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Abstract

This paper derives six different forms of message length functions for the general linear

regression model. In so doing, two different prior densities and the idea of parameter

orthogonality are employed. Parameter estimates are then obtained by finding those

parameter values which minimize the message length. The asymptotic properties of the

minimum message length (MML) estimators are studied and it is shown that these estimators

are asymptotically normal. A Monte Carlo experiment was conducted to investigate the small

sample properties of the MML estimators in the context of first-order moving average

regression disturbances. The results show that the combination of parameter orthogonality

and message length based inference can produce good small sample properties.

* This research has been supported in part by ARC grant.



1 Introduction

Estimation of the parameters involved in the variance-covariance matrix of

linear regression disturbances has long been a problem in econometrics. This is because of

the non-experimental nature of economic data. Econometric models usually involve a large

number of influences, all of which are not of direct interest. As a result, nuisance parameters

often need to be dealt with, because their presence can cause biases in estimates and tests of

the parameter of interest.

Cox and Reid (1987) observed that estimates and tests of the parameter of interest based

on the classical likelihood can give biased and inefficient results in small samples. As an

alternative to the classical likelihood, there are a range of other likelihoods which deal with

nuisance parameters in a more satisfactory manner. Recently, Laskar and King (1995)

investigated a number of modified likelihoods and concluded that these can help remove the

effects of nuisance parameters. They investigated the small sample properties of estimators

in the context of first-order moving average (MA(1)) regression disturbances and reported a

significant improvement in estimators based on modified likelihoods compared with their

counterparts which are based on the classical likelihood.

Cox and Reid (1987) initiated the idea of the conditional profile likelihood, which

essentially requires the orthogonality of the parameter of interest and nuisance parameters. A

slightly different idea, known as minimum message length (MML) estimation, was

introduced by Wallace and Boulton (1968), Boulton and Wallace (1970, 1973) and Boulton

(1975) while working with the problem of classification. However, they mainly discussed a

computer based method called SNOB. Also, Wallace and Freeman (1987) extended the idea

of MML estimation from a Bayesian viewpoint as an alternative method of estimation and

test construction for the parameters of interest. MML estimation is a Bayesian method which

chooses estimates to minimize the length of a certain encoded form of the data, while
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maximum likelihood estimation is one which chooses estimates to maximize the likelihood

function. Extending this research, Wallace and Freeman (1992) applied the MML approach to

the problem of estimating the parameters of a multivariate Gaussian model and found that the

MML estimates on average are more accurate than those of the maximum likelihood

estimator. Following from this, Wallace and Dowe (1993) applied the MML approach to

estimating the von Mises concentration parameter and observed its improved accuracy over

the maximum likelihood estimator for small sample sizes. However the MML principle needs

a prior distribution of the parameters and square root of the determinant of the Fisher

information matrix for the parameters. In this context, Wallace and Dowe (1993) showed that

the inclusion of these two factors helps reduce the measure of uncertainty.

In this paper, two MML estimators, denoted by MML1 and MML2 are derived for the

general linear regression model with non-spherical disturbances, using two different prior

distributions for the parameters. They are based on two message length formulae, MI.,1 and

ML2, which contain the nuisance parameters, regressors and parameters of interest. The

nuisance parameters may cause problems for estimation and tests of the parameters of

interest. To overcome these problems, four further estimators are developed. Two of the

estimators are obtained by minimizing the message length functions which are constructed

using Cox and Reid's (1987) idea applied to ML1 and ML2. These two estimators are called

CMMLi and CMML2. The remaining two estimators are obtained by minimizing the message

length functions which are the combination of parameter orthogonality and message length,

known as AMMLi and AMML2. The MML estimation technique and the asymptotic

properties of the resultant estimates are also studied.

This paper is divided into a further four sections. All the different message length

formulae are derived in Section 2. The properties of MML estimators are discussed in Section

3. A Monte Carlo experiment is conducted in Section 4 to investigate the small sample

2



properties of estimators for MA(1) regression disturbances. Some concluding remarks are

made in the final section.

2 Theory

Consider the general linear regression model

y X/3 + u , u N (0,o-2 Q(9)) , (1)

where y is nx/, X is nxk, nonstochastic and of rank k <n, and S2(0) is a symmetric matrix

that is positive definite for the unknown p-vector 0 belonging to a subspace of R. This model

generalizes a wide range of disturbance processes of the linear regression model of particular

interest to econometricians and statisticians. These include all parametric forms of

autocorrelated disturbances, all parametric forms of heteroscedasticity (in which case C2(0) is

a diagonal matrix), and error components model including those that result from random

regression coefficients. The log likelihood function for model (1) is

1(y; 0, cr2 ) = log(271-0-2) — logIS2(9)1— -2-1 (y — XflY C2(0)-1 (y — Xfi) 1 o-2 . (2)

2.1 Derivation of the Message Length

For model (1), the message length is given by

—log
[g(0,fl,

,
a2)gy;t9,16,a2)] 

+ —
D
(1+ log KD)

F(0,18, 0-2 ) 2 (3)

where 7r(0,Acr2) is the prior density for y = L(y; 0,11, o;) is the likelihood of (1),

F(9,,6,0.2) is the determinant of the Fisher information matrix, D is the number of parameters

and KD is the D-dimensional lattice constant which is independent of parameters, as given by

Conway et al. (1988). For model (1), the Fisher information matrix is given by
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Er  (321)
.L 07017,

A(0) B(0) 0

B1(0) n 0
2a4

x' soy' x
0 0

a2

where e (i,j)th -- , the ith element of[element of the pxp matrix A(0) is 1 tr 
c12(9) a2(60-' 

th
2 de 9 1 09 i

the pxl vector B(0) is —1 tr S2(0-4 a2(e) and tr represents the trace of a matrix. For
2a2 dt9

simplicity at this stage, we will assume 0 is a scalar. The construction of message length for

model (1) needs the determinant of the information matrix, log of which is

log F09,16, C72 = —(k+ 2) log C72 + log Ix-n(0)' xl+log(n x cu(e) a2(9)-1 
0/9 g0

{E6'o'n\1 

 2

— m  ) — log4 .;1 

Assuming non-informative prior 71-(0,g o-2) =!, the message length given by (3) is

1 
MLi — 

m — 1 
log a

2 
± 

-1 
loglQ(0)1 + ---u' 

1 
S2(0)-1 u + — logIX'S2(0)-1

2 2 2a2 2

+-
1
log(nx 

tr[ a2(9 

09 

)-1  a2(0)-1 +or' A;(09)11
2
) (1+ log KD ) — log 2 (4)

2 00 2

1
where u = y — Xfl and m= n — k. Using the non-informative prior 71-(0,13,c)) = , the

2

message length given by (3) is

m1,2 =
1

/flog a2 
+ —logic2(9)1 + —

1 
u12(0)-1 u + —

1 
x

2 2 2a2 2

+-
1
log(nx 

tr[ a2(0)-'  a2(0)1 {tr[0(0_, a2(011
2 

D
)+ —(1+ log KD ) — log 2 . (5)

2 .60 et9 de 2
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2.2 Derivation of Cox and Reid's Conditional Profile Message Length

The two message length formulae given by (4) and (5) contain the nuisance

parameters p and o-2 . Their presence may cause problems for estimators and tests of 0 based

on MLI and ML2. Therefore, these potential problems need to be removed. One suggestion is

to eliminate the effect of p and cr2 using the idea of Cox and Reid (1987). Extending their

research, Laskar and King (1995) constructed the conditional profile likelihood for model (1).

To do this for (4) and (5), orthogonality of the parameters (/3,0) and (a2 , 0) requires

investigation. The parameters are orthogonal if

E( ML1)
giggo )= p,0 = 0 and E(4521144)=i0„, 

=0.
a9c1g2

In our case, im = 0 but

1
= 20.2 tr[C2(0)-1 °)19,a2 al( and E( ML1)

.50.4 ,a2

n+k+1

2a2

We therefore need to make a transformation ( a2 , 0) -4 (5, 0) so that 8 and 0 are orthogonal.

This transformation is given by Laskar and King (1995), and is obtained by solving

or equivalently

go. 2

= 1a2 072

or — tr
1 

[Q(9)-
1 cD(9)1

=
n + k +1 gcr2

2a2 .69 2a2

2-log a 2 = -loglQ(0)1 (n+k+1)
80 80

which has as one of its solutions

a2 = bin(0)1 (n+k+1)

where S is a constant. Using this transformation, (4) can be written without constant terms as
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= 
m— 1 

log g +  
k +1 

logf2(0)1
2 n + k +1

i

+ —
1
log(n x tr

[ a2(19)"'  a2(0)1

2 gt9 .60

+ —2 logixLx01 ± 
,

28 "olio

{tr[Q(9)--1 
M(0)112

g0

where ue = yo — X013,X0= G(9) 2X, yo = G(0) 2y and G(0) = C2(0) I IQ(0)I(n+k+1)• If we

replace 16 and 8 by their MML estimators, the concentrated (or profile) message length based

on MLi becomes

+M.Luc = log 8
m — 1 k + 1  

log10(0)1 + 
1 
logIXLX6,1 + 

1
log(n x 

tr[ a2(0)'  cr2(01
2 n+k+1 2 2 gt9 £90

—fir[0(9)-1 Mge12) (6)

where #;5*. 11E29 / (n — k —1), 110 = yo — X6A9 and fro = (XLX0)1 XLyo.

The construction of Cox and Reid's conditional profile message length for 0 needs the

concentrated message length (6) to be adjusted by the addition of the following term

g

or,
= 

1
logIX;Xel 

k+ 2 1 n—k— 1
log + log 

2 2 2 2
Y1=Y1

where y i = G 6 ' , 8Y . Thus the conditional profile message length for 0 without the constant

term is

m k — 3 - k + 1 
CPMLI — log 8+ login(0)1 + logIX:, Xo I

2 n+k+1
,7.1f,on 2

+log(n tr
[CD(6)-1  CD(61

tr[0(9)-1 —
1 

x 
2 80 80

Similarly Cox and Reid's conditional profile message length for the model (5) becomes

(7)
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CPML2 
m — — 2 

log gi +  logiC2(0)1+ 1ogIX:3*X;1
2 n +

2
a2(0/1  a209)1

± log( —
1 

n x tr[ tr[Q(0)-1 al(611 )
2 dt9

where 81 = /2'0* / m , =; —x;fi, ire = (.X";*.rei )-1X;* y*e, X"; = (0) 2 X

1 1
y; = G1(6)-2 y and G1 (0) = Q(0) In(0)1(n+k) •

(8)

2.3 An Alternative Derivation of Message Length Using Orthogonality

The message length functions MLI and ML2 do not incorporate parameter orthogonality

and this aspect may cause problems for the estimator and tests of the parameter O. In this

section, the message length function for model (1) is derived following application of an

orthogonal transformation to the non-orthogonal parameters and assuming 0 is a pxl vector.

It is clear that the parameters (4, ci) are not orthogonal. Using the results of Laskar and King

(1995), we can transform from (0,, d) to (4,82) so that Oi and 82 are orthogonal via

1
=82 / 1c2(0)11-1 . Using this transformation (2) becomes

1, 0); 6),fl, 82 = 212" 1°g 82 2512 (y X
fl)'

 G2 (Of' (.Y - X16) (9)

where G2059 = CO) iln(oln • The construction of the message length function needs the

determinant of the Fisher information matrix of the parameters in (9), which is

where the

52 1 (y. 0 I , 
E( 2

gr 2gr'2

(oth

n ID(0)I
2822

2

ti  g2 

60 a 9 

G2 (60 -1  
G2(0)]element of the pxp matrix D(0) is

7 2 = (0% , 62)' and X; = G2 (0) 2 X. The derivation of message length differs for a
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1different prior. Using (3), (9) and the non-informative prior 71-(9,16,8)= r____, the message
Vg2

length is

1
—  log 2 U0 U0 ±AMLI 
m —1 1 ,t t lloalr +tXt 1 —logID(0)15 

2' 2 282 2
(10)

1where u; = yte — X; fi and y; = G2 (9)2 y. If we consider the prior 7r (9, , 82 ) — , (10)

changes to

11 t t loglX;it X11+ — logID(0)1 .= —2 log 52 ± —282 110 UO 
2

There are some similarities between these message length formulae and the likelihood

functions investigated by Laskar and King (1995). Returning to the case where 0 is a scalar,

the MML estimates of j3 and o-2 conditional on 0 from (5) are

= (y — X;)'E2(0)-1(y— 43)1 m = a I m and 'lb = (A-n(0-i A)' ro(0-l y .

Putting these estimates in (5), it can be written without a constant term as

M 1 1 1
—log c

2 
+ — loglQ(0)1+—logIX'0(0)-' XI +—log(n x tr

[ a-4°y'  m(01
2 2 2 2 g0 g0

- {tr[Q(0)-1 cue(060112 ). (12)

The form (12) is closer to the marginal likelihood for 0 (Tunnicliffe Wilson (1989)). The

only difference is due to an additional term, namely

-
1
log(n x tr

[ 32(0)'  a2(0)1 tr[Q(ori a2(0)11
2

2 g9 .6/9 j £99 ij

For p > 1, AML 2 given by (11) can be written in terms of a2 as

1
AML2 = flog a2 — 

1 
logp(t9)1 +—u12(9)-1 u + —

1
loglX140)-1 X

2 a22 2 2
+-

1
logID(9)1. (13)

2
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The MML estimates of fi and a2 conditional on 0 from (13) are the same as those from (5).

If we put these MML estimates of fiand cr2 in (13), it can be written as

-171 log if3r2 + —1 100(9)1+-1 loglrf2(60-1 X1 + —1 logiD(0)1. (14)
2 2 2 2

The form (14) is also closer to the marginal likelihood for O. The difference is the additional

term D(9). For computational purposes, the (i,j)th element of D(0) can be rewritten as

—
1
log tr[2G2(0)  

(9) G2 (9)_i  2(°) G2 (0)-1 52 G2 (0) 
2 89 89; gOia9;

3 MML Estimation and Asymptotic Normality

The message length in (3) can be written as

ML(y;y) = —log[r(r)  gy;y)].
F(7)

(15)

The MML estimator of y is that value of y which minimizes (15) in such a way that r(y) 0

in the neighbourhood of the estimate of y. On the other hand, the maximum likelihood

estimate of y is that value of y which maximizes L(y;y). If ML(y;y) is a twice differentiable

function of y in its range, the MML estimate of y is (assuming existence) given by roots of

MP (MI) =
gML(y;y) 

=0. (16)

A sufficient condition that any of these values (say 5> ) be a local minimum is that

ML"(y;3>)> 0. The ML(y;y) in (15) after division by n can be written as

1 1
— ML(y;y) = — 'log r(y) +' log F(y) --log L(y; y). (17)

To study the properties of MML estimator, some regularity conditions are needed. In this

context, Godfrey (1988) and Ara (1995) discussed regularity conditions for classical
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likelihood based tests and marginal likelihood based tests respectively. But in this setting of

MML estimation some additional conditions are needed. These are (i) logF(y)

.. 1
increases slower than n as a result, 1 log F(y) -4 0 as n 00 and (n) — log L(y;y) is

typically not zero as n 00. Under the conditions (i) and (ii), —
1 
ML(y;y) is asymptotically

equal to — —
I 
log L(y;7). Thus asymptotically we can write

and

gML(y; y). alog L(y; r), E(cIAIL(y;r)). Er  glog L(y; 

gY 57

E182 ML(y;y)) E(82 log L(y; y)')

grgri

Using Taylor's theorem, we have

(oAE(Y;r)) (CIAlgY;r)) + (462 ClAMY;r1 

(—r)

L Or )1, ôy  i/Cirf y*

0
Yo

(18)

where 1, is the MML estimate of 7 y 0 is the true value of y and y* is a value between 1, and

. Since 5 is a root of (16), (18) can be written in the form

(gAIL(y;7)) (82 WY r))
' (r — r0)•

gr To grgr Y*

Premultiplying (19) by /(yo) 2 gives

21 
(gAlgY;r)) = 

0)-1( )
*

e2 AIL(Y;7) 0)4
Yo Y 

The expression (20) can be rearranged as

/(70)I(P-70).--Hro-kgmgY;7)) 1(70)-1 licro)-4(gAIL('))orcir' 7.

1 
(gAEr) +o(J)= 0) 2 

(Y; o 

70

10' 0)1 — 0)

(19)

(20)
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where op(/) is the remainder term and converges in probability to zero (Ara (1995)). Hence

1 1
1(r 0) i(i; — To) is asymptotically equivalent to I(r 

0)--i(algy;y) 
therefore, these two

expressions have the same asymptotic distribution, namely N(0,I), under the null hypothesis

of the true parameter value yo (Crowder (1976), Godfrey (1988) and Ara (1995)), where s =

p+k+1. Thus under the null hypothesis

1
/(y0)2(P-70)-÷ N(0,I).

So, p is asymptotically normally distributed with mean vector Yo and variance-covariance

matrix /(r 0 )--' •

This result is not surprising if we view the MML estimator as a Bayesian estimator with

prior 7r(y) I F(y) . In this context, Zellner (1983) mentioned that Bayesian estimators are

consistent and normally distributed in large samples with asymptotic mean the same as that of

the maximum likelihood estimator and asymptotic variance-covariance matrix equal to the

inverse of the information matrix. Also, Heyde and Johnstone (1979) derived the asymptotic

normality of the estimator based on the posterior distribution.

4 Monte Carlo Experiment

A Monte Carlo experiment was conducted to investigate the small sample properties

of the six different MML estimators when the disturbances in (1) follow the MA(1) process

ul = el + Oe1-1 (21)

with e,— IN(0,c2), t = 0,1,...,n. The classical likelihood function takes the same value when 0

1is replaced by — and a2 by (y202 and therefore has a identification problem. The simplest
0
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solution to this problem is to estimate 8 in the interval -1 _. 0 .. 1. For more details of this

point see Laskar and King (1995). We simulated the estimator of 8 in the context of (21)

using each of the message length functions.

4.1 Experimental Design

The small sample properties of the six MML estimators and the classical maximum

likelihood estimator of 0 were investigated for each of the following nxk X matrices with n =

30 and n= 60.

X/: (1c=5). A constant, quarterly Australian private capital movements, Government capital

movements commencing 1968(1) and these two variables lagged one quarter as two

additional regressors.

X2: (k=3). A constant, the first n observations of Durbin and Watson's (1951, p159) annual

consumption of spirits example.

X3: (k=1). A constant.

X4: (k=4). A constant and three quarterly seasonal dummy variables.

X5: (1c=2). A constant and a linear trend.

These matrices reflect different patterns. The X/ matrix contains large volatile regressors, X2

contains much less volatile annual regressors and X5 contains the linear trend as a regressor.

The values of 8 used in this experiment were 0 = -0.4, 0, 0.4 and 2000 replications were

used throughout.

4.2 Empirical Results

Estimated bias, standard deviation, skewness and kurtosis of the seven different

estimators of the MA(1) parameter for 0 = 0, 0.4, -0.4 are presented in Table 1, 2, 3

w
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respectively. The loss function, 'bias' + !(standard deviation) + 4.iskewness i + 
3 
— 'kurtosis

A A

- 31 where A = 3, was used to summarize the estimated losses of the different estimators.

These calculated losses are presented in Table 4.

The results reflect that for 9= 0, estimates based on MLI, ML2, AMLi and AML2 have

smaller biases compared to CMLi and CML2 but the estimates based on AMLI and AML2

have skewness closer to zero and kurtosis closer to 3 for all the X matrices. For 9= 0.4

and -0.4, the estimates based on AML1 and AML2 have smaller bias and variance.

Estimated losses of the estimators based on the classical likelihood, CMI.1 and CML2 are

larger compared to those of the other estimators. The losses of the estimators based on the

classical likelihood are largest for most of the X matrices and those based on the AML2 are

smallest for most of the X matrices. The next smallest losses of estimators are for those based

on AMLI. In general, estimates based on AMLI and AML2 have smaller biases and variances

for 0= 0.4, 0, -0.4 and are closer to the normal distribution. In contrast, estimates based on

the classical likelihood, CMLi and CML2 have larger biases. It is clear that Cox and Reid's

message length functions do not give relatively good estimates of O. Estimated bias, standard

deviation, skewness and kurtosis increase as 0 moves closer to ± 1. As a result, losses of the

estimators increase. This erratic behaviour occurs due to the identification problem as

discussed above. It is clear that these findings are closer to the results obtained by Laskar and

King (1995) where they pointed out that the distributions of the estimates of the MA(1)

parameter are closer to the normal distribution for different modified likelihood functions, in

contrast to the classical maximum likelihood estimator.
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5 Conclusions

This paper has derived six different message length formulae, using two

different prior densities for the parameters of the linear regression model with non-

spherical error variance-covariance matrices. It has also investigated the asymptotic

properties of the resultant MML estimators. It is observed that the asymptotic distribution of

MML estimator is normal. Our simulation results show that Cox and Reid's modified CMLi

and CML2 based estimates do not perform well. This may be because Cox and Reid's

modification adds more information which, because of its nature, is already contained in the

message length function. Estimates based on AML2 are closer to normal when 0 is closer to

zero, which is significant improvement over the results reported by Laskar and King (1995).
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Table 1. Estimated bias, standard deviation, skewness and kurtosis of
the four estimators of the MA(1) parameter when e = 0.0.

Design
Matrix

Statistic

Estimator

MML Max.
Likeli.
Est.MLI CMLI ML1 CML1 AMLI AVI2

X1 Bias 0.001

,

0.100 -0.002 0.095 0.006 0.003 -0.122
n = 30 S.D. 0.276 0.174 0.281 0.181 0.230 0.233 0.412

Skewness 0.097 0.093 0.130 0.048 0.006 0.007 0.173
Kurtosis 5.795 3.943 5.767 4.611 2.946 2.956 3.707

X1 Bias 0.004 0.048 0.004 0.047 0.004 0.004 -0.040
n = 60 S.D. 0.151 0.134 0.151 0.134 0.149 0.149 0.183

Skewness 0.001 0.053 0.000 0.050 0.001 0.002 0.563
Kurtosis 4.339 4.278 4.348 4.270 3.605 3.616 7.159

X2 Bias 0.006 0.170 0.000 0.161 0.008 0.004 -0.224
n = 30 S.D. 0.257 0.220 0.261 0.222 0.219 0.221 0.401

Skewness 0.014 1.035 0.035 0.976 0.031 0.034 0.613
Kurtosis 5.772 6.311 5.808 6.246 2.993 3.003 2.925

X2 Bias

,

0.002 0.067 0.001 0.065 0.002 0.001 -0.064
n = 60 S.D. 0.148 0.134 0.148 0.134 0.146 0.146 0.173

Skewness 0.034 0.015 0.038 0.014 0.003 0.004 0.569
Kurtosis 4.282 3.307 4.311 3.310 3.394 3.404 6.136

X3 Bias 0.007 0.059 0.005 0.056 0.009 0.007 -0.044
n = 30 S.D. 0.230 0.209 0.232 0.213 0.207 0.208 0.262

Skewness 0.146 0.038 0.191 0.028 0.013 0.014 0.555
Kurtosis 6.116 5.090 6.207 5.373 3.237 3.249 5.679

X3 Bias 0.004 0.024 0.004 0.024 0.004 0.004 -0.015
n = 60 S.D. 0.140 0.137 0.140 0.137 0.140 0.140 0.174

Skewness 0.000 0.001 0.000 0.001 0.000 0.000 0.007
Kurtosis 3.415 3.350 3.417 3.353 3.365 3.367 3.531

X4 Bias 0.003 0.005 0.004 0.004 0.008 0.009 0.005
n = 30 S.D. 0.250 0.222 0.252 0.227 0.211 0.212 0.276

Skewness 0.331 0.248 0.305 0.355 0.010 0.010 0.157
Kurtosis 6.799 6.202 6.784 6.471 3.201 3.216 6.501

X4 Bias 0.004 0.004 0.004 0.004 0.004 0.004 0.004
n = 60 S.D. 0.144 0.142 0.144 0.142 0.143 0.143 0.148

Skewness 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Kurtosis 3.552 3.430 3.555 3.435 3.479 3.482 3.715

X5 Bias 0.007 0.116 0.004 0.111 0.009 0.006 -0.127
n = 30 S.D. 0.238 0.204 0.240 0.208 0.212 0.214 0.334

Skewness 0.095 0.266 0.108 0.308 0.012 0.014 1.043
Kurtosis 5.771 5.227 5.760 5.354 3.077 3.088 4.429

X5 Bias 0.002 0.045 0.002 0.043 0.003 0.002 -0.038
n = 60 S.D. 0.145 0.136 0.145 0.136 0.143 0.143 0.158

Skewness 0.033 0.005 0.034 0.004 0.002 0.002 0.131
Kurtosis 4.303 3.262 4.298 3.266 3.326 3.330 4.597

16



Table 2. Estimated bias, standard deviation, skewness and kurtosis of the
four estimators of the MA(1) parameter when e = 0.4.

Design
Matrix Statistic

Estimator

MML Max.
Likeli.

Est.MI.',
,

CMLI ML2 CML2 AML1
,

ML2

X1 Bias 0.046 0.000 0.050 0.004 -0.028

.

-0.027

.

-0.025
n = 30 S.D. 0.302 0.186 0.308 0.195 0.190 0.193 0.274

Skewness 0.023 0.711 0.012 0.703 0.687 0.703 0.368
Kurtosis 4.111 5.292 4.124 5.034 4.165 4.226 7.082

X1 Bias 0.015 0.016

,

0.015 0.016 0.001 0.001 0.015
n = 60 S.D. 0.161 0.140 0.162 0.140 0.130 0.130 0.170

Skewness 1.090 1.092 1.099 1.068 0.024 0.023 0.483
Kurtosis 6.080 6.756 6.065 6.696 3.205 3.208 5.240

X2 Bias 0.056 0.165 0.053 0.159 -0.017 -0.019 -0.066
n = 30 S.D. 0.292 0.272 0.296 0.273 0.181 0.183 0.332

Skewness 0.108 0.304 0.052 0.316 0.704 0.706 1.199
Kurtosis 4.005 2.132 4.346 2.190 4.841 4.850 7.341

X2 Bias 0.008 0.045 0.008 0.045 0.000 -0.000 -0.023
n = 60 S.D. 0.147 0.139 0.146 0.139 0.124 0.125 0.145

Skewness 0.145 1.118 0.112 1.110 0.024 0.024 0.021
Kurtosis 9.737 6.420 9.734 6.406 3.198 3.206 4.548

X3 Bias 0.043 0.071 0.044 0.071 -0.012 -0.012 0.011
n = 30 S.D. 0.260 0.251 0.262 0.252 0.173 0.174 0.255

Skewness 0.280 0.366 0.272 0.355 0.491 0.487 0.108
Kurtosis 3.950 3.821 3.927 3.792 4.213 4.221 5.966

X3 Bias 0.008 0.019 0.008 0.019 0.000 0.000 0.001
n = 60 S.D. 0.138 0.136 0.138 0.136 0.123 0.123 0.136

Skewness 0.485 0.597 0.483 0.593 0.011 0.010 0.052
Kurtosis 5.725 5.838 5.715 5.827 3.087 3.090 4.173

X4 Bias 0.043 -0.004 0.046 0.001 -0.019 -0.017 0.088
n = 30 S.D. 0.272 0.230 0.279 0.235 0.180 0.181 0.300

Skewness 0.141 0.266 0.063 0.253 0.656 0.643 0.039
Kurtosis 3.970 5.079 4.347 4.901 4.279 4.268 3.333

X4 Bias 0.013 0.003 0.013 0.004 -0.000 0.000 0.024
n = 60 S.D. 0.158 0.152 0.158 0.152 0.128 0.128 0.157

Skewness 1.160 1.285 1.129 1.270 0.011 0.011 0.605
Kurtosis 6.184 6.782 6.153 6.743 3.032 3.034 5.227

X5 Bias 0.048 0.106 0.047 0.104 -0.014 -0.014 -0.025
n = 30 S.D. 0.269 0.249 0.270 0.251 0.175 0.177 0.274

Skewness 0.286 0.370 0.275 0.359 0.539 0.537 0.368
Kurtosis 3.713 3.602 3.711 3.579 4.405 4.411 7.082

X5 Bias 0.007 0.031 0.007 0.031 -0.000 -0.000 -0.011
n = 60 S.D. 0.140 0.136 0.141 0.136 0.124 0.124 0.139

Skewness 0.490 0.699 0.486 0.657 0.019 0.019 0.005
Kurtosis 5.813 5.913 5.804 5.850 3.166 3.171 4.038

17



Table 3. Estimated bias, standard deviation, skewness and kurtosis of the
four estimators of the MA(1) parameter when 0 = -0.4.

Design
Matrix Statistic

Estimator

MML Max.
Likeli.
Est.MLI CMLI

,
ML2 CML2 AMLI AML2

X1 Bias -0.027 0.234

,

-0.040 0.220 0.047

.

0.041

.

-0.307
n = 30 S.D. 0.299 0.163 0.313 0.168 0.197 0.199 0.323

Skewness 0.057 0.051 0.007 0.023 0.638 0.645 0.648
Kurtosis 3.493 4.892 3.757 5.047 3.806 3.815 3.464

X1 Bias -0.011 0.094 -0.013 0.090 0.006 0.005 -0.146
n = 60 S.D. 0.179 0.134 0.178 0.136 0.141 0.142 0.243

Skewnes 0.425 0.030 0.684 0.003 0.072 0.070 0.444
Kurtosis 6.852 9.365 5.449 9.467 3.779 3.777 0.674

X2 Bias -0.022 0.269 -0.036 0.249 0.047 0.040 -0.397
n = 30 S.D. 0.289 0.203 0.297 0.208 0.189 0.191 0.315

Skewness 0.061 0.212 0.058 0.043 0.536 0.538 1.261
Kurtosis 3.905 8.599 3.675 8.328 3.730 3.725 2.761

X2 Bias -0.010 0.106 -0.012 0.102 0.005 0.003 -0.159
n = 60 S.D. 0.170 0.135 0.171 0.136 0.139 0.139 0.237

Skewnes 0.704 0.060 0.728 0.121 0.022 0.020 0.487
Kurtosis 5.147 5.337 5.129 5.683 2.968 2.964 2.662

X3 Bias -0.026 0.078 -0.032 0.070 0.031 0.028 -0.129
n = 30 S.D. 0.266 0.217 0.267 0.220 0.177 0.178 0.291

Skewness 0.135 0.027 0.191 0.037 0.430 0.424 0.097
Kurtosis 4.338 6.298 3.942 6.146 3.799 3.794 2.445

X3 Bias -0.004 0.030 -0.004 0.028 0.006 0.005 -0.042
n = 60 S.D. 0.148 0.138 0.148 0.139 0.127 0.128 0.156

Skewnes 0.554 0.279 0.574 0.307 0.025 0.025 0.590
Kurtosis 5.612 5.546 5.639 5.619 3.068 3.068 5.214

X4 Bias -0.047 -0.001 -0.050 -0.005 0.032 0.031 -0.085
n = 30 S.D. 0.290 0.256 0.292 0.261 0.180 0.181 0.312

Skewness 0.248 0.484 0.232 0.348 0.416 0.406 0.088
Kurtosi 3.121 4.180 3.076 4.365 3.570 3.560 2.791

X4 Bias -0.007 0.002 -0.008 0.001 0.005 0.005 -0.019
n = 60 S.D. 0.158 0.149 0.158 0.150 0.129 0.129 0.159

Skewnes 0.933 0.871 0.925 0.890 0.031 0.030 0.553
Kurtosis 5.958 6.386 5.936 6.390 3.085 3.085 5.173

X5 Bias -0.018 0.186 -0.029 0.172 0.041 0.035 -0.264
n = 30 S.D. 0.274 0.191 0.278 0.198 0.183 0.184 0.326

Skewness 0.061 0.060 0.100 0.003 0.485 0.482 0.083
Kurtosis 4.367 6.776 3.935 6.844 3.734 3.725 1.767

X5 Bias -0.008 0.065 -0.010 0.062 0.005 0.004 -0.097
n = 60 S.D. 0.161 0.140 0.162 0.140 0.133 0.133 0.201

Skewnes 0.732 0.334 0.757 0.324 0.018 0.017 0.909
Kurtosis 5.392 6.003 5.397 5.925 2.967 2.967 3.991
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Table 4. Estimated loss of seven different estimators of the MA(1)
parameter.

Design
Matrix

n 6
Estimators

,

MML Max.
Liken .
Est.ML1

I
CML1 ' NIL2 CML2

,

AML1 AVIL2

X1 30 0

,

0.280 0.144 0.213 0.221 0.086 0.083 0.306
X1 60 0 0.105 0.146 0.105 0.145 0.077 0.077 0.318

X2 30 0 0.197 0.482 0.196 0.464 0.085 0.082

,

0.318
X2 60 0 0.103 0.126 0.104 0.124 0.066 0.066 0.302

X3 30 0 0.216 0.212 0.223 0.219 0.088 0.088

,

0.293
X3 60 0 0.066 0.084 0.066 0.083 0.065 0.065 0.149

X4 30 0 0.265 0.225 0.262 0.248 0.088 0.089

,

0.334
X4 60 0 0.073 0.067 0.072 0.068 0.070 0.070 0.080

X5 30 0 0.201 0.297 0.199 0.302 0.085 0.083 0.408
X5 60 0 0.103 0.101 0.103 0.202 0.063 0.063 0.165

X1 30 0.4 0.191 0.226 0.195 0.223 0.212 0.215

_

0.309
X1 60 0.4 0.304 0.324 0.305 0.319 0.055 0.055 0.208

X2 30 0.4 0.203 0.322 0.208 0.315 0.224 0.227 0.471
X2 60 0.4 0.323 0.343 0.318 0.341 0.052 0.052 0.131

X3 30 0.4 0.196 0.226 0.196 0.224 0.170 0.170 0.209
X3 60 0.4 0.209 0.237 0.208 0.236 0.046 0.046 0.096

X4 30 0.4 0.185 0.187 0.196 0.178 0.199 0.196 0.205
X4 60 0.4 0.313 0.337 0.308 0.335 0.045 0.045 0.226

X5 30 0.4 0.196 0.253 0.194 0.249 0.184 0.185 0.309
X5 60 0.4 0.213 0.262 0.212 0.255 0.050 0.050 0.097

X1 30 -0.4 0.152 0.365 0.173 0.355 0.214 0.209 0.504
X1 60 -0.4 0.261 0.378 0.243 0.375 0.091 0.089 0.288

X2 30 -0.4 0.159 0.567 0.167 0.521 0.197 0.190 0.651
X2 60 -0.4 0.224 0.245 0.229 0.261 0.057 0.054 0.307

X3 30 -0.4 0.180 0.275 0.178 0.265 0.167 0.164 0.258
X3 60 -0.4 0.212 0.201 0.216 0.206 0.054 0.053 0.241

X4 30 -0.4 0.175 0.184 0.176 0.182 0.160 0.157 0.207
X4 60 -0.4 0.274 0.274 0.272 0.276 0.055 0.055 0.215

X5 30 -0.4 0.167 0.396 0.168 0.381 0.183 0.177 0.428
X5 60 -0.4 0.232 0.260 0.237 0.253 0.053 0.052 0.302
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