
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


-)T)oAJA5 ./4 lid1)57.76

ISSN 1032-3813

ISBN 0 7326 0786 8

NMO ASH UNIVERSITY

AUSTRALIA

USING THE EM ALGORITHM WITH COMPLETE,

BUT SCRAMBLED, DATA

ouvvidmige

Guyonne Kalb

Working Paper 5/96

June 1996

DEPARTMENT OF ECONOMETRICSJ



Using the EM algorithm with complete,

but scrambled, data

Guyonne Kalb

Department of Econometrics,

Monash University,

Clayton, VIC 3168,

Australia.

E-mail: Guyonne.Kalb@BusEco.monash.edu.aii

Telephone: (03) 99055180

- Fax: (03) 99055474

May 1996

Abstract
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I Introduction to the problem

It can be very difficult to get the "perfect" data set. In fact we are often quite happy

with any data set that has some of our most wanted variables in it. Sometimes our

perfect data set does not exist and at other times the perfect data set contains so

much information that individuals could be identified. In that last case the data often

cannot be released with the full information in it.

In our case the nearly perfect data set does exist and we have this data set

available in two separate files'.

Each of the records in both files is identified by an identity number uniquely

allocated to each household, a family number, an income unit number and a person

number. Unfortunately the household identity numbers do not match, so these

numbers cannot be used to connect the two files.

However, there is some common information available in both data sources to

connect the two files. Both files have some information on household composition

and on the working hours of its members.

Obviously the most uncommon cases will be matched more easily, since there are

not many similar cases that make the choice difficult. So a household that has a

special composition or that has members that work a less common number of hours

and/or have a second job, is more easily matched.

In our case exact additional information is available for only a small percentage

(6.1%) of the income units.

We would like to use the exact information together with the information available

for non-exact matches to make optimal use of the data

To do this, we need to find a way to use the information in the additional file without

making too improbable assumptions.

We will present our problem in more general terms in the following section before

starting to explore a possible solution. In the third section the method will be tried on

a simple artificial example and results obtained by using this method will be

compared to the results that would be obtained from a complete data set. The final

1 See appendix A.1 for more detailed information on these data files.
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section will contain a discussion on the usefulness of the proposed method for our

problem.

2 Estimating with scrambled data

2.1 General presentation Of the problem

Presenting the problem in a general notation results in the following:

Our main data set consists of N observations on records ml, m2, ..., mN. Each record

mi is a vector of Kz realizations of variables belonging .to the vector Z and Kx

realizations of variables belonging to another vector X. The latter consists of

exogenous variables to be used as .explanators of endogenous variables of interest.

For the time being, we restrict our attention to the case of one scalar endogenous

variable Y*. Note that the main data set contains no information on the values of Y*.

Our supplementary data set consists of N observations, sl, s2, on Kz variables

contained in Z (the same as above; these variables in Z are called matching

variables) and on a scalar variable Y. Notationally the symbols Y and Y* relate to the

same variable. They are only distinguished because of the scrambling of the data.

Realizations of Y can be mapped exactly to realizations of Z. However, what is

required is a mapping between realizations of Y and X, the variables of interest. The

main data set allows exact mapping between realizations of X and Z. To implement

an indirect (and as it turns out, inexact) mapping from Y to X via Z, the concept of a

matching group is used.

A pair of incomplete data sets is defined as a main data set together with its

supplementary data set.

Matching groups are defined for both the main and supplementary data set as

follows. First Z is identified as the set of matching variables (i.e. the set that will be

used to implement the indirect mapping). The records ml, m2, ..., mN from the main

data set are partitioned into groups glm, gGm such that the realizations on all the

variables in Z are the same for all records mi assigned to the same group gr. These

groups gm are called matching groups. Note that if ni is the number of records
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belonging to matching group j and G is the total number of matching groups

thenEni =N.
j=1

For example, if our main set consists of just the records mi, ..., m4 as set out in

scheme 2.1, then the following groups can be formed from these records:

gim = {rn1,m3}, g2m = {m2} and g3m
 = {m4}.

Scheme 2.1 An example of data

main data set

values of Z values of X

Zi Z2 Z3 Xi X2

rn1 = 1, 3, 4; 100, 1000)

m2=( 1, 3, 5; 50,70)

m3=( 1, 3, 4; 200,-30)

ma =(-2, 5, 7; 10,250)

supplementary data set

values of Z value of Y

Z2 Z3 Y

=( 1, 3, 4; 98)

52 =( 1, 3, 5; 55)

s3 = ( -2, 5, 7; 12)

54 = ( 1, 3, 4; 205)

In the case of the supplementary data set, the same values of Z appear (but not

necessarily in the same order as in the main data set). The supplementary data set

has to consist of the same number of records as the main data set; an example is

given in scheme 2.1.

In this case the matching groups for the supplementary data set are the following:

gis = {s1,s4}, g2s = {52} and g3s = {s3}. Note: (i) the number of matching groups for the

supplementary data set is necessarily the same as it is for the main data set; (ii) that

if the ordering of matching groups for both sets is generated by sorting according to

the values of their matching variables (in Z), then. the Z-parts of records mi

contained within any given gm are necessarily the same as the Z-parts of the

records sl contained within the corresponding gjs (i.e. they match). This can be easily

seen from scheme 2.2, where the records have been ordered according to

ascending values on the Z variables. Records with the same values on the Z

variables are now grouped together in both data sets. Forming groups starting from

the first record and following the order of the records, we get for the main data set:

= {m1}, g2m = {m2, m3} and g3m = {m4} and for the supplementary data set:

gis = {Si}, 92s = {52, 53} and g3s = {Q. A possible match for m2 is either s2 or s3.
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Scheme 2.2 The data set from scheme 2.1 after reordering

main data set

values of Z values of X

Z Z2 Z3 Xi X2

rn1 = ( -2 5, 7; 10,250)

m2= ( 1 3, 4; 100, 1000)

m3=( 1 3, 4; 200,-30)

m4 = ( 1 3, 5; 50,70)

supplementary data set

values of Z value of Y

Zi Z2 Z3 Y

= s(-2, 5, 7; 12)

52 = ( 1, 3, 4; 98)

53 = ( 1, 3, 4; 205)

54 = ( 1, 3, 5;• 55)

As noted above, we are interested in the effect that X has on Y. Z is only relevant

to determine the group of records where the correct match can be found. It defines

the values for Y* we can choose from. In the example above the matching group gin'

from the main data set corresponds to gis from the supplementary data set. The two

groups with only one record in them can be exactly matched. This means that X1 =

50, X2 =70 is combined with Y = 55 and that X1 = 10, X2 =250 is combined with Y =

12. The other two records belong to. a common matching group, so no unique

choice can be made in that case. The following choice of assignment is possible:

(100,1000)

(200,-30)

(100,1000)

(200,-30)

OR

98

205

205

98

The values for the variable Y corresponding to the correct (but unknown)

assignment are y*2. So y consists of the same values as y*, but possibly in a

different and incorrect order. Above the possible values of Y*I X=(100,1000) are

Y=98 and Y=205. The same values of Y are candidates for Y*I X=(200,-30).

The central question is whether the information in the additional file is useful even

though we cannot always find the correct matches. Most of the time only a group of

possible values, in which the correct match must lie, can be determined.

2 Upper case letters X, Y and Z will be used to indicate the random variables and the lower

case x, y and z will be used to indicate its realizations for a particular individual.
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2.2 General approach to estimation

Y* is an unobserved or latent variable whenever an observation belongs to a

matching group with more than one element. The exact value of the realization of Y*

is unknown, but it is known that only certain realizations could have taken place.

From now on this set of possible realizations will be called A. In the numerical

example in scheme 2.1 the true realization of Y* associated with X=(100,1000)

could only have been 98 or 205, so A ={98, 205}. Likewise the true value of Y*

associated with X = (200, -30) mist also lie in A ={98, 205). Furthermore it is known

that each element in A can only be used once. So either X=(100,1000) is combined

with Y*=98 and X=(200,-30) is combined with Y*=205 or X=(100,1000) is combined

with Y*=205 and X=(200,-30) is combined with Y*=98.

The principle of estimation to be adopted is maximum likelihood. Thus ideally the

aim would be to find values of a parameter vector 0 describing the relationship

between Y* and X, for which the likelihood L(Oly*) of the realizations of Y*

conditional on X is a maximum. Because not all of the realizations y* on Y* are

known, the likelihood as defined above cannot be computed. However it is known

that y* E A and that each of the elements of A can only be used for one of the

observations from the corresponding matching group. in the main file.

The combinations of y* and xi that can be made for observation i are not

independent from the other combinations made in the same matching group. This•

does not mean that the actual realizations yi* in group j are dependent, but only that

the choice we can make for yi* given the observation on Ai depends on the choice

that is made for the other elements of matching group j. The dependence is caused

by the fact that values y* are observed in groups and the correct assignment of

these values y* to the observations on X is unknown. So instead of setting up the

likelihood per observation as is usually done, here the likelihood should be set up

per matching group. In that way we can look at all possible joint realizations of Yli*,

in the matching group given the values in A. All the different

permutations of {y1, y2,..., Yni) over the observations xi from the corresponding

matching group are included in the likelihood. These. different permutations are

possible combinations of y* and x, given the elements of each matching group.

One of these combinations is the unknown true combination. So instead of

6



maximizing the likelihood based on the exact realizations of Y* the likelihood based

on a summation of possible outcomes for Y* is going to be maximized.

Suppose we are interested in the following simple model:

Y* = X13 + u

Write 0' =(13', c52).

Information on Y* and X is located in separate data sets, which can both be divided

into corresponding matching groups.

u N(0,0.2)

The likelihood function can be constructed by taking the joint probability density

functions for observations per matching group:

G nj nj nj

E••• E pdf(Y1i *.yq,Y2;*=yki,•••,Yno *= Ypj Xij,•••,

j=1 i=1 k=1 p=1
k*i pA,k,..

G nj nj njHE E... E pdf(Yii *= y11 10, Xii)...pdf(Yn jj *.ypj 10,Xnii)
j=1 i=1 k=1 p=1

k*i

where

A= {y11, y2j, ynii} for j=1,...G

pdf = probability density function

Taking logarithms to obtain the log likelihood:

j=1

ni

E pdf(Yij *.yu 10, Xii)...pdf(Ynij*ypj

P=1

(2.2)

a

The idea of summing over all possible outcomes given the observed data is similar

to integration in the case of grouped data. When the dependent variable Y* is only
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known in a grouped version yi* E ud, then instead of:

*) = pdf(yi * 10, xi )

i=1

the following is taken:

-T—r u(Yi )
Vely)=1 pdqy*10,xi)dy* , where y indicates to which group y* belongs.

1(Y)1=1

In the grouped data case all we know about yi* is that it lies in between 1(yi) and u(y1)

and in the above likelihood it is all the information that is used.

In the case of scrambled data we have a limited discrete number of possible

outcomes for each matching group. So instead of integrating over possible

outcomes within given intervals i (as is done with grouped data), we sum the

probability density functions over all possible outcomes within the matching groups.

For each matching group the sum is taken of the probability density functions of all

possible permutations formed from {y1,..., yni } and xnj }. In case of double

values in the set Ai the summation does not contain the double permutations. I.e.

these are the permutations that give the same values on {Yij*,..., Yn ji as a previous

permutation. Only one of these permutations will appear in the sum.

The fact that a group of possible values for Y* instead of one true value is observed,

complicates the likelihood function.

Looking at the problem of scrambled data in a less technical way, it shows

similarities to the missing data problem or to the censored data problem. In our case

for quite a few records the value of some of the variables is not known, but we do

know the possible values. In the case of missing data there is no information at all

on the missing variables. They can have any value. For censored data the exact

values of a variable below or above a certain value are not known. In these two

cases one value of the observed variable represents a range of possible values for
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the latent variable. Comparing our problem to these last two cases it is obvious that

more information is available on our "missing" variables.

A way of handling the missing data or censored data problem is to use the EM

algorithm to estimate models instead of maximizing the likelihood directly (Ruud

(1991)).

Because of the similarities between these two problems and our problem of

scrambled data and since the likelihood function might be difficult computationally,

an investigation into the EM algorithm seems worthwhile.

2.3 Description of the EM algorithm

Before adapting the EM algorithm to our specific problem, an outline of the method

will be given. First the notation: y are the observed values related to the latent

endogenous variable, y* are the unobserved realizations of the latent variable Y*

and pdf(y*I 0) is the value of the probability density function for Y* at y*, indicating

how likely it is for y* to be the true realization of Y*, where 0 is the parameter vector

characterizing the probability distribution of Y* conditional on the set X of exogenous

variables.

Our objective is to maximize the likelihood based on the observations y (L(01y)).

There is however no direct theoretical relationship between the observed variable y

and the exogenous variables X. From economic theory, only a relationship between

Y* (the underlying latent variable) and X can be derived, hence only pdf(y*I 0) can

be constructed directly from the theory.

L(0y) cante decomposed into:

L(01y) = pdf(y*10)dy*= pdf(y*I0) / Pr(y*Iy,0) (2.3)

A(y)

where

Pr(y* y,0) .  
pdf(y *10)

I 
pdf(y *10) dy *

A(y)

for y*€ A(y) and A(y) is the range of values the

latent variable y* can take given that we observe a value y.

3 See Dempster, Laird and Rubin (1977).
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Taking logarithms:

/(01y) = log(L(01y)) = log(pdf(y*I0)) - log(Pr(y*ly,0)) (2.4)

Multiplying by Pr(y*I y,y) and integrating over the set A(y) of all possible values for

the latent variable y* observationally equivalent to the realized value of the observed

variable y, the following can be obtained:

J ice 1Y)Pr(Y *1Y, (P)dy *= log(pdf(y*I0)Pr(Y*Iy, (p) dy*—
A(y) A(y)

I log(Pr(y *ly,0))Pr(y* ly, cp) dy*

A(y)

where cp is defined over the same domain as 0. Equation 2.5 is valid for any value of

the parameter cp.

(2.5)

Keeping in mind that Pr(y*I y, cp) integrated over all possible values of y* will result in

the value 1, we can write this expression as:

/(0 I y) = log(pdf(y10)Pr(yly, (p) dy * - log(Pr(y1 y, Pr(y1 y, (p) dy * (2.6)

A(y) A(y)

This is often written more compactly as:

/(01y) = Q(0, (p; - H(0, (p; (2.7)

Dempster, Laird and Rubin (1977) show that optimizing Q with respect to 0 in an

iterative way results in an estimated 0, that also is a stationary point of /(01y). Their

EM algorithm to maximize Q starts from some starting value 0° for cp. Then Q(0,0°,y)

is maximized with respect to 0. The resulting value 0' is then used in the next step

where Q(0,e1,y) is again maximized with respect to 0. This procedure is repeated

until Oci = el in iteration q.

10



By using the following lemma4:

$flog—g _oZ) when f(f—g)?..0 •(2.8)

they show that if Q increases in value by choosing some 0q 0q-1, then the value of

/(01y) will increase as well when 0 1̀-1 is substituted by 0q. Apply Rao's lemma to

H(001-1,y) and it will follow that 0 = 0q-1 is the maximum for H5. So any value 0

will result in a lower or equivalent value for H than 0q-1 would. Therefore, .if Q can be

increased by selecting a new value for 0;1(01 y) will increase as well.

It is easy to see that when both Q and H are maximized by a value 0q = 0q-1, the first

derivatives of Q and H must be zero and so the first derivative of /(01y) must be zero

as well. 0 = 0q therefore is a stationary point of /(01y).

Once 0 is estimated, the standard deviation can be calculated as well. The variance-

covariance matrix of the estimator 0q of 0 can be derived from equation 2.6.

The second derivatives of /(01y) with respect to 0 can be written as:

/(0y
2 2Q(0, (p; Y)

(p =0

a 2H(0,y;y)
60 2

(p =0

Louis (1982) shows that this can also be written as:

a 2/(01 y) a 2 , (p; .
+ var

[alog(pdf(y *10))
ie 2 ce 2 160

(p=0

The variance is taken with respect to Pr(y*I y,0).

4 See lemma le.6 in Rao (1973)
5

H(0 q, 0q  y) —H(0,0 q, y) = [log(Pr(y*I0 q, y)) —log(Pr(y*10, y))]Pr(y*I0 q, y) dy * 0

A

if S[Pr(rlY,0 cl)—Ptely,e)]cly*?..0 and Pr(rly,0 q) >0
A

This is valid for any value of 0.

(2.9)

(2.10)
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Thus

Var(Ocl)=[—E  a
00 2
2/(9IY)

o=eq
(2.11)

= —E  2Q(0,(); NI) + var[  Olo
g(pdf(y * OD

xi 2

=0q — 0=0

The variance-covariance matrix can be used to calculate the standard deviation of

our estimated parameters in the usual way.

2.4 The EM algorithm applied to the scrambled data

The general method of the EM algorithm can be easily translated to our specific

problem.

Our main data set consists of N observations, which can be grouped into matching

groups. The records in a matching group of the main data set have exactly matching

records in the corresponding matching group of the supplementary data set.

However, the information to make the right assignments between the two groups is

not available.

So in our supplementary data set a group of nj records with values

(elements of the same matching group j) is observed. It is known that this. group

contains the true value yi* for the first record of the corresponding matching group in

the main data set, so yi* E ivulj,•••, ynij = A. It is also known that this matching group

contains nj-1 other records which have a yr* E Aj and there is a one to one relation

between these nj yi* and the values yij to y . When nj is bigger than 1, this unique

one to one relation is unknown to us. It is only known that our unobserved variable

Y* has a realization that is equal to one of ylj or y2j or ... or ynij . The realizations y to

be included in Aj are determined by the matching group j an observation i belongs

to.

Since in our case Aj is a discrete set of values, instead of an integration a

summation over all values in Aj will be performed. Furthermore since the one to one

relation has to hold, the expression of interest is not the probability density function
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of each observation separately, but the joint probability density function for all

observations in one matching group. The joint density functions will be summed

over all possible combinations which can be formed from the two corresponding

groups. Later we will sum over all matching groups. From equation 2.4 it then

follows that:

n-1 n-1 nj
E E••• E Y pj
1=1 k=1 p=1

k*i pA,k,
n1 - n• n-1 „

E E... E [10qpdf(yi;*= y11 1 Xii, 0)) +... +10g(pdf(Yn ji
1=1 k=1 p=1

k*i pA,k,

n-
1 

n- n•
1 1

i=1 k=1 p=1
k*i pA,k,..

Pr(Yij*= Yn jj* = ypj 1Xij Xn jj, A j, (p)

Pr(Yii*= yq,...,Ynij*= YpdX1j • • • X nij , A j , (p)

This can be simplified in the same way as for the continuous case:

1n-1n- n-1 

E E... E log(pdf(Yij
1=1 k=1 p=1

k*i

*=Yii I X , 0)) +...+ 1009(pdf(Ynii *= ypj

Pr(Yij*--= y11,..•, Ynjj* =

nj nj nj
E E... E yu,...,Y*
i=1 k=1 p=1

k#i

pi 1j • • •

=YPjlxlit's

Pr(Yii* = Ynji* = Xnii, Ai,

Using the same notation as for the continuous case:

(2.12)

(2.13)

/(0 I Ai) = Q(0, y ;Ai) - H(0, cp ;A1) (2.14)
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The question is whether the EM algorithm will be applicable for the discrete case as

well. Rao (1973) has shown that a similar formula as for integrals holds for

summations of converging sequences of positive numbers as well, from which

E f log—f 0 when
9

(2.15)

can be derived6. So in the same way as in the continuous case, if Q can be

increased by selecting a new value for 0, /(01A) will increase as well.

It is easy to see that when both Q and H are maximized by a value 0q = 0q-1, 0 = 0q is

a stationary point of 1(01Ai).

The variance-covariance matrix of the estimator 0q can be calculated in the same

way as for the continuous case and the same formulas are derived (see equation

2.11).

Applying the EM algorithm to the problem of the scrambled data sets and assuming

a distributional form: pdf(y* I 0,X) = f(y*I 0,X), an expression for Q can be derived.

Assuming that we know f(y*I 0,X) we can construct Pr(Yii*,Y2i*,..., Ynii * I

Pr(Yii* = * = ypi lA i , 0)

pdf(Yii* = yq IX j , pdf(Y * = y pi

• n • n• n •

E E... E pdf(Yii* = = y pj
1=1 k=1 p=1

k#i

f(Yij f(Y Pi
n• n• n•1

E E--- E f(YidEvii)..-f(YPJ
1=1 k=1 p=1

k#i

=0

6 See appendix A.2 for the proof of this.
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This conditional probability density function is of major importance in the EM

algorithm. In the function Q the contribution log(f(0,y*)) of an unobserved latent

variable y* to the log likelihood function is replaced by its expectation over the set of

values in which its true value is known to lie. In the present case this leads to:

ni n. nj1

(Q =0,0q-1;A•) E E... E {104f(y1;
i=1 k=1 p=1

k*i

10, Xii)1+log[f(yki le, X2 )1 +...+14f(ypi

f(yjilXij ,0c1-1)...f(ypi Xn ji ,Oc1-1)

n•1 n.1 ni

.E E... E f(y4lX1i ,0c1-1)...f(ypilXn jj ,0 1̀-1)
i=1 k=1 p=1

k*i

(2.17)

Summing over all matching groups j, we get the following expression:

G nj nj nj

E... E {log[f(A 10,xii)1 ±log[f(yki lo,x2;)1 ±...+10g[f(ypi lo,x,y)]1.
j=1 1=1 k=1 p=1

jj ,Oc1-1)

nj ni

L E... E f(y.-1)( 
chi

i=1 k=1 
p=1 

11 1j 
,o oq-1)

1:1 ,

(2.18)

The Q-function has to be maximized with respect to 0, where el is given. It has

been shown that iteratively maximizing this function using the previous optimal

values 0c1-1 leads to convergence7. We only need an arbitrary value 00 to start the

process and the iterations are finished when 0c1 = 0(1-1. Since the 0 that is found in

this way is not necessarily a maximum, second order conditions should be checked.

To be reasonably certain that the maximum found is global, it is necessary to try

some different starting values as well.

7 See Dempster, Laird and Rubin (1977).
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The part where the expected value of the log likelihood function is computed, using

the conditional probabilities that are calculated based on the previous optimal

values for the parameters, is called the Expectation step. Q is defined in this first

step, while the optimization of Q takes place in the second step, which is called the

Maximization step.

Looking at formula (2.18) it can be seen that to calculate Q, a summation over nj!8

terms has to be performed for each matching group j. When the same value occurs

n-11' more than once in a matching group this decreases to   terms, where vi is the
v

1-1
1=1

mi

number of values occurring more than once and mi is the number of times a value

occurs.

For ni = 10 and no double values in the matching group, the summation would

already consist of 3,628,800 terms. In our case ni can be much bigger than 10, so

exact calculation of Q does not seem to be feasible for practical reasons like

computing time.

The exact calculation in the E-step can be replaced by a Monte Carlo

implementation of the E-step (Tanner 1993). A Monte Carlo implementation means

that from the distribution of Y* given the data and the current estimate of the

parameter vector, a sample of size T with values (yibi*,•••, Ynjj,1 *),

Ynjj,T *) will be drawn for all matching groups j.

From this sample the different moments of interest can be approximated.

The procedure works as follows:

First, (Sio*,•••, Ynjo *), •••, (Y1j.T*,•••, Ynjj,T *) is drawn from Pr(Yli*,Y2;*,..., Y * I Ai, 0i).

So the values for all observations in one matching group have to be drawn

simultaneously from the joint distribution function. The values y* are chosen from

the set Ai.

8 where ni is the size of the matching group.
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Q(0,0i;A;) is then approximated in the following manner:

G T

—T Fogifky itt *le, Xij)i +...i-log[f(yno 19,X, ji)]1
t=1

(2.19)

This function can be maximized with respect to 0, after which the new Q can be

calculated using the new parameter estimates to obtain the probabilities

y * I Ai, 0+1). If T is chosen large enough the approximation to Q will

be sufficiently accurate and convergence of the EM algorithm will occur. After

convergence (0= el) the information matrix can be calculated by using:

G a2t(lAi,xii—xno)54,2 J.,

E 1

j = 1 t=1

eq

log[f(Yilt *10x)] + log

V 1 v

Lid T-1L-i
j = 1 t=i

502

eq
2

+...+Iog[f(Yniit *lo,x"Pgog[f(ylit *10, x1j)] 

T

Zad 1-1 41
j = 1 t=i

a0

0(11

+...+Iog[f(Yniit *10, Xnji)]1og[f(ylit *10, x1i)] 

ao

eq1
(2.20)

A problem with this approach is that there are still ry different combinations of y*

and x-values for which the probability has to be calculated, since these n1!

probabilities make up the discrete probability function of Y*. All elements of this

probability function have to be calculated before observations can be sampled from

the function.
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However in the bayesian literature much use is made of importance sampling9,

which under certain conditions allows one to draw from a more simple distribution

than the actual one. In order to get good results the approximating distribution has

to be sufficiently similar to the original distribution. This means that the

approximating distribution should have large probability where the actual distribution

has large probability, so that all important combinations will be drawn from the

importance function. The number of drawings T from the importance function

* I Ai, En can be Jess when this function is more similar to the actual

distribution.

After sampling from the simple distribution each drawing is weighted by the ratio of:

the probability of this drawing according to the actual distribution and the probability

according to the simple distribution. When calculating weighted averages over this

sample, the constant terms in both probabilities will cancel out. This means in this

case that the computation intensive denominator, consisting of the sum over all

possible combinations of x and y* values, can be left out of the calculations.

The importance function considered here is constructed from a sequence of

probabilities. The procedure for generating data for Y* goes as follows:

Choose one record on X in matching group j from .the main data set to start from

and calculate probabilities of observing each of the values in the set Aj given a

value for 0 and X:

n.1
Ef(Ykj1X1peci)
k=1

, for yii EA (2.21)

Draw a value for Y11* from this discrete distribution. Then go to the next record on X

and repeat this procedure after removing the value yibt*= ytij that is drawn in the

previous step from the set Aj of available values. t1 indicates the tth simulated y*

value belonging to X1 and its value lies in between 1 and nj.

9 See Kloek and Van Dijk (1978 and 1980).
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The probability distribution function then looks like:

Pr(Y2j* = yulX2i3O)
f (ydx,p e

, for yq EAi

where A \ B means the set A after deletion of the. elements in set B.

(2.22)

From this distribution function yt2i will be drawn. In the next step ytii and yt2i will

be excluded from the set of possible values for Y*.

After each draw the set of attainable values for Y* contains one value less.

Following this procedure a value for Y* will be drawn for all records on X in the

matching group in a sequential way. For each series of draws of y*-values the

procedure will start from a different record on X. This is done, since the probability

of certain combinations occurring is dependent on the order of observations Xi;

(i=1 ,...,ni) for which y*-values are drawn. The last observation on X has to be

combined with the last remaining value from Ai no matter how unlikely that

combination is. Starting from the same observation on X over and over again could

disadvantage certain combinations of values y* and x. By alternating the starting

point it is hoped that all combinations that would occur with high probability

according to the actual probability distribution, will also be drawn from this much

simpler importance function.

Although an attempt is made to get as close as possible to drawing from the actual

probability distribution function, we know that this will never exactly be the case. To

correct for this drawing from an incorrect distribution, the simulated contributions to

the log likelihood have to be weighted. The appropriate weights can be found by

dividing the value of the actual probability density function by the approximated
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value at the simulated data pointl°:

wti
f(Yij* = YtijlXij,°1-f(Yriui* Ytn)

f(Yii* = Ytii;peg) f(Y2;* yt2; lx2;

Ef(Y,J*= Ykjx1p0q) Ef(y2,- = YkdX2p0C1)

k*ti

• • •

Using these weights, Q(0,0q;Ai) is now approximated by:

.1

E  
wq {logNytii I 0, Xii)1 +...+Iog[f(ytnii 10,Xnji)]}

j E wti t=1
t=1

and the information matrix can be approximated by using:

j=1 a32

Oci

a2{10g[f(yti; le, x1 )1 +...+Iog[f(ytnii ox)]}  !„-
502

j=1 
T W tj 

E wt t=1

j =1

J =1

t71

%In
Wtj

t=1E wq
t=1

  wt;
E wt; t=1
t=1

ogif(ytii 10,Xii)1 +...+Iog f(ytnij Xri ji)]1

Oci

g[lf(Yt1i1°,x1i)1+...+Iog[f(Ytnii10,X„ii)]}

E0

\ 2

(2.23)

(2.24)

(2.25)

10 Note that only the numerator of both density functions appears in (2.23). The denominators .

are constants and can be left out of the formula.
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2.5 Usefulness of the EM algorithm

By using the EM algorithm in this case we can use the information we have (exact

matches and groups of possible values for the observations that could not be

matched) to estimate the parameters of a model. We would expect the usefulness

of this method to depend on the size of the matching groups (smaller groups give

more accurate information, since there is less ambiguity).

An important question is whether this approach is feasible.

The following procedure could be used: divide the data into matching groups and

choose starting values. Use these starting values to calculate the probabilities for

each of the possible values per observation, taking into account the one to one

relation of observations on X and observations on Y*. A sample of y*-values can be

drawn from this discrete probability function for each observation on X. A weighted

average calculated over the sample as described in section 2.4 can be used as an

approximation to Q, the expected value of the log likelihood. The approximate Q

function can then be maximized with respect to 0. The maximization will result in

new values for 0 that can then be used to calculate the probabilities again. For the

larger matching groups this means a lot of computations since we have to calculate

probabilities for each of the possible values per observation. For each iteration all

these values have to be calculated again. Furthermore it could be necessary to

increase the number of Monte Carlo replications T for the larger matching groups in

order to get a realistic approximation to the part of Q that is contributed by those

matching groups.

Although .for large matching • groups the number . of calculations can be a

computational burden, the calculations themselves are quite straightforward and

easy to perform.

To give us more insight into the way the procedure works and the results it

generates, a simple comparative Monte Carlo experiment will be performed and

described in the next section.
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3 Comparative Monte Carlo experiment

Suppose there is a simple relation between Y* and X: In(Y*) = px + u, where u is an

error term with a known distribution P. For the examples in this paper the normal

distribution with mean zero and a variance term cs2 is chosen, but theoretically any

distribution could be used.

In our experiment each observation on Xi has one or more (say ni) possible values

(y11, yi2, ..., yin ) for Y*i. If there is only one possible value the usual contribution to

the likelihood function can be maintained. In case of two or more possible values for

Y*; this variable could be called latent, since no precise value is observed. In this

case a set of values is observed Instead of one value. However there is only one

true value for the latent variable. The exact value is unknown for most observations.

It is only known that this latent variable is an element of the set of observed values

Yi2 I • • • Yjnj }-

In this section two different situations will be distinguished. The case where the

variables in Z (the matching variable(s)) do not involve the endogenous variable Y*

will be described in subsection 3.1. The case where one of the matching variables in

Z is a categorized version of the dependent variable will be analysed in subsection

3.2.

3.1 Matching and dependent variables are non overlapping

3.1.1 Design of the simulation experiment

To compare the results obtained by using the EM algorithm on the scrambled data

(formed by two incomplete data sets) with the results that would be obtained if the

complete data set was available for estimation, a small data set is generated. The

artificial data consist of variables X, Y* and Z. X is generated by drawing a sample

(of the desired size) from a normal distribution. Y* is generated from the equation

In(Y*) = f3i + 32x + u, where u represents white noise and 131 and P2 are known
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parameters". A value for the p's and X and a distribution for u have to be chosen,

so that values for Y can be generated randomly. Z is generated by assigning group

numbers from 1 to 45 to each observation. This artificially created data will be used

to generate scrambled data by separating the data into two (incomplete) data sets:

one with only X and Z and another with only Y (= Y* in a different order) and Z.

We know the original equation underlying these data and we can try to estimate the

equation from the two separate data sets using the adapted EM algorithm. To have

a standard of comparison the equation will be estimated from the complete data set

as well. In order to get some feel for the quality of the estimates from the scrambled

data as compared to the estimates from the complete data, the process of

generating data will be repeated a thousand times, so an average value for the

parameters can be estimated. The only change made in each replication is that a

new sample of White noise values is drawn. The values of the variables X and Z will

remain the same throughout the replications.

Some variations on the case described before will also be simulated and compared

to the basic version.

The basic situation looks as follows:

To generate the two data sets the following equation is used:

In(Y*) = 2 + 0.5*X + u, where u N(0,1) (3.1)

1
So here f(Y*,0) =  

1 1 ,

aN/27r 2a

where 8 = (0',c52) ( = (2, 0.5, 1) in this case).

X is generated from N(3,4). A sample of 100 observations is generated by creating

100 values for X and Z, and by calculating the corresponding values for Y*.

Z is a vector that defines the matching groups. The values in Z are assigned in such

a way as to form the desired matching group sizes. The data set created in this way

is our basic data set that will be used in our simulations.

11 Since our variable of interest is hours of labour supply, we want to generate a Y that looks

like labour supply. Assuming a lognormal distribution for Y takes into account that negative

hours cannot be observed.
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For each replication an error term u (coming from the standard normal) will be

added to In(Y*) for all observations in the sample. This gives us the data set on

which the estimations will be performed. Thus the • only difference between each

replication is the value of the error term u.

After this data set with X, Y* and Z is generated, two new files are created. One

contains Z and Y while the other contains Z and X. The common factor between the

two data sets is Z. Some of the records can be reconnected, but others have two or

more possible records in the other file to which they can be connected. The drawn

sample contains 45 different values for observations on Z. This means 45 groups

containing from 1 to 7 different values for Y can be formed.

Besides this basic situation some interesting alternatives are also analysed:

a) generated data sets where the error term has a smaller variance.

b) generated data sets with more than 100 observations.

C) generated data sets where the average size of the matching groups is increased.

Besides the basic situation where u is the standard normal, an analysis of the effect

of a different variance for the distribution of u will be performed. The amount of

variance is an indication of the size of R2. A large variance will cause a small R2,

since the error term will disguise the true relation between Y* and X to a greater

extent. It is expected that the estimation of the parameters of a strong relation

between Y* and X will suffer less from being scrambled than a weaker relation.

The second alternative explores the effect of increasing the size of the data set,

while all other factors remain constant. The data set that we are planning to work

with will have the considerable size of 4330 income units. This means that size is of

major importance for our problem.

The last alternative is explored because it is expected that a pair of incomplete data

sets that have small matching groups will perform better in the estimation procedure

than a pair having an equal total number of observations but with large matching

groups. In the first case more exact information is available, since within the

matching groups less ambiguity surrounds the variable of interest. By increasing the

average size of the matching groups and keeping all other factors constant the
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effect of the average size of matching groups on the quality of the estimates can be

investigated formally.

3.1.2 The simulation results

In tables A.3.1 and A.3.2 of appendix A.3 the results of the different Monte Carlo

experiments are shown. In this section the properties of the estimated parameters

for the different situations will be discussed; e.g: what is the bias, what is the mean

square error and how close are the estimates to the actual values.

Before going into the different alternatives that are simulated, we want to make a

general remark on the estimated standard deviations. For comparison in all

simulations both the empirical standard deviation and the mean of the estimated

standard deviations (using (2.25)) are calculated. The empirical standard deviation

for a parameter estimate is defined over the 1000 replicated estimates of that

parameter. In table A.3.4 both standard deviations are presented. From this table it

is clear that in all cases the average estimated standard deviation is very close to

the empirical version.

a Varying the variance of the error term

Comparing columns eight and nine with columns four and five in table A.3.1 in

appendix A.3 it can be seen that a larger variance of the error term results in an

increase in the standard deviations of our estimates from the scrambled data. In the

complete data situation the standard deviations increase as well with an increase of

the variance but at a lesser degree. In all cases the complete data provides

estimates with smaller standard deviations. The difference in size of the standard

deviations between estimates from complete data and estimates from scrambled

data increases as the variance of the error term increases.

These results are illustrated in figure 3.1 for the estimated parameter of the X-

variable (132). When the variance of the error term equals 0.1, using complete data

or scrambled data with small matching groups or scrambled data with big matching

groups gives similar results on the standard deviations. Increasing the variance to 1

will increase the standard deviations of the parameters more for the scrambled data

than for the complete data, especially when the matching group size is larger.
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Figure 3.1 Changing the variance of the errorterm

st.dev. P2

0.07

0.06
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0.04
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0.02

0.01

0

c100 sm100 big100 c200 sm200 big200

c = complete data

sm = scrambled data with small matching groups

big = scrambled data with big matching groups

100 = sample size is 100 observations

200 = sample size is 200 observations

E3 var=0.1

var=1

The same conclusions can also be drawn from the percentage of cases in which

the estimated values for the parameters are within 5% of their true values (nearl to

near3 in the table A.3.2). The percentage is smaller for the scrambled data. For

increasing variance of the error term this percentage will decrease both for the

complete and the scrambled data, but the decrease will be relatively larger for the

scrambled data.

In both the complete and scrambled data situation the estimates remain unbiased

(see table A.3.2).

b Varying the sample size

The upper part of table A.3.1 contains the simulations where the sample size is one

hundred observations and the lower part contains the simulations where the sample

size is two hundred observations. A larger sample size decreases the standard

deviation for both complete and scrambled data. This is true for the cases of both

smaller and larger matching groups. More information improves the quality of the

estimates. This is what one would expect from a consistent estimator.

In figure 3.2 the standard deviation of P2 can be compared for the different cases.

With an increase in the sample size, the performance of the estimators (measured
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by the standard deviation of the parameters) in the complete and the scrambled

case seems to improve at about the same rate for all three estimators.

Figure 3.2 Changing the sample size

st.dev.

0.07  

0.06 —

0.05 —

0.04 —

0.03 —

0.02 —

0.01 —

c 1 sm 1 big 1 c 0.1 sm 0.1 big 0.1

c = complete data

sm = scrambled data with small matching groups

big = scrambled data with big matching groups

1 = variance of the error term is 1

0.1 = variance of the error term is 0.1

v:g n=100

is n=200

The Monte Carlo results suggest that the adapted EM algorithm produces consistent

estimates under the experimental design adopted above. That is, the sample means

of the parameters seem to be correctly located at the values adopted for the

underlying data-generating mechanism, and the precision of their location appears

to improve with increasing sample size (see table A.3.2). Moreover the standard

deviation of the sampling distribution appears to be declining with sample size.

c Varying the matching group size

Comparing column four with five and column eight with nine in tables A.3.1 and

table A.3.2 indicates the effect of an increase in average matching group size.

Columns five and nine contain the simulations where the group size has increased.

It can be seen that when matching groups are larger on average the standard

deviation of the estimates increases. In figure 3.3 this is illustrated for 132. Especially

for larger variances of the error term it is obvious from this figure that a larger

matching group size increases the standard deviation of the estimates.

intuitively this seems reasonable, since larger matching groups mean the available

information is more ambiguous. In a larger matching group there is a larger number
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of different combinations of y and x values that can be made, given the available

information.

Figure 3.3 Changing the matching group size

st.dev. P2
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0.03 —
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n=100
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v=1, v=0.1,

n=200 n=200

v = variance of the error term

n = the sample size

mgs = matching group size (on average)

D comp!.

E mgs=small

▪ mgs=big

In this contrived example the amount of precision in estimation lost as a result of an

increase in the size of matching groups seems modest. In a more realistic situation,

this may not be the case.

When estimating parameters with scrambled data, average group size seems to be

important, although the effects observed here are small.

Summarizing the results we can say that the effects of variance of the error term,

sample size and matching group size on the quality of the estimates are all as

expected. Increasing the variance and matching group size have a negative effect

on the quality and increasing the sample size has a positive effect.

3.2 Part of the matching and dependent variables are overlapping

3.2.1 Design of the simulation experiment

In the same way as described in 3.1 another data set can be generated. The

difference is that in this case one of the matching variables will be a categorized

version of the dependent variable. We are interested in the difference in quality of

the results that using the additional information on the more detailed values of the
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dependent variable will give us, compared to the results from the grouped data

alone.

Apart from this dependence between one of the matching variables and the

dependent variable, the same basic situation as in the previous section and some

variations on that basic situation will be explored. However an additional estimation

will be analysed. Besides the estimation using the complete data set and the

estimation using the two separate data sets generated from the complete data, also

estimates from just the data set containing the categorized version of the dependent

variable will be explored.

Our basic situation will be generated in the same way as in 3.1, the only difference

being an additional matching variable in the form of a categorized version of our

dependent variable Y*. This causes our matching groups to be different for each

replication, since the matching groups depend on the values of our matching

variables and one of the matching variables changes for each replication with the

value of Y*.

We will only investigate two alternatives besides the basic situation:

a) more matching groups, keeping the width of the intervals of the dependent

variable constant.

b) fewer matching groups by increasing the width of the intervals.

Here we are only interested .in the difference between estimating from the grouped

data (with no further information) and estimating from the scrambled data. Does the

additional information in the scrambled data as compared with the grouped data

give better results?

3.2.2 The simulation results

All the results that are discussed in this section can be found in table A3.3. For all

the three cases mentioned before, estimation using the information on the possible

values within a group (method A, say) provides better results than estimation using

just the grouped data (method B, say).

The fewer elements in the matching groups the better the results for method A. So

using method A instead of B gets more worthwhile when there is more additional
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information in the scrambled data. This can be seen by comparing column 8 with

column 6. Here there is only a slight difference in the quality of the estimates in the

two cases. Since the width of the interval of the grouped dependent variable

remains the same, column 7 and column 9 show identical results.

This means that changing the average matching group size (while keeping the width

of the intervals, in which the categorized version of the dependent variable can be

divided, constant) will improve the quality of the estimates when using method A.

Figure 3.4 Changing the width and the size of groups

stdev. pi
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0.2

0.15

0.1

0.05

complete grouped scrambled

Ow=30, nrgr=33.1

w=15, nrgr=32.3

El w=15, nrgr=46.5

w = width of the interval of the grouped dependent variable

nrgr = average number of matching groups in the data sets of the Monte Carlo

experiment

Changing the number of groups by changing the width of the intervals of the

dependent variable from 15 to 30, will affect both the results from method A and

method B. Comparing column 6 with column 4 and column 7 with column 5 shows

that method A suffers less from the increase in interval width than method B. The

standard deviations for the wider intervals are slightly larger and the nearness gets

slightly less when using method A. Method B shows a larger deterioration in the

quality of the estimation results. Figure 3.4 shows this clearly as well.

It can be seen that changing the number of groups via width of the categorized

dependent variable has a larger impact on the quality of estimation than changing

the number of groups via one of the other matching variables.

From columns 4 and 8 the importance of the maximum width of the groups

(indicating the range of values a variable within one matching group can take) for

the quality of the estimates from scrambled data can be seen even more clearly.

The average number of groups in column 8 is slightly smaller. than the average
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number of groups in column 4. This means that the average matching group size in

column 8 is slightly bigger. Nevertheless the standard deviations and mean square

errors in column 8 are slightly smaller. This indicates that the narrowing of the

categories in itself has a positive effect on the quality of the estimates.

Further evidence for this can be found by comparing the results here with the results

in table A.3.1. There the same basic data sets and errors are used, but the division

in matching groups is not determined by a categorized version of the dependent

variable Y. This means that the range of possible values for Y in a matching group

can be much wider than in the simulations of table A.3.3.

The number of groups in the case of the small matching groups is 45. for samples of

100 observations. The standard deviations and the mean square errors in the upper

part of column 4 of table A.3.1 and A.3.2 are larger than the standard- deviations

and mean square errors in columns 4 and 8 of table A.3.3, even though the average

matching groups are bigger in size in case of the latter table.

Summarizing we can say that the performance of method A relative to method B

improves in situations where the intervals, in which the dependent variable is

grouped, are wider and where the scrambled data contains more additional

information (i.e. the matching groups are smaller on average). In addition we note

that a narrower range of possible values for Y within a matching group has a

positive effect on the quality of the estimates.

4 Conclusion and perspective for further research

This paper has proposed a method for using scrambled data as part of the process

of estimating a behavioural equation of interest. Monte Carlo trials for a simple linear

model indicate that the method works quite well. The main difference between

estimating from complete data and estimating from scrambled data lies in the size of

the precision of the estimators. Standard deviations are bigger for the scrambled

data. A higher noise to signal ratio will increase the size of the standard deviation

more for scrambled data than for complete data.

However the simulations seem to suggest that our estimators will still be consistent.

Furthermore the Monte Carlo trials suggest that the corresponding estimators of the

standard deviations (of estimated parameters) are unbiased.
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•

All of the above implies that the EM algorithm can be useful to get information from

a scrambled data set. The next step is to apply this method to our real data set,

which of course is the main goal of this study.

In the simulations we find that a larger average matching group size will increase

the standard deviation of the estimates. In the data set of interest some matching

groups consist of a few hundred observations. Hopefully the negative effect flowing

from such a large group size will be counteracted by the positive effect of a large

sample size (N 4000). Further, it is possible that the availability in the data set of •

interest of a matching variable (actual hours worked), that is a categorized version

of the endogenous variable under investigation, could enhance the precision of

estimation in one of the models. At least we are confident that the estimated

standard deviations will correctly indicate the accuracy of our estimates. •
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Appendix Al: Details on the data set of interest

A.1.1 Interesting features of the data

The data come from the unit record file of the ABS income distribution survey 1986.

The main part of it comes from the regular file. It contains many background

characteristics for all individual persons in the surveyed household who were 15

years or older at the moment of the survey. These background characteristics

consist for example of age (in classes), highest educational qualification, field of

education, occupation and industry. In addition to these characteristics we also have

very detailed information on income received by each person. Even more important

for our research is that there is information on number of hours worked. In the

general file this has been aggregated into intervals (e.g., 0 to 9 hours per week, 10

to 19 hours per week, 20 to 24 hours per week, 25 to 29 hours per week, etc. till the

last category of more _than 50 hours per week) even though it has been asked in

terms of an exact number of hours. Other information asked in the survey but not

included in the general unit record file consists of preferred hours of work, reasons

for working a different number of hours from the preferred number and questions on

the desire to work if someone had not been looking for a job during the last four

weeks.

This additional information can be very useful for research on labour supply.

Therefore the ABS was approached to get these additional data. Although the

information was not readily available any more (the survey was in 1986), the ABS

allowed us to copy the necessary file from another university.

A.1.2 Common information available for matching

The main file includes observations on "hours worked in main job", "hours worked in

second job" and "hours worked in all jobs". These variables have been aggregated

into 10 classes, 4 classes and 10 classes respectively. In the smaller file with

additional information the exact number of hours is available, so the information on

hours can be used to connect the records. This information is available for all

members of the household over 15 years of age. Although the household identity

numbers are different, both files contain exactly the same households. Since the

number of individual records for a particular household is the same in both files, this
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information can also be used in an effort to connect the two files. The records have

to be matched on a household basis, so groups of records representing a

household will be formed and these groups have to be matched to the

corresponding group in the other file.

To find the matching records the records in each file were ordered firstly according

to the number of records per household, secondly according to household identity

number (to create the groups per household), thirdly according to hours worked in

main, second and all jobs of the, head of the household and fourthly according to

family number, income unit number and person number. In this way the data are

grouped in a similar way in both data files.

Households with a unique combination of the above variables and hours worked of

the other household members can be exactly matched. If more than one household

shares the same recorded values of these characteristics, a choice will be

necessary when attempting to link the two files.

After the matching procedure is finished about 17 % of the individual records is

exactly matched.

For the analyses we only want to use households that contain at most one income

unit and consist of a head and a partner with or without dependants. The data are

also rearranged into records per income unit instead of individual records and

detailed information is only kept on the head and the partner, besides the

information on the total income unit. Only a few characteristics on the dependants

are kept.

Starting from a total data set of 17,714 individual records, 4330 income units remain

to be analysed after the above selection. From these income units 262 were exact

matches; thus the number of exact matches dropped from about 17 13/0 to 6.1 %.

This seems a dramatic drop. However there are some explanations.. The first one is

that the income unit of interest is one of the most common and therefore probably

more difficult to be matched exactly. The second explanation is that we changed

from records per individual to records per income unit. Income units with more

records were easier to match, but all these separate individual records were

transformed into just one income unit record. This causes the expected percentage

of exactly matched individuals to be higher than the expected percentage of exactly

matched income units.
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A.1.3 Different types of variables in the supplementary data file

The possibilities might differ for the different variables in the additional data. file.

Actual hours worked is the most accurate variable since a grouped variant of the

actual hours worked was used to do the matching. So we know that the chosen

values are at least in the right range.

For all other variables we have no idea whether the chosen values are the right

ones. In fact, the values we have to choose from can be very different, since the

matching variables and the additional variables in the extra data file are probably

not (very strongly) correlated. So we have a group of values that can be very

different and only one of the values is the right one but we do not know which one

that is. The data base reveals that the number of records in the group from which

one record has to be chosen can range from 1 to 965. However, the number of

different values for the variable of interest that these records represent, will be at

most 90.
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Appendix A.2 Rao's theorem in the discrete case

Following the same steps as in le.6 from Rao (1973):

Given a function f and g representing a probability mass function, y*E A can be

defined so that f(y*)>0.

Then if f(y1 g(y1 it can be proven that .
YaGA reA

f(r) log( -1---q)> 0
y*eA g(Y1

Proof

Use

(A.1)

(x - 1)2 
log(x) = (x -1) - r E (1, X)

2r2 (A.2)

So

f(r) log g(Y*)
reA 

)f(r) f(r)
reA

This is equivalent to:

(g(Y1 1)2

(g(r) f(Y1 
f(Y*)I 2r2

E(g(r) - f(r)) - Ef(r) (g(Y*) f(r))2

y*eik rEA I 
2r2f(r)2

g(r) -Ef(r) -Ef(r)[ (g(r)-f(Y1)2],0
2(r*)2

rEll g(Y1) (A.3)
f(Y*) 

r*e(f(y*),g(y*))c (0,1)

n Y
However, if f(y*) 10g(

i„*1
' 1) 0, it is easy to see that Ef(r) log( *)) >0.

y*EA f(r) reA g(r)

(A.4)
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Appendix A.3 Tables comparing the simulation results

Table A.3.1 Average parameter estimates and average standard deviations for the estimates for a simple

linear model using complete and scrambled data sets with different matching group sizes. Sample size

and variance is varied in the experiment 1000 replications per case).

n=100, a2=1 n=100, a2=0.1

theor.a compl.° scrambled°

small groups

scrambled

big groups

theor.

•

compl. scrambled

small groups

scrambled

big groups

11 2 3 4 5 6 7 8 9 •

131 (1) 2.0 ' 2.007 2.006 2.003 2.0 2.002 2.002 2.002

132 (2) 0.5 0.499 0.499 0.500 0.5 0.500 0.500 0.500

a2 (3) 1.0 0.980 0.977 0.971 0.1 0.098 0.098 0.098

stdev1 0.190 0.187 0.198 0.216 0.060 0.059 0.059 . 0.060

stdev2 0.055 0.054 0.059 0.066 0.017 0.017 0.017 0.017

stdev3 0.141 0.139 0.156 0.182 0.014 0.014 0.015 0.017

R2 d 0.440 0.444 . 0.889 0.891 -

n=200, a=1 n=200, a2=0.1

1 2 3 4 5 6 7 8 9

pi (1) 2.0 '1.998 ' 2.000 1.998 2.0 1.999 2.000 2.000

132 (2) 0.5 0.500 0.500 0.501 0.5 0.500 0.500 0.500

cr2 (3) 1.0 0.989 0.990 0.986 0.1 0.099 0.099 0.099

stdev1 0.132 0.131 0.140 0.152 0.042 0.041 0.042 0.042

stdev2 0.038 0.038 0.041 0.046 0.012 0.012 0.012 0.012

stdev3 0.100 0.099 0.114 0.134 0.010 0.010 0.011 0.012

R2 0.462 0.465 0.897 0.898

a Values of the parameters used in the data generation for Monte Carlo work

Maximum. likelihood estimates based on complete data (i.e. data that is not scrambled)

EM estimates from the scrambled data

Coefficient of determination
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Table A.3.2 Average bias, average mean square errors and a nearness measure for the estimated
arameters from table A.3.1.•

n=100, a2=1 n=100, a2= 0 . 1

theor.a ' compl.b scrambled°

small groups

scrambled

big groups

theor. comp l. scrambled

small groups

scrambled

big groups

1 ' 2 * 3 4 5 6 7 8 9

bias1 ' 1 0.007 0.006 1 0.003 0.002 0.002 0.002

bias2 -0.001 -0.001 . -0.000 -0.000 -0.000 -0.000

bias3 -0.020 -0.023 -0.029 -0.002 -0.002 -0.002

mse1 0.036 0.034 0.039 0.049 0.004 0.003 0.003 0.004

mse2 0.003 0.003 0.003 0.005 0.000 0.000 0.000 0.000

mse3 0.020 0.018 0.024 0.035 0.000 0.000 0.000 0.000

near1d 39.4% 38.5% 32.6% 92.1% 91.9% 91.3%

near2 34.6% 33.4% 26.4% 86.1% 86.8% 85.5%

near3 26.8% 22.5% 20.1% 26.8% 25.0% 23.4%

n=200,0-1=1 . n=200, a2=0.1

1 2 3 . 4 ' 5 6 7 8 9

'bias1 -0.002 -0.000 ' -0.002 -0.001 -0.000 -0.000

bias2 0.000 -0.000 0.001 0.000 0.000 0.000

bias3 -0.011 -0.010 -0.014 -0.001 -0.001 -0.001

mse1 0.017 0.018 0.021 0.025 0.002 0.002 0.002 0.002

mse2 0.001 0.001 0.002 0.002 0.000 0.000 0.000 0.000

mse3 0.010 0.009 0.013 0.018 0.000 0.000 0.000 0.000

near1 54.5% 50.9% 46.0% 98.0% 98.0% 97.5%

near2 49.1% 45.6% 40.2% 96.0% 96.3% 96.0%

near3 40.5% 36.2% 28.6% 40.5% 37.4% 31.2%

a Calculated theoretical values for a specific data set

b Maximum likelihood estimates based on complete data (i.e. data that is not scrambled)

EM estimates from the scrambled data

Percentage of estimates within 5 % of the actual value
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Table A.3.3 Estimated parameters, standard deviations, biases, mean square errors and indicators of the

nearness to the actual value from the complete, the groupeda and the scrambled data sets (1000 replications for

,
average nr. of

groups=33.1, widthb =30

average nr. of

groups=46.5, width=15

average nr. of

groups=32.3, width=15

' theor.c - compl.d scramblede grouped scrambled grouped scrambled grouped

(method A) (methodB) (method A) (method B) (method A) (method B)

1 2 3 4 5 4 6 7 8 9

131 (1) 2.0 2.007 2.006 1.992 2.009 1.998 2.007 1.998

f32 (2) 0.5 0.499 0.499 0.502 0.498 0.501 0.498 0.501

a2 (3) 1.0 0.980 0.978 0.998 0.981 0.992 0.980 0.992

stdev1 0.190 0.187 0.194 0.317 0.190 9.246 0.191 0.246

stdev2 0.055 0.054 0.057 0.081 0.056 0.068 0.056 0.068

stdev3 0.141 0.139. 0.151 0.229 0.144 0.184 0.145 0.184

bias1 0.006 0.006 -0..008 0.009 -0.002 0.007 -0.002

bias2 -0.001 -0.001 0.002 -0.002 0.001 -0.002 0.001

bias3 -0.020 -0.022 -0.002 -0.019 -0.008 -0.020 -0.008

mse1 0.036 0.034 0.037 0.097 0.035 0.059 0.036 0.059

mse2 0.003 0.003 0.003 0.006 0.003 0.005 0.003 0.005

mse3 0.020 0.018 0.022 0.058 0.019 0.035 0.020 0.035

near1 f 39.4% 38.7% 24.9% 38.2% 32.5% 39.2% 32.5%

near2 34.6% 35.2% 25.5% 35.2% 30.8% 33.8% 30.8%

near3 26.8% 25.7% 16.6% 27.3% 21.1% 26.0% 21.1%

R2 ° 0.440 0.444

a The dependent variable is only available in grouped form and is one of the matching variables for the scrambled data.

Width of the intervals in which exp(dependent variable) is divided.

Values of the parameters used in the data generation for Monte Carlo work

d Maximum likelihood estimates based on complete data (i.e. data that is not scrambled)

e EM estimates from the scrambled data

f Percentage of estimates within 5 % of the actual value

° Coefficient of determination.
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Table A.3.4 Comparison of empirical and estimated standard deviations of the parametersa

estimated from scrambled data for different sample sizes, matching group sizes and variances

of the error term.

131 132 a2

est. st.d. - emp. st.d. est. st.d. emp. st.d. est. std. emp. st.d.

small groups
_.

n=100, a2=0.1 0.059 0.059 0.017 0.017 0.015 0.015

.n=100, a2=1 0.198 0.197 0.059 0.058 0.156 0.154

n=200,a2=0.1 0.042 0.043 • 0.012. 0.012 0.011 0.011

n=200, a2=1 0.140 0.145 0.041 0.041 0.114 0.112

bigger groups

n=100, a2=0.1 0.060 0.059 0.017 0.017 0.017 0.017

n=100, a2=1 0.216 0.222 0.066 0.068 0.182 0.184

n=200, a2=0.1 0.042 0.043 0.012 0.012 0.012 0.012

n=200, a2=1 0.152 0.159 0.046 0.046 0.134 0.135

a This table is formed by using the results from the same simulations as are used to construct table

A.3.1 and A.3.2. The columns with the estimated standard deviations (est. st.d.) contain numbers that

can also be found in tables A.3.1 and A.3.2.
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