.211 0.252 0.265
(0.3,0.07,0.8) 0.328 0.352 0.359 0.320 0.327 0.370 0.362 0.363 . 0.372
(0.5,0.07,0.8) 0.633 0.692 0.719 0.546 0.602 0.630 0.542 0.555 0.633
(0.7,0.07,0.8) 0.978 0.978 0.983 0.957 0.951 0.951 0.914 0.931 0.933
(0.9,0.07,0.8) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999
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Table 9

Estimated powers against normal AR(2) distributions of ARCH(2)corrected serial correlation tests
based on asymptotic critical values at the 5 per cent nominal level for matrix X4 with T = 100,
when the underlying distribution is normal AR(2)-ARCH(2)

al = 0.0 0.0 0.0 0.2 0.2 0.2 0.4 0.4 0.4

(0", PI,P2,5) a2 = 0.0 0.4 0.6 0.0 0.4 0.6 0.0 0.4 0.6

(2,0.3,0.1,0.2)

.4m01.4 
.401m..1 

.4mm.1 
0
0
0
=
 
0
0
0
=
 
Q
u
o
=
 
o
u
o
i
x
 
u
o
u
o
m
 
0
0
0
=
 
o
u
o
=
 
0
0
0
=
 

0.084 0.106 0.142 0.086 0.140 0.160 0.117 0.172 0.220
0.010 0.027 0.011 0.028 0.053 0.012 0.043 0.052 0.071
0.011 0.018 0.030 0.013 0.030 0.057 0.013 0.047 0.079
0.028 0.025 0.025 0.027 0.028 0.020 0.023. 0.026 0.027

(2,0.3,0.1,0.8) 0.606 0.675 0.748 0.584 0.637 0.690 0.610 0.645 0.680
0.464 0.521 0.576 0.422 0.475 0.489 0.416 0.443 0.483
0.479 0.542 0.591 0.041 0.489 0.505 0.437 0.463 0.494
0.436 0.462 0.486 0.395 0.399 0.386 0.379 0.362 0.367

(2,0.3,0.4,0.2) 0.535 0.510 0.559 0.504 0.529 0.584 0.532 0.568 0.613
0.512 0.449 0.483 0.447 0.454 0.471 0.443 0.435 0.429
0.526 0.463 0.493 0.463 0.466 0.479 0.466 0.451 0.445
0.483 0.451 0.410 0.434 0.401 0.390 0.389 0.385 0.339

(2,0.3,0.4,0.8) 0.903 0.898 0.873 0.818 0.877 0.881 0.920 0.889 0.891
0.870 0.825 0.795 0.870 0.807 0.798 0.858 0.796 0.799
0.885 0.830 0.809 0.882 0.815 0.805 0.868 0.810 0.810

• 0.844 0.799 0.756 0.834 0.755 0.752 0.790 0.752 0.730

(2,0.5,0.1,0.2) 0.176 0.193 0.222 0.171 0.210 0.269 0.181 0.242 0.322
0.020 0.036 0.052 0.033 0.057 0.062 0.024 0.055 0.099
0.023 0.039 0.055 0.041 0.059 0.068 0.026 0.062 0.106
0.062 0.063 0.059 0.060 0.063 0.066 0.061 0.067 0.069

(2,0.5,0.1,0.8) 0.961 0.966 0.975 0.948 0.947 0.953 0.929 0.936 0.953.
0.927 0.946 0.940 0.893 0.895 0.887 0.861 0.879 0.884
0.932 0.947 0.947 0.899 0.899 0.896 0.871 0.885 0.897
0.918 0.928 0.923 0.898 0.890 0.872 0.881 0.842 0.802

(2,0.5,0.4,0.2) 0.298 0.305 0.374 0.328 0.364 0.442 0.336 0.438 0.503
0.294 0.249 0.288 0.294 0.279 0.317 0.261 0.303 0.334
0.302 0.266 0.303 0.314 0.292 0.328 0.278 0.323 0.344
0.270 0.252 0.257 0.280 0.250 0.261 0.265 0.250 0.232

(2,0.5,0.4,0.8) 0.978 0.987 0.986 0.980 0.975 0.974 0.978 0.970 0.976
0.983 0.983 0.979 0.978 0.966 0.955 0.970 0.952 0.955
0.985 0.983 0.983 0.982 0.970 0.958 0.972 0.956 0.959
0.970 0.974 0.969 0.971 0.950 0.936 0.945 0.929 0.898
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Table 9 continued

al = 0.0 0.0 . 0.0 0.2 0.2 0.2 0.4 0.4 0.4

(a,P1,P2,8) a2 = 0.0 0.4 0.6 0.0 0.4 0.6 , 0.0 0.4 0.6,

(0.07,0.3,0.1,0.2)

_4mm.4 
.
4
m
m
.4 

.1m01.4 
-401(4.4 

.4mm.4 
0
0
0
=
 
u
o
u
=
 
0
0
0
=
 
o
u
o
=
 
o
u
o
=
 
o
u
o
=
 
o
u
o
i
x
 
0
0
0
=
 

0.307 0.350 0.360 0.344 0.367 0.423 0.391 0.434 0.483
0.184 0.185 0.184 0.199 0.200 0.219 0.218 0:233 0.272
0.191 0.197 0.197 0.215 0.213 0.231 0.229 0.245 0.278
0.183 0.169 0.156 0.189 0.158 0.170 0.170 0.149 0.150

(0.07,0.3,0.1,0.8) 0.827 0.782 0.771 0.842 0.754 0.871 0.841 0.803 0.831
0.752 0.664 0.604 0.762 0.633 0.749 0.700 0.639 0.655
0.767 0.681 0.620 0.777 0.651 0.701 0.722 0.651 0.672
0.743 0.690 0.650 0.735 0.624 0.684 0.695 0.560 0.530

(0.07,0.3,0.4,0.2) 0.760 0.713 0.734 0.772 0.693 0.696 0.770 0.750 0.763
0.714 0.639 0.624 0.707 0.616 0.681 0.692 0.639 0.615
0.732 0.654 0.638 0.729 0.617 0.699 0.705 0.652 0.630
0.685 0.589 0.572 0.690 0.569 0.666 0.666 0.616 0.539

(0.07,0.3,0.4,0.8) 0.963 0.968 0.977 0.943 0.941 0.940 0.936 0.931 0.926
0.946 0.948 0.954 0.915 0.899 0.900 0.883 0.885 0.886
0.949 0.960 0.959 0.910 0.911 0.930 0.880 0.881 0.878
0.926 0.913 0.929 0.872 0.852 0.860 0.790 0.763 0.740

(0.07,0.5,0.1,0.2) 0.441 0.426 0.490 0.486 0.497 0.480 0.469 0.513 0.572
0.336 0.309 0.351 0.358 0.349 0.350 0.344 0.364 0.417
0.354 0.319 0.364 0.382 0.370 0.372 0.368 0.378 0.438
0.323 0.301 0.306 0.344 0.300 0.299 0.298 0.264 0.250

(0.07,0.5,0.1,0.8) 0.992 0.973 0.986 0.975 0.981 0.986 0.981 0.978 0.973
0.989 0.963 0.977 0.974 0.972 0.970 0.969 0.969 0.958
0.990 0.965 0.979 0.974 0.973 0.974 0.974 0.970 0.958
0.980 0.943 0.946 0.957 0.950 0.951 0.958 0.921 0.902

(0.07,0.5,0.4,0.2) 0.905 0.880 0.886 0.909 0.874 0.882 0.900 0.879 0.888
0.866 0.823 0.807 0.847 0.779 0.821 0.841 0.770 0.798
0.873 0.831 0.817 0.857 0.794 0.842 0.856 0.780 0.813
0.839 0.787 0.740 0.822 0.762 0.742 0.782 0.654 0.610

(0.07,0.5,0.4,0.8) 1.000 1.000 1.000 1.000 1.000 0.982 0.998 0.992 0.990
0.998 1.000 0.999 1.000 1.000 0.987 0.999 1.000 1.000
1.000 1.000 0.984 1.000 1.000 0.999 1.000 1.000 1.000
0.998 1.000 0.980 0.992 0.994 0.990 0.995 0.989 0.986
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